DISTRIBUCIONES MULTIDIMENSIONALES DE PROBABILIDAD
|
|
|
- Juan Luis Marín Ojeda
- hace 7 años
- Vistas:
Transcripción
1 DISTRIBUCIONES MULTIDIMENSIONALES DE PROBABILIDAD FUNCIÓN DE DISTRIBUCIÓN ( CONJUNTA ) DE UN VECTOR ALEATORIO FUNCIÓN DE CUANTÍA ( CONJUNTA) DE VECTORES ALETORIOS DISCRETOS FUNCIÓN DE DENSIDAD (CONJUNTA) DE VECTORES ALEATORIOS CONTINUOS DISTRIBUCIONES MARGINALES DISTRIBUCIONES CONDICIONADAS INDEPENDENCIA ESTOCÁSTICA ENTRE VARIABLES ALEATORIAS ESPERANZA Y OPERADOR ESPERANZA EN DISTRIBUCIONES MULTIDIMENSIONALES INDICADORES :ESPERANZA, VARIANZA,COVARIANZA Y CORRELACIÓN, VECTOR DE MEDIAS, MATRIZ DE VARIANZAS,REGRESIÓN NOTACION MATRICIAL.TRANSFORMACIONES LINEALES. OPERADOR ESPERANZA OPERADOR VARIANZA OTROS RESULTADOS FUNCIÓN DE DISTRIBUCIÓN CONJUNTA DE UN VECTOR ALEATORIO * En vectores aleatorios discretos y continuos: propiedades F(x,y) F(, )= 1 F(x,y) = P (X x, Y y ) = P [ (X,Y) ]-,x] ]-,y] ] F(x 1, x 2,...,x n ) = P (X 1 x 1, X 2 x 2,..., X n x n ) = = P [ (X 1,X 2,...,X n ) ]-, x 1 ] ]-, x 2 ]... ]-, x n ]] 0 F(x 1, x 2,...,x n ) 1 F(,,..., )=1 3.- F(-,y)= 0 ; F(x,- )=0
2 F( -, x 2,...,x n ) = 0 ;; F(x 1, -,...,x n )= 0 ;; F(x 1, x 2,..., - )= Es siempre No decreciente para todas y cada una de las componentes 5.- Es siempre continua por la derecha: gráficamente FUNCIÓN DE CUANTÍA CONJUNTA de vectores aletorios discretos P( x,y) = P(X=x,Y= y) P (x 1, x 2,...,x n ) = P (X 1 = x 1, X 2 = x 2,..., X n = x n ) Propiedades P(x,y) 0 P (x 1, x 2,...,x n ) 0
3 3. - Así su representación sería: FUNCIÓN DE DENSIDAD CONJUNTA de vectores aleatorios continuos propiedades 1.- f(x,y) 0 f(x 1, x 2,..., x n ) 0
4 su representación sería DISTRIBUCIONES MARGINALES DE PROBABILIDAD CASO DISCRETO: BIDIMENSIONAL MULTIDIMENSIONAL
5 CASO CONTINUO: BIDIMENSIONAL MULTIDIMENSIONAL DISTRIBUCIONES CONDICIONADAS CASO DISCRETO: BIDIMENSIONAL CASO CONTINUO: BIDIMENSIONAL
6 INDEPENDENCIA ESTOCÁSTICA Dos variables aleatorias X e Y se dice que son estocásticamente independientes cuando las distribuciones condicionadas y las marginales coinciden: La independencia estocástica puede caracterizarse de una forma más operativa como: X e Y son independientes P(x,y)= P(x) P(y), en el caso discreto, o bien, X e Y son independientes f(x,y)= f(x) f(y), en el caso continuo ESPERANZA MATEMÁTICA EN DISTRIBUCIONES n-dimensionales. Dado un vector aleatorio n-dimensional (v.a. n-dimensional), X 1,X 2,...,X n, y dada una función cualquiera g(x 1,X 2,...,X n ) llamaremos esperanza matemática de g(x 1,X 2,...,X n ) a la expresión: E[g(x 1,x 2,...,x n )]= = para caso continuo para caso discreto =Σ Σ... Σ g(x 1,x 2,...,x n ).P(x 1,x 2,...,x n ) Si la función g( ) no es completa ( no afecta a todas las variables ) la expresión del operador sólo dependerá de las variables afectadas. Así por ejemplo: E[x 1 ]quedaría tan sólo como la esperanza tomada sobre la distribución marginal:
7 E [ x1] = x1f1( x1) dx1 caso continuo Ex [ 1] = xpx 1 1( 1) caso discreto i INDICADORES FUNDAMENTALES DE UNA DISTRIBUCIÓN n-dimensional Al igual que ocurría en el caso de distribuciones de frecuencias los indicadores fundamentales de la distribución son únicamente los que se pueden obtener a partir de las distribuciones marginales unidimensionales (media, varianza, etc.) y de cada par de variables (covarianza y coeficiente de correlación) COVARIANZA Y CORRELACIÓN ENTRE VARIABLES ALEATORIAS La covarianza entre dos v.a. X e Y se define como: σ xy = E[(x-µ x )(y-µ y )] = E[x.y] - µ x µ y siendo E[x.y] el momento ordinario mixto de orden 1,1 ( α 1,1 ): E x, y xyf ( xy) dxdy caso continuo E x y caso discreto [ ] = [, ] = xyp i i ( xy i j) i j La covarianza nos informa de la covariación conjunta de las dos variables, análogamente a como ocurría en el caso de distribuciones de frecuencias. Sólo hay que considerar aquí que la covariación hay que entenderla en términos de probabilidad y no de frecuencia: una covariación positiva sería el que a valores altos de una de la variables le corresponden "con mayor probabilidad" valores altos de la otra y a valores bajos valores bajos.(una covariación negativa, inversamente). Al igual también que en el caso de las distribuciones de frecuencias puede obtenerse un indicador de la correlación ( covariación estandarizada, relativizada y que permite la comparación al estar acotada):
8 Se define, entonces el coeficiente de correlación como: σ xy ρ = ρxy = σ σ x y Indicador que viene a tener al mismo sentido que en las distribuciones de frecuencias y que igualmente está acotado entre -1 y 1. Si dos variables aleatorias son estocásticamente independientes su coeficiente de correlación (y su covarianza es cero). Sin embargo el resultado recíproco no es necesariamente cierto (dos variables incorrelacionadas no tienen porqué ser independientes, por lo general) VECTOR DE MEDIAS probabilidad (centro de gravedad) de una distribución de vector de medias: Es el vector columna formado por las medias de las distribuciones marginales univariantes: MATRIZ DE VARIANZA ( DE VARIANZAS Y COVARIANZAS; DE COVARIANZAS O DE MOMENTOS) Y DE CORRELACIÓN matriz de varianzas:es la matriz n n formada por las varianzas y covarianzas: matriz de correlación: Es la matriz n n formada por los coeficientes de correlación:
9 REGRESION DE VARIABLES ALEATORIAS Al igual que en estadística descriptiva se puede concebir la regresión como un procedimiento de expresar una variable como función de otra u otras. Análogamente a como ocurría allí: La regresión Y/X en sentido estricto se define como: E[Y/X] La regresión X/Y en sentido estricto se define como: E[X/Y] y la regresión en sentido estricto puede ajustarse a alguna función analítica. En el caso lineal ( y por el método de mínimos cuadrados ) resulta que: regresión lineal Y/X: Y*=µ y + (ρ/σ 2 x(x-µ x )) regresión lineal X/Y : X*=µ x + (ρ/σ 2 y(y-µ y )) ESPERANZA DE UN VECTOR.Linealidad El operador esperanza puede extenderse para que actúe sobre un vector aleatorio, sin más que considerar que la esperanza de un vector es el vector formado por las esperanzas. De esta manera: dado el vector aleatorio la esperanza del vector vendrá dada por:
10 PROPIEDADES: Si se realiza una transformación lineal del vector X de manera que el nuevo vector aleatorio k-dimensional Z sea: Donde Z = AX + b Entonces E[Z]= A E[X]+b : LA ESPERANZA DE UNA TRANSFORMACIÓN LINEAL DE UN VECTOR ALEATORIO ES LA TRANSFORMACIÓN LINEAL DE LA ESPERANZA DEL VECTOR VARIANZA DE UN VECTOR. OPERADOR VARIANZA El operador varianza puede generalizarse para aplicarse sobre un vector aleatorio de forma que se podrá definir como: V(X) = E[(X-E(X)) (X-E(X)) '] El resultado de aplicar el operador a un vector aleatorio es, obviamente la matriz de varianzas-covarianzas. PROPIEDADES: Si se realiza una transformación lineal del vector X de manera que el nuevo vector aleatorio k-dimensional Z sea: donde: Z = AX + b
11 RESULTADOS COMPLEMENTARIOS IMPORTANTES: 1) Dada dos o más variables aleatorias independientes si las sumamos obtendremos una nueva variable aleatoria cuya F.G.M.(F.C.) será el producto de las F.G.M. (F.C) de las variables originales. 2) Distribuciones reproductivas por adición. Un modelo de probabilidad (distribución-tipo de probabilidad) univariante se dice que es reproductivo por adición o que verifica el teorema de adición cuando se cumple la propiedad siguiente: Dadas dos o más variables aleatorias que tengan por distribución ese modelo de probabilidad y que sean (todas) independientes, la suma de ellas es una nueva variable aleatoria que tiene ese mismo modelo de probabilidad y cuyos parámetros son la suma de los parámetros Modelos que cumplen la reproductividad aditiva (Teorema de adición): BINOMIAL (para el parámetro n): la suma de dos o más variables binomiales independientes es una binomial de parámetro n la suma de los parámetros n. POISSON (para el parámetro λ): la suma de dos o más variables de poisson independientes es una variable de poisson con parámetro λ, la suma de los parámetros λ. NORMAL (para la media y la VARIANZA): la suma de dos o más variables normales independientes es una variable normal con media la suma de las medias y con varianza la suma de las varianzas (con D.Típica la raíz cuadrada de la suma de los cuadrados de las desviaciones típicas). Todas estas reproductividades pueden probarse fácilmente utilizando el resultado 1) y teniendo en cuenta el efecto caracterizador de la F.G.M (o de la F.C.) 3) PROPIEDAD FUNDAMENTAL (TEOREMA FUNDAMENTAL) DE LAS DISTRIBUCIONES NORMALES."Una combinación lineal cualquiera de variables normales independientes es también normal y tendrá por media la misma combinación lineal de las medias y por varianza la combinación, con los coeficientes al cuadrado, de las varianzas.
Tema 4: Variables aleatorias multidimensionales
Tema 4: Variables aleatorias multidimensionales Los contenidos a desarrollar en este tema son los siguientes: Distribución conjunta de probabilidad Probabilidad/densidad marginales y condicionadas Independencia
Tema 4: Variables aleatorias multidimensionales
1 Tema 4: Variables aleatorias multidimensionales En este tema: Distribución conjunta de probabilidad Probabilidad/densidad marginal Probabilidad/densidad condicionada Esperanza, varianza, desviación típica
TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES. Variable aleatoria (Real)
TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES Grado Ing Telemática (UC3M) Teoría de la Comunicación Variable Aleatoria / 26 Variable aleatoria (Real) Función que asigna un valor
TEMA 3.- VECTORES ALEATORIOS.- CURSO
TEMA 3.- VECTORES ALEATORIOS.- CURSO 017-018 3.1. VARIABLES ALEATORIAS BIDIMENSIONALES. FUNCIÓN DE DISTRIBUCIÓN CONJUNTA. 3.. VARIABLES BIDIMENSIONALES DISCRETAS. 3.3. VARIABLES BIDIMENSIONALES CONTINUAS.
Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación
Estadística Tema 3 Esperanzas 31 Esperanza Propiedades 32 Varianza y covarianza Correlación 33 Esperanza y varianza condicional Predicción Objetivos 1 Medidas características distribución de VA 2 Media
Capítulo 2. Medidas Estadísticas Básicas Medidas estadísticas poblacionales
Capítulo 2 Medidas Estadísticas Básicas 2.1. Medidas estadísticas poblacionales Sea X una variable aleatoria con función de probabilidad p(x) si es discreta, o función de densidad f(x) si es continua.
Probabilidad y Estadística
Probabilidad y Estadística Grado en Ingeniería Informática Tema 5 Esperanza y momentos Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid [email protected] Javier Cárcamo PREST.
VECTORES ALEATORIOS. 1 Introducción. 2 Vectores aleatorios
VECTORES ALEATORIOS 1 Introducción En la vida real es muy frecuente enfrentarnos a problemas en los que nos interesa analizar varias características simultáneamente, como por ejemplo la velocidad de transmisión
Variables aleatorias bidimensionales discretas
Universidad de San Carlos de Guatemala Facultad de Ingeniería Área de Estadística VARIABLES ALEATORIAS BIDIMENSIONALES Concepto: Sean X e Y variables aleatorias. Una variable aleatoria bidimensional (X,
SOLUCIONES AL EXAMEN DE SEPTIEMBRE DE ESTADÍSTICA EXAMEN DE MATEMÁTICAS II
SOLUCIONES AL EXAMEN DE SEPTIEMBRE DE 4. ESTADÍSTICA EXAMEN DE MATEMÁTICAS II Estadística (primer parcial). Septiembre de 4.- El coeficiente de determinación R nos determina a) el % de la varianza de Y
Momentos de Funciones de Vectores Aleatorios
Capítulo 1 Momentos de Funciones de Vectores Aleatorios 1.1 Esperanza de Funciones de Vectores Aleatorios Definición 1.1 Sea X = (X 1,..., X n ) un vector aleatorio (absolutamente continuo o discreto)
Resumen de Probabilidad
Definiciones básicas * Probabilidad Resumen de Probabilidad Para calcular la probabilidad de un evento A: P (A) = N o decasosfavorables N o decasosposibles * Espacio muestral (Ω) Es el conjunto de TODOS
Distribución conjunta de variables aleatorias
Distribución conjunta de variables aleatorias En muchos problemas prácticos, en el mismo experimento aleatorio, interesa estudiar no sólo una variable aleatoria sino dos o más. Por ejemplo: Ejemplo 1:
Distribuciones de probabilidad bidimensionales o conjuntas
Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso
CLASES DE ESTADÍSTICA II ESPERANZA ABSOLUTA
1 CLASES DE ESTADÍSTICA II CLASE ) ESPERANZA ABSOLUTA. ESPERANZA CONDICIONAL. ESPERANZA ABSOLUTA El cálculo de valores esperados o esperanzas a nivel de dos variables aleatorias es una generalización matemática
Representaciones gráficas de las distribuciones bidimensionales de frecuencias... 74
Índice 1. Introducción al R 15 1.1. Introducción............................. 15 1.2. El editor de objetos R....................... 18 1.3. Datos en R............................. 19 1.3.1. Vectores...........................
VECTORES ALEATORIOS Julián de la Horra Departamento de Matemáticas U.A.M.
1 Introducción VECTORES ALEATORIOS Julián de la Horra Departamento de Matemáticas U.A.M. Desde un punto de vista formal, los vectores aleatorios son la herramienta matemática adecuada para transportar
Hoja 4 Variables aleatorias multidimensionales
Hoja 4 Variables aleatorias multidimensionales 1.- Estudiar si F (x, y) = 1, si x + 2y 1, 0, si x + 2y < 1, es una función de distribución en IR 2. 2.- Dada la variable aleatoria 2-dimensional (X, Y )
Variables Aleatorias y Distribución de Probabilidades
Variables Aleatorias y Distribución de Probabilidades Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de mayo de 2011 Tabla de Contenidos Variables
Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B
Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2010 Contenidos...............................................................
Vectores Aleatorios. Vectores Aleatorios. Vectores Discretos. Vectores Aleatorios Continuos
Definición Dado un espacio muestral S, diremos que X =(X 1, X 2,, X k ) es un vector aleatorio de dimension k si cada una de sus componentes es una variable aleatoria X i : S R, para i = 1, k. Notemos
1 Tema 4: Variable Aleatoria Bidimensional y n-dimensional
1 Tema 4: Variable Aleatoria Bidimensional y n-dimensional 4.1. Variable aleatoria bidimensional Las Variables Aleatorias Bidimensionales o N-Dimensionales surgen cuando es necesario trabajar en espacios
Estadística Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri
Estadística 2011 Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1 1. Las Definiciones de Probabilidad 2. Variables Aleatorias 3. Función de Densidad
Cátedra: Estadística Técnica Facultad de Ingeniería UNCuyo. Índice D. Fernández & M. Guitart TABLA DE CONTENIDOS
Cátedra: TABLA DE CONTENIDOS INTRODUCCIÓN Qué es la Probabilidad? Qué es la Estadística? La evolución histórica de la Estadística Algunos conceptos imprescindibles Fuentes de datos Tipos de datos y escalas
Probabilidad y Estadística
Vectores aleatorios Probabilidad y Estadística Vectores aleatorios Federico De Olivera Cerp del Sur-Semi Presencial curso 2015 Federico De Olivera (Cerp del Sur-Semi Presencial) Probabilidad y Estadística
3. Variables aleatorias
3. Variables aleatorias Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 3. Variables aleatorias Curso 2009-2010 1 / 33 Contenidos 1 Variables aleatorias y su distribución
1. Conceptos de Regresión y Correlación. 2. Variables aleatorias bidimensionales. 3. Ajuste de una recta a una nube de puntos
TEMA 10 (curso anterior): REGRESIÓN Y CORRELACIÓN 1 Conceptos de Regresión y Correlación 2 Variables aleatorias bidimensionales 3 Ajuste de una recta a una nube de puntos 4 El modelo de la correlación
Capítulo 6: Variable Aleatoria Bidimensional
Capítulo 6: Variable Aleatoria Bidimensional Cuando introducíamos el concepto de variable aleatoria unidimensional, decíamos que se pretendía modelizar los resultados de un experimento aleatorio en el
UNIDAD 3 Características de variables aleatorias uni y bidimensionales
Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas ESTADÍSTICA Ingenierías: Recursos Hídricos-Ambiental-Agrimensura TEORÍA Mg. Ing. Susana Vanlesberg Profesor Titular UNIDAD Características
Distribuciones multivariadas
Distribuciones multivariadas Si X 1,X 2,...,X p son variables aleatorias discretas, definiremos la función de probabilidad conjunta de X como p(x) =p(x 1,x 2,...,x k )=P (X 1 = x 1,X 2 = x 2,...,X p =
Variables aleatorias
Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con
Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas
Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones
Repaso de Teoría de la Probabilidad
Repaso de Teoría de la Probabilidad Luis Mendo Tomás Escuela Politécnica Superior Universidad Autónoma de Madrid Febrero de 2008 1. Introducción Este documento contiene, de forma esquemática, los conceptos
Probabilidad y Estadística
Probabilidad y Estadística Grado en Ingeniería Informática Tema 4 Vectores aleatorios Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid [email protected] Javier Cárcamo PREST.
Estadística Descriptiva y Probabilidad FORMULARIO
Estadística Descriptiva y Probabilidad FORMULARIO Departament d Estadística i Investigació Operativa Universitat de València Angel Corberán Francisco Montes 2 3 Capítulo 1 Estadística Descriptiva 1.1.
VARIABLES ALEATORIAS DISCRETAS
VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:
(DERIVADAS DE LA NORMAL)
DISTRIBUCIÓN NORMAL MULTIVARIANTE (DERIVADAS DE LA NORMAL) INTRODUCCIÓN PROPIEDADES LINEALIDAD DISTRIBUCIONES DERIVADAS DE LA NORMAL χ 2 DE PEARSON t DE STUDENT F DE SNEDECOR DISTRIBUCIÓN NORMAL MULTIVARIANTE
Estadística II Tema 1: Distribución normal multivariante
Estadística II Tema 1: Distribución normal multivariante José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Algunas propiedades de los vectores aleatorios Sea X = (X 1,..., X
Sumario Prólogo Unidad didáctica 1. Introducción a la estadística. Conceptos preliminares Objetivos de la Unidad...
ÍNDICE SISTEMÁTICO PÁGINA Sumario... 5 Prólogo... 7 Unidad didáctica 1. Introducción a la estadística. Conceptos preliminares... 9 Objetivos de la Unidad... 11 1. Población y muestra... 12 2. Parámetro
LICENCIATURA EN ECONOMÍA Y LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS
DEPARTAMENT D ECONOMIA APLICADA UNIVERSITAT DE VALENCIA LICENCIATURA EN ECONOMÍA Y LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS PROGRAMA DE ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA TEMA 1: INTRODUCCIÓN
Material introductorio
Material introductorio Nombre del curso: Teoría Moderna de la Detección y Estimación Autores: Vanessa Gómez Verdejo Índice general. Variables aleatorias unidimensionales..................................
ÍNDICE CAPÍTULO 1. INTRODUCCIÓN
ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.
Departamento de Matemática Aplicada a la I.T.T.
Departamento de Matemática Aplicada a la I.T.T. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EXAMEN FINAL Duración: horas Fecha: de Julio de Fecha publicación notas: -7- Fecha revisión examen: 8-7-
Introducción al Tema 9
Tema 2. Análisis de datos univariantes. Tema 3. Análisis de datos bivariantes. Tema 4. Correlación y regresión. Tema 5. Series temporales y números índice. Introducción al Tema 9 Descripción de variables
Trimestre Septiembre-Diciembre 2007 Departamento de Cómputo Científico y Estadística Probabilidades para Ingenieros CO3121 Guía de ejercicios # 6
Trimestre Septiembre-Diciembre 2007 Departamento de Cómputo Científico y Estadística Probabilidades para Ingenieros CO3121 Guía de ejercicios # 6 Contenido Valor Esperado, Caso Discreto. Valor Esperado,
RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO
RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre
Cuestiones propuestas de la primera prueba de la primera preparación
Cuestiones propuestas de la primera prueba de la primera preparación Temas a 9 de Teórica Básica Estas cuestiones van pensadas en la línea del primer examen Su dificultad conjunta tiene un nivel similar
APUNTES DE PROBABILIDAD Y ESTADISTICA ING. GUILLERMO CASAR MARCOS
CAPITULO V APUNTES DE PROBABILIDAD Y ESTADISTICA VARIABLES ALEATORIAS CONJUNTAS. CONSIDERANDO EL CASO DE DOS DIMENSIONES. DADO UN ESPERIMENTO, EL PAR ( x, y ) SE CONOCE COMO UNA VARIABLE ALEATORIA BIDIMENSIONAL
Análisis multivariante II
Análisis multivariante II Tema 1: Introducción Pedro Galeano Departamento de Estadística Universidad Carlos III de Madrid [email protected] Curso 2016/2017 Grado en Estadística y Empresa Pedro Galeano
DISTRIBUCIONES DE PROBABILIDAD
DISTRIBUCIONES DE PROBABILIDAD VARIABLE ALEATORIA Una variable x valuada numéricamente varía o cambia, dependiendo del resultado particular del experimento que se mida. Por ejemplo, suponga que se tira
Requisitos Matemáticos. Clase 01. Profesor: Carlos R. Pitta. ICPM050, Econometría. Universidad Austral de Chile Escuela de Ingeniería Comercial
Universidad Austral de Chile Escuela de Ingeniería Comercial ICPM050, Econometría Clase 01 Requisitos Matemáticos Profesor: Carlos R. Pitta Econometría, Prof. Carlos R. Pitta, Universidad Austral de Chile.
Cálculo de probabilidad. Tema 3: Variables aleatorias continuas
Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice
TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18
TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias: discretas y continuas. 2.2. Variables aleatorias discretas. Diagrama de
TEMA 5. PROCESOS ESTOCÁSTICOS.-CURSO 2017/18
TEMA 5. PROCESOS ESTOCÁSTICOS.-CURSO 2017/18 5.1. Concepto de proceso estocástico. Tipos de procesos. Realización de un proceso. 5.2. Características de un proceso estocástico. 5.3. Ejemplos de procesos
Tema 6: Distribuciones Multivariantes
Tema : Distribuciones Multivariantes. Distribución conjunta de un vector aleatorio. Distribución conjunta de un vector aleatorio. Distribuciones marginales condicionadas.3 Independencia entre variables
CÁLCULO DE PROBABILIDADES
CÁLCULO DE PROBABILIDADES Tipo de asignatura: Troncal Anual. Créditos ECTS: 15 I.- INTRODUCCIÓN AL CÁLCULO DE PROBABILIDADES. (16 horas presenciales) Tema 1.- La naturaleza del cálculo de probabilidades.
Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Probabilidad y Estadística Práctica Nº 4
Distribuciones de Variables Aleatorias Distribuidas en forma Conjunta Objetivos de la práctica: Objetivo general: Al finalizar la práctica, el estudiante deberá conocer los conceptos fundamentales de las
Tema 4: Variable Aleatoria Bidimensional
Curso 2016-2017 Contenido 1 Definición de Variable Aleatoria Bidimensional 2 Distribución y fdp Conjunta 3 Clasificación de Variables Aleatorias Bidimensionales 4 Distribuciones Condicionales 5 Funciones
Universidad Rey Juan Carlos Facultad de CC. Jurídicas y Sociales. Licenciatura en ECONOMÍA ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA I.
Universidad Rey Juan Carlos Facultad de CC. Jurídicas y Sociales (Campus de Vicálvaro) Licenciatura en ECONOMÍA asignatura: ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA I curso y duración: Segundo Cuatrimestral
Probabilidad y Procesos Aleatorios
y Dr. Héctor E. Poveda P. [email protected] www.hpoveda7.com.pa @hpoveda7 Plan del curso Probabilidad Múltiples 1. Probabilidad Espacios probabilísticos Probabilidad condicional 2. 3. Múltiples 4.
Unidad 1: Espacio de Probabilidad
Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar
TEMA 3 REGRESIÓN Y CORRELACIÓN
TEMA 3 REGRESIÓN Y CORRELACIÓN Regresión mínimo-cuadrática bidimensional Planteamiento del problema Dadas dos variables aleatorias X e Y definidas sobre un mismo espacio de probabilidad (asociadas a un
Universidad Nacional de La Plata
Universidad Nacional de La Plata Facultad de Ciencias Agrarias y Forestales CÁLCULO ESTADÍSTICO STICO Y BIOMETRÍA CONTENIDOS UNIDAD 3: Introducción al Cálculo de Probabilidades. Experimento aleatorio.
Procesos estocásticos
Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto:
Cálculo de Probabilidades II Preguntas Tema 2
Cálculo de Probabilidades II Preguntas Tema 2 1. Demuestre que la suma de n v.a. Bernuolli(p) independientes tiene una distribución Binomial con parametros (n, p). 2. Se dice que una v.a tiene una distribución
Ejercicio 1. Ejercicio 2
Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función
Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas
Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando
Unidad 3. Probabilidad. Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre / 22
Unidad 3. Probabilidad Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre 2018-1 1 / 22 Espacios de probabilidad El modelo matemático para estudiar la probabilidad se conoce como espacio de
VARIABLES ALEATORIAS CONTINUAS
VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.
Maestría en Bioinformática Probabilidad y Estadística: Clase 3
Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff [email protected] Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias
Cálculo de Probabilidades y Estadística. Segunda prueba. 1
08231. Cálculo de Probabilidades y Estadística. Segunda prueba. 1 Problema 1. Se eligen tres puntos A, B y C, al azar e independientemente, sobre una circunferencia. Determinar la distribución del valor
VARIABLES ALEATORIAS. Ing. Andrés Álvarez Cid
VARIABLES ALEATORIAS Ing. Andrés Álvarez Cid VALOR ESPERADO CASO DISCRETO Sea X una variable aleatoria discreta con un conjunto de valores posibles D y una función de probabilidad p(x). El valor esperado
Prof. Eliana Guzmán U. Semestre A-2015
Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos
Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II
Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II Martes, 6 de febrero de 018 1 hora y 15 minutos. NOMBRE APELLIDOS CALIFICACIÓN 1. La longitud auricular de la oreja en varones jóvenes, medida en centímetros
2. VARIABLE ALEATORIA. Estadística I Dr. Francisco Rabadán Pérez
2. VARIABLE ALEATORIA Estadística I Dr. Francisco Rabadán Pérez Índice 1. Variable Aleatoria 2. Función de Distribución 3. Variable Aleatoria Discreta 4. Variable Aleatoria Continua 5. Esperanza Matemática
Tema 5 Modelos de distribuciones de Probabilidad
Tema 5 Modelos de distribuciones de Probabilidad Variable aleatoria unidimensional Dado un espacio de Probabilidad (E, F, P), una variable aleatoria es una aplicación del espacio muestral E al conjunto
Distribución bidimensional. Marginales. Correlación lineal. Rectas de regresión.
REGRESIÓN LINEAL. Distribución bidimensional. Marginales. Correlación lineal. Rectas de regresión. Dada una población, hasta ahora hemos estudiado cómo a partir de una muestra extraída de ella podemos
Variables aleatorias
Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,
2. Ejercicio: 003_VACD_081
FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS ACADEMIA DE PROBABILIDAD Semestre: 7- SERIE TEMA VARIABLES ALEATORIAS CONJUNTAS. Ejercicio: _VACD_8 Sean las distribuciones
TEMA 8 REGRESIÓN Y CORRELACIÓN
/7 TEMA 8 REGRESIÓN Y CORRELACIÓN Dada una variable aleatoria bidimensional (, ) supongamos que las variables no sean independientes, es decir, que eista cierta relación entre ellas. Nos planteamos entonces
Part I. Momentos de una variable aleatoria. Esperanza y varianza. Modelos de Probabilidad. Mario Francisco. Esperanza de una variable aleatoria
una una típica Part I Momentos. Esperanza y varianza Esperanza una una típica Definición Sea X una discreta que toma los valores x i con probabilidades p i. Supuesto que i x i p i
Conceptos Fundamentales. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas
Conceptos Fundamentales Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas Análisis de datos en física de partículas Experimento en física de partículas: Observación de n sucesos de un cierto tipo (colisiones
Experimento de lanzar 3 monedas al aire. Denominando por (C) a Cara y (X) a Cruz, el espacio muestral será: Ω={CCC,CCX,CXC,XCC,CXX,XCX,XXC,XXX}
1 Tema 3 : Variable Aleatoria Unidimensional 3.1. Concepto de variable aleatoria Se llama variable aleatoria (v.a.) a toda aplicación que asocia a cada elemento del espacio muestral (Ω) de un experimento,
Tema 3 Normalidad multivariante
Aurea Grané Máster en Estadística Universidade Pedagógica Aurea Grané Máster en Estadística Universidade Pedagógica Tema 3 Normalidad multivariante 3 Normalidad multivariante Distribuciones de probabilidad
