Polinomios y Estadística
|
|
|
- Sandra Fernández Rey
- hace 9 años
- Vistas:
Transcripción
1 Funciones polinomiales Universidad de Concepción, Chile Departamento de Geofísica Programación Científica con Software libre Primavera, 2011 Universidad de Concepción
2 Contenidos Funciones polinomiales 1 Funciones polinomiales 2 3
3 Polinomios Funciones polinomiales Un polinomio puede ser representado por sus coeficientes, por ejemplo p(x) = x 3 2x 2 3x + 2 es caracterizado por el vector p = [1, -2, -3, 2] Consideraciones : Los coeficientes deben ser ordenados en forma decreciente por su grado Deben ser representados todos los coeficientes aun si su valor es 0
4 Polinomios Funciones polinomiales Una vez representado el polinomio se pueden realizar varias operaciones asociadas a este, entre algunas : Las raices del polinomio son estimadas usando el comando roots La función polyval se utiliza para evaluar el polinomio en un dominio dado La función polyfit ajusta un set de datos a un polinomio
5 Polinomios Ejemplo 1 Funciones polinomiales Encontrar las raices del polinomio 2x 4 7x 3 8x x + 8 Comprobemos el resultado obtenido con roots usando la función polyval y graficando. y = polyval(p,x) entrega los valores del polinomio p evaluado en x, donde x puede ser vector o escalar.
6 Funciones polinomiales Solución # s o l u c i o n p = [ ] ; c = roots ( p ) ; # r a i c e s x = [ 1 0 :. 1 : 1 0 ] ; # dominio y = p o l y v a l ( p, x ) ; # evaluamos # g r a f i c a m o s p l o t ( x, y ) # zoom para v e r r a i c e s a x i s ([ ] ) polynomio
7 Polinomios Ejemplo 2 Funciones polinomiales p = polyfit(x,y,n) entrega los coeficientes del polinomio de grado n que mejor ajusta los datos p(x(i)) a y(i) en el sentido de mínimos cuadrados. Descarge el archivo fit.dat y ajuste los datos a un polinomio de grado 2.
8 Funciones polinomiales Solución # a j u s t e por minimos c u a d r a d o s d = load ( f i t. dat ) ; x = d ( :, 1 ) ; y = d ( :, 2 ) ; # buscamos l o s c o e f i c i e n t e s d e l p o l i n o m i o # de grado 2 p = p o l y f i t ( x, y, 2 ) ; # comportamiento de e l p o l i n o m i o # a j u s t a d o en r e l a c i o n a l o s d a t o s y1 = p o l y v a l ( p, x ) ; p l o t ( x, y, o, x, y1, r ) g r i d
9 Estadística Medidas de tendencia central Funciones polinomiales Media aritmética Se puede definir como el centro de gravedad de una distribución, el cual no esta necesariamente en la mitad. Su representación matemática es N x = 1 N i=1 x i En señales geofísicas es común restarle la media a la señal y trabajar solo con la anomaĺıa en torno a este valor medio, de alguna forma esto permite menos propagación de errores. Así tenemos que la nueva señal es ˆx = x x
10 Funciones polinomiales En octave tenemos la función mean para calcular la media de un array, en el caso de una matriz la media es calculada sobre cada columna. Descarge el archivo unidata.dat y muevalo a su directorio de trabajo, luego importe los datos usando la función load. Calcule la media de todas las columnas que componen la matriz, excepto la primera. Solución data = load( unidata.dat ); mean = mean(data(:,2:end));
11 Estadística Medidas de dispersión Funciones polinomiales Desviación estándar Dispersión de los datos en torno al valor medio. Para distribuciones no conocidas la desviación estándar muestral se calcula como s = N i=1 ( x x i) 2 N 1
12 Funciones polinomiales En octave la función std se utiliza para calcular la desviación estándar de un array, en el caso de una matriz la desviación estándar es calculada sobre cada columnna. Para el archivo unidata.dat realize el cálculo aterior, pero esta vez calcule la desviación estándar. Solución data = load( unidata.dat ); sigma = std(data(:,2:end));
13 Probabilidades Funciones de distribución Funciones polinomiales La distribución de probabilidad de una variable aleatoria es una función que asigna a cada suceso definido sobre la variable aleatoria la probabilidad de que dicho suceso ocurra. Fig: Distribución Gaussiana σ 34.1% 34.1% 0.1% 2.1% 13.6% 13.6% 2.1% 0.1% 2σ 1σ µ 1σ 2σ 3σ
14 Funciones polinomiales Un histograma es la distribución de los elementos de un conjunto en función de su frecuencia. En octave la función hist calcula el histograma de un set de datos. Abajo se exhibe un histograma generado a partir de un set de números aleatorios de distribución normal
15 FDP & CDF Funciones polinomiales Entre las funciones de densidad de probabilidad (FDP) que incorpora octave encontramos las siguientes normpdf normal tpdf t-student chi2pdf chi-cuadrado unifpdf uniforme y para las funciones de distribución de probabilidad normcdf normal tcdf t-student chi2cdf chi-cuadrado unifcdf uniforme
16 Ejemplo Funciones polinomiales cu = normcdf(x, µ, σ) entrega la probabilidad de observar un valor menor que x, en un experimento donde las variables aleatorias se distribuyen normal con media µ y desviación estándar σ Ejercicio La cantidad de agua caida sobre una cuidad se distribuye normal, si la media del agua precipitada son 100 mm y la desviación típica 20 mm. Cual es la probabilidad que el agua caida sea superior a 80 mm?
17 Funciones polinomiales Funciones de conversión num2str str = num2str(a, format) convierte el array A a su reprensentación string. La palabra string se usa para hacer referencia a una cadena de caracteres. Entre los atributos que desplega whos se encuentra Class, que proporciona información referente a la clase de variable. De esta manera con el comando whos podemos constatar que si declaramos un string, por ejemplo si dia= lunes, este será de clase char, relativo a character. En format, entrecomilla simple, las opciones de conversión. Alguna de estas opciones son listadas en la siguiente tabla.
18 Funciones polinomiales Carácter de conversión Descripción %c Secuencia de caracteres.el número esta especificado por el ancho del campo, ej: %10c lee 10 caracteres. %d Enteros en base decimal. %f Números en punto flotante. %s Palabras.Secuencia de caracteres hasta antes de un espacio en blanco. %e Notación exponencial, tal como e+00 %i Número entero
19 Funciones polinomiales Funciones de conversión datenum fecha = datenum(a, M, D) Retorna una fecha numérica para los correspondientes elementos de A, M, D (año, mes, dia). Ejemplo Crear un vector númerico de fechas entre el 23 de Agosto de 1982 al 23 de Febrero de vi = datenum(1982,08,23); vf = datenum(2010,02,23); vc = vi:vf;
20 Funciones polinomiales Funciones de conversión datetick datetick(eje, tipo) Cambia el tipo de etiquetado del eje x,y, z a un formato definido por tipo. Para un correcto resultado, los valores del eje especificado deben estar en formato de fecha númerico (datenum). Ejemplo Poner etiquetado al eje X de tipo dia/mes/año datetick( x,2)
observar que la distribución colapsa y que las medias calculadas usando 1000 iteraciones están muy próximas a 0.
EJERCICIOS BLOQUE I Ejercicio 1.- Para cada una de las distribuciones comentadas realizar un gráfico ilustrativo de la PDF y la CDF. Elije valores comunes para los parámetros que definen a cada distribución:
LECTURA 03: DISTRIBUCIÓN T STUDENT Y DISTRIBUCIÓN CHICUADRADO TEMA 6: DISTRIBUCION T STUDENT. MANEJO DE TABLAS ESTADISTICAS.
LECTURA 3: DISTRIBUCIÓN T STUDENT Y DISTRIBUCIÓN CHICUADRADO TEMA 6: DISTRIBUCION T STUDENT MANEJO DE TABLAS ESTADISTICAS 1 INTRODUCCION Se dice que una variable aleatoria T tiene una distribución t de
SOLUCIONES AL EXAMEN DE SEPTIEMBRE DE ESTADÍSTICA EXAMEN DE MATEMÁTICAS II
SOLUCIONES AL EXAMEN DE SEPTIEMBRE DE 4. ESTADÍSTICA EXAMEN DE MATEMÁTICAS II Estadística (primer parcial). Septiembre de 4.- El coeficiente de determinación R nos determina a) el % de la varianza de Y
LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.
LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante
Programa del Diploma: Estudios Matemáticos
Programa del Diploma: Estudios Matemáticos Level: SL Tema Contenido Año 1 Conocimiento presunto Conjuntos numéricos, medición, aproximación, redondeo y estimación,% de error, notación científica. Número
TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES. Variable aleatoria (Real)
TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES Grado Ing Telemática (UC3M) Teoría de la Comunicación Variable Aleatoria / 26 Variable aleatoria (Real) Función que asigna un valor
Prof. Eliana Guzmán U. Semestre A-2015
Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos
Práctica 4. Contraste de hipótesis
Práctica 4. Contraste de hipótesis Estadística Facultad de Física Objetivos Ajuste a una distribución discreta uniforme Test χ 2 Comparación de muestras Ajuste a una distribución normal 1 Introducción
Unidad Temática 3: Probabilidad y Variables Aleatorias
Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento
Gobierno de La Rioja MATEMÁTICAS CONTENIDOS
CONTENIDOS MATEMÁTICAS 1.- Números reales Distintas ampliaciones de los conjuntos numéricos: números enteros, números racionales y números reales. Representaciones de los números racionales. Forma fraccionaria.
Teoría de la decisión
1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia
C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).
Ejercicio 1 AÑO 013- OPCIÓN A mx + y + z = m 1 m 1 x + my = 1 } (A) = ( 1 m 0 ) (A ) = ( 1 m 0 1 ) 6y z = 1 1 Calculamos el det(a) e igualamos a cero para sacar los valores en los que el determinante se
Repaso de conceptos de álgebra lineal
MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso
Tema 4: Variables Aleatorias
Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto
1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES
1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES 1.- INTRODUCCIÓN AL NÚMERO REAL Realización de operaciones con números reales. Ordenación de los
3. Variables aleatorias
3. Variables aleatorias Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 3. Variables aleatorias Curso 2009-2010 1 / 33 Contenidos 1 Variables aleatorias y su distribución
METODOS ESTADÍSTICOS
METODOS ESTADÍSTICOS Introducción. Uno de los objetivos de la asignatura de Hidrología, es mostrar a los alumnos, las herramientas de cálculo utilizadas en Hidrología Aplicada para diseño de Obras Hidráulicas.
Capítulo 2. Medidas Estadísticas Básicas Medidas estadísticas poblacionales
Capítulo 2 Medidas Estadísticas Básicas 2.1. Medidas estadísticas poblacionales Sea X una variable aleatoria con función de probabilidad p(x) si es discreta, o función de densidad f(x) si es continua.
Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).
VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido
18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.
PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto
La asignatura de Matemática estimula el desarrollo de diversas habilidades:
La asignatura de Matemática estimula el desarrollo de diversas habilidades: Intelectuales, como: El razonamiento lógico y flexible, la imaginación, la inteligencia espacial, el cálculo mental, la creatividad,
3 ANALISIS DESCRIPTIVO DE LOS DATOS
3 ANALISIS DESCRIPTIVO DE LOS DATOS 3.1 La tabulación de los datos 3.1.1 Tabla de distribución de frecuencias. 3.1.2 El histograma. 3.2 Medidas de tendencia central 3.2.1 La media. 3.2.2 La mediana. 3.2.3
ANALISIS DE FRECUENCIA EN HIDROLOGIA
ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos
FUNCIONES DE GENERACIÓN DE NÚMEROS ALEATORIOS NÚMEROS ALEATORIOS UNIFORMES
FUNCIONES DE GENERACIÓN DE NÚMEROS ALEATORIOS Hay muchos problemas de ingeniería que requieren números aleatorios para obtener una solución. En algunos casos, esos números sirven para crear una simulación
Expresión decimal. Aproximación y estimación. Notación científica. Polinomios. Divisibilidad de polinomios. Regla de Ruffini.
Otras páginas Matemáticas 5º Matemáticas I. Bloque I: ARITMÉTICA Y ÁLGEBRA Los números reales Los números reales, concepto y características. Estructura algebraica, orden, representación en la recta real
PROBABILIDAD. Unidad I Ordenamiento de la Información
1 PROBABILIDAD Unidad I Ordenamiento de la Información 2 Captura de datos muestrales Conceptos básicos de la estadística 3 Población (o universo): Totalidad de elementos o cosas bajo consideración Muestra:
TEMARIO PRUEBA DE SÍNTESIS MATEMÁTICA NIVEL SÉPTIMO BÁSICO
NIVEL SÉPTIMO BÁSICO Operatoria números naturales Operatoria números decimales Clasificación de números decimales Transformación de decimal a fracción Orden de números enteros Ubicación de números enteros
GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS
GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS La simulación de eventos se basa en la ocurrencia aleatoria de los mismos, por ello los números aleatorios y las variables aleatorias son de especial
Tema 1: Estadística descriptiva. Probabilidad y Estadística (Ing. Informática). Tema 1: Estadística descriptiva 1
Tema 1: Estadística descriptiva Probabilidad y Estadística (Ing. Informática). Tema 1: Estadística descriptiva 1 Introducción Objetivo: estudiar una característica o variable en una población. Ejemplos:
Variables aleatorias
Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con
8.1. Sección. Distribución de la media muestral Pearson Prentice Hall. All rights reserved
Sección 8.1 Distribución de la media muestral 2010 Pearson Prentice Hall. All rights reserved Términos importantes variable aleatoria (v.a.) es un número real cuyo valor se determina al azar y mediante
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Representaciones gráficas de las distribuciones bidimensionales de frecuencias... 74
Índice 1. Introducción al R 15 1.1. Introducción............................. 15 1.2. El editor de objetos R....................... 18 1.3. Datos en R............................. 19 1.3.1. Vectores...........................
sin(x) p1 p2 p3 p4
Universidad de Puerto Rico Departamento de Matematicas Humacao, Puerto Rico 79 MATE 46 Analisis Numerico Prof. Pablo Negron Laboratorio I: Polinomios y Gracas Un polinomio como p(x) =x 4 +2x 3 ;3x 2 +4x+5
DISTRIBUCIÓN NORMAL. Modelo matemático: f ( x ) = σ 2 π
DISTRIBUCIÓN NORMAL. Es la más importante de las distribuciones teóricas, es también conocida con los nombres de curva normal y curva de Gauss. De Moivre publico en 1773 su trabajo sobre la curva normal
JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas
JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme
Variables aleatorias: El caso continuo. Random variables: The continuous case. Rincón de la Bioestadística
Variables aleatorias: El caso continuo Gabriel Cavada Ch. 1 1 División de Bioestadística, Escuela de Salud Pública, Universidad de Chile. Random variables: The continuous case E l tratamiento de una variable
Variable Aleatoria Continua. Principales Distribuciones
Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables
Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas
Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones
ETSI de Topografía, Geodesia y Cartografía
Disttool Es una herramienta de MATLAB que permite visualizar de forma gráfica las características de cada distribución con la posibilidad de variar sus parámetros. Las funciones que muestra son: Función
ESTADÍSTICA INFERENCIAL. Sesión 6: Distribuciones de probabilidad para variables aleatorias continuas
ESTADÍSTICA INFERENCIAL Sesión 6: Distribuciones de probabilidad para variables aleatorias continuas Contextualización Las variables aleatorias discretas son aquellas que toman estrictamente valores enteros,
Econometría II Grado en finanzas y contabilidad
Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:[email protected] Este documento es
ACTIVIDAD 2: La distribución Normal
Actividad 2: La distribución Normal ACTIVIDAD 2: La distribución Normal CASO 2-1: CLASE DE BIOLOGÍA El Dr. Saigí es profesor de Biología en una prestigiosa universidad. Está preparando una clase en la
Capítulo 5: Probabilidad e inferencia
Capítulo 5: Probabilidad e inferencia estadística (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos Principios de la probabilidad Conceptos básicos
Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i :
Teorema de Bayes(5) 75 Gráficamente, tenemos un suceso A en un espacio muestral particionado. Conocemos las probabilidades a priori o probabilidades de las partes sabiendo que ocurrió A: Teorema de Bayes(6)
TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18
TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias: discretas y continuas. 2.2. Variables aleatorias discretas. Diagrama de
Estadísticas Elemental Tema 3: Describir, Explorar, y Comparar Data
Estadísticas Elemental Tema 3: Describir, Explorar, y Comparar Data (parte 2) Medidas de dispersión 3.1-1 Medidas de dispersión La variación entre los valores de un conjunto de datos se conoce como dispersión
Introducción al Diseño de Experimentos.
Introducción al Diseño de Experimentos www.academia.utp.ac.pa/humberto-alvarez Introducción Una población o universo es una colección o totalidad de posibles individuos, especímenes, objetos o medidas
ESTADÍSTICA UNIDIMENSIONAL
ESTADÍSTICA UNIDIMENSIONAL DEFINICIÓN DE VARIABLE Una variable estadística es cada una de las características o cualidades que poseen los individuos de una población. TIPOS DE VARIABLE ESTADÍSTICAS Ø Variable
Síntese da programación didáctica
Síntese da programación didáctica 2013-2014 o Contidos 1º Trimestre TEMA1: - Múltiplos y divisores - Criterios de divisibilidad de 2, 3, 4, 5, 9, 10, 11 y 25 - Números primos y compuestos - Descomposición
ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA
ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA Definición de Estadística: La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer
Ms. C. Marco Vinicio Rodríguez
Ms. C. Marco Vinicio Rodríguez [email protected] http://mvrurural.wordpress.com/ Uno de los objetivos de la estadística es saber acerca del comportamiento de parámetros poblacionales tales como:
GUÍA DE STATGRAPHICS 5.1
UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA UNIVERSITARIA DE ARQUITECTURA TÉCNICA DEPARTAMENTO DE MATEMÁTICA APLICADA A LA ARQUITECTURA TÉCNICA GUÍA DE STATGRAPHICS 5.1 (Versión castellana) GUÍA DE STATGRAPHICS
Contenidos IB-Test Matemática NM 2014.
REDLAND SCHOOL MATHEMATICS DEPARTMENT 3 MEDIO NM 1.- Estadística y probabilidad. Contenidos IB-Test Matemática NM 2014. 1.1.- Conceptos de población, muestra, muestra aleatoria, y datos discretos y continuos.
Sumario Prólogo Unidad didáctica 1. Introducción a la estadística. Conceptos preliminares Objetivos de la Unidad...
ÍNDICE SISTEMÁTICO PÁGINA Sumario... 5 Prólogo... 7 Unidad didáctica 1. Introducción a la estadística. Conceptos preliminares... 9 Objetivos de la Unidad... 11 1. Población y muestra... 12 2. Parámetro
FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional
FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- Estadística variable unidimensional 1. Conceptos de Estadística 2. Distribución de frecuencias 2.1. Tablas de valores con variables continuas 3. Parámetros
Mediciones. Errores. Propagación de errores. Estadística. Prof. Arturo S. Vallespi
Mediciones. Errores. Propagación de errores. Estadística Prof. Arturo S. Vallespi Incertidumbre estadística: Qué ocurre si cada magnitud de interés en el experimento se mide más de una vez, por ejemplo
GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS
GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS La simulación de eventos se basa en la ocurrencia aleatoria de los mismos, por ello los números aleatorios y las variables aleatorias son de especial
Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico
Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más
Ejercicio 1. Ejercicio 2
Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función
NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011
NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011 CÓMO CARACTERIZAR UNA SERIE DE DATOS? POSICIÓN- dividen un conjunto ordenado de datos en grupos con la misma cantidad de individuos CENTRALIZACIÓN-
Las 19 primeras diapositivas de esta clase están incluidas en la clase teórica previa: Error y expresión de resultados (diapositivas 22 a 40).
Las 19 primeras diapositivas de esta clase están incluidas en la clase teórica previa: Error y expresión de resultados (diapositivas a 40). Definiciones fundamentales y objetivo: El resultado arrojado
INGENIERO EN COMPUTACIÓN DISTRIBUCIONES DE PROBABILIDAD CONTINUA ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: AGOSTO DE 2017
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO INGENIERO EN COMPUTACIÓN DISTRIBUCIONES DE PROBABILIDAD CONTINUA ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: AGOSTO DE 2017
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)
TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de
13. Utilizar la fórmula del término general y de la suma de n términos consecutivos
Contenidos mínimos 3º ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Utilizar las reglas de jerarquía de paréntesis y operaciones, para efectuar cálculos con números racionales, expresados en forma
EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.
EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones
VARIABLES ALEATORIAS INTRODUCCIÓN
DOCENTE: SERGIO ANDRÉS NIETO DUARTE CURSO: ESTADÍSTICA DE LA PROBABILIDAD VARIABLES ALEATORIAS INTRODUCCIÓN Normalmente, los resultados posibles (espacio muestral E) de un experimento aleatorio no son
CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS
CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS MATEMÁTICAS 1º ESO U.D. 1 Números Naturales El conjunto de los números naturales. Sistema de numeración decimal. Aproximaciones
ESTADISTICA Y PROBABILIDAD ESTADÍSTICA
ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta
NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2012
NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2012 Matilde Ungerovich- [email protected] DEFINICIÓN PREVIA: Distribución: función que nos dice cuál es la probabilidad de que cada suceso
Distribuciones de Probabilidad para Variables Aleatorias Discretas 1
Distribuciones de Probabilidad para Variables Aleatorias Discretas Apellidos, nombre Martínez Gómez, Mónica ([email protected]) Marí Benlloch, Manuel ([email protected]) Departamento Centro Estadística,
DISTRIBUCIONES MULTIDIMENSIONALES DE PROBABILIDAD
DISTRIBUCIONES MULTIDIMENSIONALES DE PROBABILIDAD FUNCIÓN DE DISTRIBUCIÓN ( CONJUNTA ) DE UN VECTOR ALEATORIO FUNCIÓN DE CUANTÍA ( CONJUNTA) DE VECTORES ALETORIOS DISCRETOS FUNCIÓN DE DENSIDAD (CONJUNTA)
Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1
Bioestadística Tema 2: Estadísticos Tema 2: Estadísticos 1 Parámetros y estadísticos Parámetro: Es una cantidad numérica calculada sobre una población La altura media de los individuos de un país La idea
Estadística I Tema 2: Análisis de datos univariantes
Estadística I Tema 2: Análisis de datos univariantes Tema 2: Análisis de datos univariantes Contenidos Gráficas para datos categóricos (diagrama de barras, diagrama de sectores). Gráficas para datos numéricos
Variables Aleatorias. Introducción
Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,
ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.
ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos
Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos.
La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes
Distribuciones discretas. Distribución binomial
Variables aleatorias discretas y continuas Se llama variable aleatoria a toda función definida en el espacio muestral de un experimento aleatorio que asocia a cada elemento del espacio un número real.
Estadística. Análisis de datos.
Estadística Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un
FUNDAMENTOS DE MATEMÁTICAS. ISBN: Depósito Legal: M Número de páginas: 487 Tamaño: 21 x 14,6 cm Precio: 23,93
FUNDAMENTOS DE MATEMÁTICAS ISBN: 978-84-941559-0-1 Depósito Legal: M-20468-2013 Número de páginas: 487 Tamaño: 21 x 14,6 cm Precio: 23,93 FUNDAMENTOS DE MATEMÁTICAS INDICE MATEMÁTICAS BÁSICAS CONJUNTOS
Variables aleatorias continuas
Variables aleatorias continuas VARIABLE ALEATORIA UNIFORME Definición Se dice que una variable X tiene una distribución uniforme en el intervalo [a;b] si la fdp de X es: 1 si a x b f(x)= b-a 0 en otro
PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA
UNIDAD 1 PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA Variables aleatorias continuas = función de densidad de probabilidad 1 Variables aleatorias continuas = función
Unidad 3. Probabilidad. Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre / 22
Unidad 3. Probabilidad Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre 2018-1 1 / 22 Espacios de probabilidad El modelo matemático para estudiar la probabilidad se conoce como espacio de
