Lógica de Predicados MRC
|
|
|
- José Carlos Sandoval Cano
- hace 9 años
- Vistas:
Transcripción
1 Lógica de Predicados MRC Víctor Peinado 6-7 de noviembre de 2014 Referencias (Partee, et al., 1990, chap. 7) 1 1 Partee, B.; ter Meulen, A.; Wall, R. Mathematical Methods in Linguistics Wikipedia: Lógica de Predicados 2 Studies in Linguistics and Philosophy. Springer La lógica de predicados o lógica de primer orden es un sistema formal diseñado para estudiar la inferencia en los lenguajes de primer orden. Estos lenguajes de primer orden son lenguajes formales que combinan el uso de cuantificadores, predicados y funciones cuyos argumentos pueden ser constantes o variables de individuo. La lógica de primer orden es más potente que la lógica proposicional y tiene capacidad expresiva suficiente para definir prácticamente todas las matemáticas. Si entendemos la lógica de predicados como un sistema lógico que permite la cuantificación de individuos, entonces su origen se remonta a la antigua Grecia y a Aristóteles. Sin embargo, es más habitual situar el origen de la lógica de primer orden tal y como la conocemos en el s. XIX y en los trabajos de Gottlob Frege, con aportaciones y demostraciones posteriores por parte de otros autores, ya en el s. XX: desde Bertrand Russel y Alfred North Witehead, hasta Kurt Gödel, Alonzo Church y Alan Turing. es/books?id=qv7tuuaycuic 2 Wikipedia: Lógica de Predicados B3gica_de_primer_orden Sintaxis En lógica de predicados, la proposición mínima está formada por un predicado y un número determinado de términos. Veamos de manera informal cuáles son las reglas sintácticas de la lógica de predicados. La proposición Humano(socrates) contiene un predicado humano y un término socrates y podemos interpretarla como la traducción de la oración Sócrates es humano. El predicado Humano decimos que es unario o tiene aridad 1 porque solo tiene un término. Es habitual representar los predicados con letras mayúsculas y los términos con letras minúsculas. En estos ejemplos nosotros estamos representándolos con palabras completas, para que sea más sencillo de leer. La proposición Ama(juan, maria) está formada por el predicado Ama y dos términos: juan y maria. Trata de formalizar la oración Juan ama a María y, en este caso, el predicado es binario o tiene aridad 2, dado que necesita dos términos.
2 lógica de predicados mrc 2 Es importante respetar la aridad de los predicados. Cuando utilizamos un predicado con un número de argumentos incorrecto, la proposición no es válida. Por último, es importante notar que los predicados lógicos no tienen por qué representar predicados gramaticales. En la proposición Humano(socrates), Humano sí coincide con lo que podríamos entender como predicado de la oración Sócrates es humano. Pero en Ama(juan, maria) estamos representando la relación que se establece entre un verbo transitivo, el sujeto y el objeto de la acción. Llevado al extremo, podríamos representar la oración Juan ama a María como G(maria), donde G sería un predicado de aridad 1 representando la expresión Juan ama. Tipos de términos Hay dos tipos de términos: Por un lado, están las constantes de invididuo individuales que aparecen en los ejemplos anteriores: socrates, juan y maria. En la semántica de la lógica de predicados estas constantes denotan individuos específicos que se traducen, en nuestros ejemplos en lenguaje natural, como Sócrates, Juan y María. Por otro lado tenemos variables de invididuo. Cuando un predicado contiene una o varias variables, como en Humano(x) o Ama(x, y), decimos que estamos ante una proposición abierta o una función proposicional. Para representar variables utilizamos letras minúsculas del final del alfabeto, típicamente v, w, x, y, z. Cuantificadores Estas proposiciones abiertas pueden convertirse en proposiciones ordinarias cuando utilizamos cuantificadores para delimitar su alcance. Cuando una variable aparece sin cuantificar, se denomina variable libre. Cuando aparece cuantificada, decimos que esa variable está ligada. Tenemos dos tipos de cuantificadores: el cuantificador universal se denota como y se traduce en lenguaje natural como para todo, todos, cada uno el cuantificador existencial se denota como y se traduce en lenguaje natural como existe algún, alguno, hay al menos uno, posiblemente otros. Escribimos estos cuantificadores junto a una o varias variables y antes de un predicado concreto para indicar a qué variables y expresiones se aplican:
3 lógica de predicados mrc 3 una expresión como ( x)humano(x) se traduce como Todo individuo es humano, para todo x, x es humano. ( x)ama(juan, x) se traduce como Juan ama a alguien, existe un x tal que Juan ama a x. Es perfectamente posible encontrar expresiones con varios cuantificadores donde cada uno se aplica a una variable diferente. La expresión ( x)( y)ama(x, y) puede traducirse como Todo el mundo ama a alguien. En estos ejemplos, la variable x está cuantificada y se denomina variable ligada. En este ejemplo, ambas variables son ligadas. Conectivas Tanto las proposiciones ordinarias como las abiertas pueden contener las mismas conectivas que vimos en lógica proposicional: Humano(socrates) se traduce como Sócrates no es humano. Humano(x) es una proposición abierta, porque la variable x no está cuantificada. (( x)humano(x) Ama(juan, maria)) se traduce como Todo el mundo es humano y Juan ama a María. ( Humano(socrates) ( x)humano(x)) se traduce como Si Sócrates no es humano, entonces no es verdad que todo el mundo es humano. Vocabulario y reglas sintácticas De los ejemplos anteriores podemos deducir las reglas sintácticas de la lógica de predicados. El vocabulario está formado por: términos, que pueden ser de dos tipos: constantes, representadas como socrates, juan, maria y, en general, cualquier letra minúscula j, k, l, m... variables, representadas como cualquier letra minúscula del final del alfabeto v, w, x, y, z predicados, cada uno con una aridad determinada (número de argumentos que acepta) y representados como Humano, Ama y, en general, cualquier letra mayúscula. las cinco conectivas que ya conocemos: negación, conjunción, disyunción, condicional y bicondicional. dos cuantificadores: el universal y el existencial
4 lógica de predicados mrc 4 otros símbolos auxiliares como los paréntesis () y corchetes [], que se utilizan para agrupar fórmulas. Las reglas sintácticas son las siguientes: Si P es un predicado con aridad n, entonces P(t 1, t 2... t n ) es una oración o fórmula bien formada. Si ϕ y ψ son dos fórmulas, entonces ϕ, (ϕ ψ), (ϕ ψ), (ϕ ψ) y, (ϕ ψ) son también fórmulas. Si ϕ es una fórmula y x es una variable, entonces Si ( x)ϕ y ( x)ϕ son también fórmulas. En este caso, llamamo a ϕ el alcance de la variable x. Para que una fórmula de lógica de predicados sea considerada una proposición es imprescindible que no contenga variables libres, es decir: que tenga todas sus variables cuantificadas. Este tipo de fórmulas, que no contienen conectivas ni cuantificadores se denominan fórmula atómica. Es posible encontrar fórmulas con cuantificadores que se aplican sobre variables que no aparecen en el predicado: ( xp(y)) es una fórmula bien formada. Semántica Como ya vimos en la lógica proposicional, a una proposición de lógica de predicados podemos asignarle uno de los dos posibles valores de verdad: verdadero (V) o falso (F). Si una proposición contiene predicados y términos, e incluso cuantificadores, entonces el valor de verdad vendrá determinado por los valores semánticos (no necesariamente, valores de verdad) de sus componentes. Por ejemplo, la proposición Humano(socrates) está compuesta por un predicado con aridad 1 Humano y un término: la constante socrates. Esta constante socrates tiene como valor semántico el de algún individuo elegido a partir de un conjunto D predefinido con anterioridad, que contiene el dominio. Supongamos que D es el conjunto formado por todos los seres humanos, vivos o muertos, y que el individuo asignado a la constante socrates es el filósofo Sócrates. El predicado Humano recibe su valor semántico de un conjunto de individuos contenidos en D, por ejemplo, {Sócrates, Aristóteles, Platón, Mozart, Beethoven}. La proposición Humano(socrates) tiene un valor de verdad V en virtud de que el individuo al que se refiere socrates es miembro del conjunto al que se corresponde el predicado Humano. Si Humano se correspondiera con otro conjunto diferente, por ejemplo {Pelé, Maradona, Di Stefano, Messi}, el valor de verdad de la proposición Humano(socrates) sería F. Utilizamos los dobles corchetes en [[α]] para denotar el valor semántico de la expresión α. De manera que [[socrates]] = Sócrates,
5 lógica de predicados mrc 5 [[Humano]] = {Sócrates, Aristótles, Platón, Mozart, Beethoven} y [[Humano(socrates)]] = V Un predicado como Ama que tenga aridad 2 tiene como valor semántico un conjunto de pares ordenados de individuos que sean elementos de D, o dicho de otro modo, un subconjunto de D D. Una proposición como Ama(juan, maria) es verdadera en caso de que exista un par (x, y) donde X es el valor semántico de juan y y es el valor semántico de maria. En general, para todo predicado P que tenga aridad 2 y todo par de términos a, b, decimos que [[P(a, b)]] = V si y solo si ([[a]], [[b]]) [[P]] El valor de verdad de cualquier proposición de lógica de predicados dependerá del dominio del discurso y de la elección de los valores semánticos de las constantes y los predicados. Cuando todos estos elementos están especificados, decimos que tenemos definido un modelo de lógica de predicados. Un modelo consiste en un conjunto D y una función F que asigna: 1. a cada constante de individuo, un elemento de D. 2. a cada predicado de aridad 1, un subconjunto de D. 3. a cada predicado de aridad 2, un subconjunto de D D; y, en general, 4. a cada predicado de aridad n, un subconjunto de D D D... (un subconjunto de n-tuplas de elementos de D). Una proposición de lógica de predicados como Humano(socrates) o Ama(juan, maria) no es simplemente verdadera o falsa, sino que será verdadera o falsa teniendo en cuenta determinado modelo M. Deducción natural La lógica de predicados tiene dos reglas de inferencia fundamentales: 1. Modus ponens, heredada de la lógica proposicional. ((( x)humano(x) Mortal(x)) Humano(socrates)) Mortal(socrates). A partir de la oración cuantificada universalmente Todos los seres humano son mortales podemos inferir Si Sócrates es un ser humano, entonces Sócrates es mortal. 2. Generalización universal A partir de la fórmula Mortal(socrates) podemos generalizar ( x)mortal(x). O dicho de otro modo, a partir de la oración Sócrates es mortal podemos generalizar Todos los seres humanos son mortales.
Lógica de Predicados
Lógica de Predicados En las últimas décadas, ha aumentado considerablemente el interés de la informática por la aplicación de la lógica a la programación. De hecho, ha aparecido un nuevo paradigma de programación,
LÓGICA DE PREDICADOS DE PRIMER ORDEN INTRODUCCIÓN A LOS SISTEMAS FORMALES
LÓGICA DE PREDICADOS DE PRIMER ORDEN INTRODUCCIÓN A LOS SISTEMAS FORMALES POR QUÉ INTRODUCIR UN NUEVO SISTEMA? Todos los hombres son mortales Sócrates es hombre Sócrates es mortal Se trata de un razonamiento
Parte 1: Introducción a la lógica funcional Parte 2: Introducción a la teoría intuitiva de conjuntos
Parte 1: Introducción a la lógica funcional Parte 2: Introducción a la teoría intuitiva de conjuntos Material preparado por: Prof. Ana María Tosetti Revisado y complementado por: Ing. Freddy Rabín Catedrático
Capítulo 7: Lógica de predicados y cuantificadores
Capítulo 7: Lógica de predicados y cuantificadores por G 3 Agosto 2014 Resumen A menudo interesa afirmar que todos, o que solo algunos individuos de cierto universo, o solo uno, cumplen alguna propiedad.
La función proposicional no es una proposición, por lo tanto, no se puede decir nada acerca de su valor de verdad.
UNIDAD 1 LOGICA MATEMATICA 1.3 Cuantificadores Logica de predicados Esta lógica nos permite hacer afirmaciones con respecto a relaciones entre objetos o sus propiedades que satisfacen elementos de un determinado
INSTITUTO DE AYUDA POLITÉCNICA Quisquís 1020 entre Avenida del Ejército y García Moreno. 2282705 086412883
. PROPOSICIONES PROPOSICIÓN: Una proposición es una unidad semántica que, o sólo es verdadera o sólo es falsa. Por esta razón, las oraciones que no son falsas ni verdaderas, las que son falsas y verdaderas
GUIA DE TRABAJOS TEÓRICO PRACTICOS Nº3: LOGICA DE PREDICADOS
CENTRO EDUCATIVO DE NIVEL TERCIARIO N 2 INTRODUCCIÓN A LA LOGICA SIMBOLICA PRIMER AÑO GUIA DE TRABAJOS TEÓRICO PRACTICOS Nº3: LOGICA DE PREDICADOS 1.-Estructura de las proposiciones El desarrollo del cálculo
Matemáticas Discretas, Lógica: Predicados y Cuantificadores
Matemáticas Discretas, Lógica: Predicados y Cuantificadores Prof. Víctor Bravo 1 1 Universidad de los Andes A-2008 Licencia de Uso Copyright (c), 2007. 2008, ULA. Permission is granted to copy, distribute
LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Sintaxis y semántica
LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Sintaxis y semántica Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Lenguajes de primer orden 1 La lógica
Clase 25/09/2013 Tomado y editado de los apuntes de Pedro Sánchez Terraf
Clase 25/09/2013 Tomado y editado de los apuntes de Pedro Sánchez Terraf A pesar de haber ejercitado la realización de demostraciones en varias materias, es frecuente que el alumno consulte sobre la validez
Operaciones lógicas principales: Negación, Conjunción y Disyunción
Operaciones lógicas principales: Negación, Conjunción y Disyunción Definiciones informales. A es verdadera A es falsa A B es verdadera A es verdadera y B es verdadera A B es verdadera A es verdadera o
color (yerba, verde) el mismo predicado, pero con diferentes argumentos, puede no ser verdadero: color (yerba, azul) o color (cielo, verde)
Lógica de Predicados La principal debilidad de la lógica proposicional es su limitada habilidad para expresar conocimiento. Existen varias sentencias complejas que pierden mucho de su significado cuando
Introducción a la Lógica
Tema 0 Introducción a la Lógica En cualquier disciplina científica se necesita distinguir entre argumentos válidos y no válidos. Para ello, se utilizan, a menudo sin saberlo, las reglas de la lógica. Aquí
Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012
Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa
Lógica Proposicional. Sergio Stive Solano Sabié. Abril de 2013
Lógica Proposicional Sergio Stive Solano Sabié Abril de 2013 Lógica Proposicional Sergio Stive Solano Sabié Abril de 2013 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa
3.1 Reglas de equivalencia
3.1 Reglas de equivalencia En esta sección estudiarás y aplicarás algunas reglas de equivalencia de proposiciones lógicas. Es decir, vamos a empezar a aplicar algunas reglas que nos permitirán transformar
NOCIONES ELEMENTALES DE LÓGICA MATEMÁTICA
NOCIONES ELEMENTALES DE LÓGICA MATEMÁTICA Estudiaremos brevemente un lenguaje no contradictorio ni ambivalente que nos permitirá introducirnos a la Matemática: la Lógica Matemática, que estudia las leyes
UNIVERSIDAD SAN MARCOS
Prof. Edwin Gerardo Acuña Acuña UNIVERSIDAD SAN MARCOS ALGEBRA Este capítulo estudia los conceptos básicos del álgebra, una de las disciplinas de la matemática que tiene más aplicaciones en diversos campos.
Lógica de predicados
Lógica de predicados Cálculo de predicados Hay ciertos argumentos que parecen ser perfectamente lógicos y que no pueden ser especificados usando cálculo proposicional. Ejemplos: Todos los gatos tienen
Cálculo de predicados. Lógica de predicados. Cálculo de predicados. Cálculo de predicados 08/06/2011
Lógica de predicados Hay ciertos argumentos que parecen ser perfectamente lógicos y que no pueden ser especificados usando cálculo proposicional. Ejemplos: Todos los gatos tienen cola Tomás es un gato
Lógica Proposicional, Teoremas y Demostraciones
Lógica Proposicional, Teoremas y Demostraciones Manuel Maia 19 de marzo de 2012 1 Proposiciones Una proposición es una oración declarativa o una expresión matemática que es verdadera o es falsa, pero no
Historia y Filosofía de la Lógica
Historia y Filosofía de la Lógica Pablo Cobreros [email protected] Tema 3: El sistema básico de la lógica modal Introducción Historia reciente Interés filosófico: contextos intensionales Lógica modal proposicional
Lógica Clásica de Predicados
Lógica Clásica de Predicados Lógica Computacional Departamento de Matemática Aplicada Universidad de Málaga 10 de enero de 2008 Contenido 1 Sintaxis 2 Variables y Sustituciones 3 Significado y verdad 4
Conjuntos. Dra. Noemí L. Ruiz Limardo Revisado 2011 Derechos Reservados
Conjuntos Dra. Noemí L. Ruiz Limardo Revisado 2011 Derechos Reservados Objetivos de la lección Definir y dar ejemplos de conceptos fundamentales relacionados con conjuntos Conjunto Elementos Simbolismo
Lógica Matemática. Cont... Cont... Capítulo 1: Lógica Matemática Y Demostraciones
Matemáticas Discretas Capítulo 1: Y Demostraciones La lógica: Estudio del razonamiento. Se analiza si un razonamiento es correcto. Se centra en las relaciones entre los enunciados No se centra en el contenido
Apuntes de Lógica Matemática 2. Lógica de Predicados
Apuntes de Lógica Matemática 2. Lógica de Predicados Francisco José González Gutiérrez Cádiz, Abril de 2005 Universidad de Cádiz Departamento de Matemáticas ii Lección 2 Lógica de Predicados Contenido
Programación y matemática
Programación y matemática Los objetos matemáticos se describen usando un lenguaje al que llamamos lenguaje matemático. Como este lenguaje tiene pautas claras que indican cuáles descripciones tienen sentido
MATEMÁTICAS BÁSICAS LÓGICA MATEMÁTICA CONCEPTO DE LÓGICA MATEMÁTICA
MATEMÁTICAS BÁSICAS LÓGICA MATEMÁTICA CONCEPTO DE LÓGICA MATEMÁTICA La Lógica estudia la forma del razonamiento. La Lógica Matemática es la disciplina que trata de métodos de razonamiento. En un nivel
Lógica Matemática. Tema: Argumentos
Lógica Matemática Tema: Argumentos Argumentos Definición y propósito de los argumentos Un argumento es un conjunto de una o más oraciones. La última de ellas se denomina conclusión, las anteriores se llaman
Lógica Simbólica y Teoría de Conjuntos Parte I Juan Carlos Bressan y Ana E. Ferrazzi de Bressan
Lógica Simbólica y Teoría de Conjuntos Parte I Juan Carlos Bressan y Ana E Ferrazzi de Bressan Resumen En este trabajo, la utilización de la lógica simbólica y de los conjuntos se hace desde un punto de
Algebra de Boole. Algebra de Boole. Ing. José Alberto Díaz García. EL - 3307 Diseño Lógico. Página 1
Página 1 Simplificación de circuitos Como los circuitos lógicos son representaciones de funciones lógicas, se pueden utilizar los recursos disponibles para simplificarlos y así reducir la cantidad de componentes
Pablo Cobreros [email protected]. Tema 7. Cuatro teoremas de la lógica de primer orden
Lógica II Pablo Cobreros [email protected] Tema 7. Cuatro teoremas de la lógica de primer orden Introducción Introducción La existencia de modelos Introducción La existencia de modelos: preliminares La
de Primer Orden y los problemas de razonamiento (Cap 1 libro) de proposiciones (Cap 2 libro) de predicados (Cap 2 libro)
Bloque I: El Lenguaje de la Lógica L de Primer Orden. Tema 1: La Lógica L de Primer Orden y los problemas de razonamiento (Cap 1 libro) Tema 2: El lenguaje de la lógica l de proposiciones (Cap 2 libro)
TEORÍA DE CONJUNTOS A ={ 1, 2, 3, 4, 5, 6 }
TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO DEFINICIÓN Y NOTACIÓN DE CONJUNTOS El término conjunto juega un papel fundamental en el desarrollo de las matemáticas modernas; Además de proporcionar
UNIDAD III - LÓGICA SIMBÓLICA CÁLCULO PROPOSICIONAL:
UNIDAD III - LÓGICA SIMBÓLICA CÁLCULO PROPOSICIONAL: El desarrollo de la Lógica proposicional (tipo de lógica simbólica) se da por insuficiencias o limitaciones de la lógica clásica. Recordemos que la
TEMA I: LOS CONCEPTOS FUNDAMENTALES DE LA TEORÍA DE LA COMPUTABILIDAD
1 Asignatura: Lógica 3 Curso 2004-2005 Profesor: Juan José Acero 20 25 de Octubre del 2004 TEMA I: LOS CONCEPTOS FUNDAMENTALES DE LA TEORÍA DE LA COMPUTABILIDAD 1. El concepto de algoritmo. Los matemáticos
APUNTES PARA LENGUAJES Y COMPILADORES
APUNTES PARA LENGUAJES Y COMPILADORES Cuando se define un lenguaje de programación, se determina su sintaxis y su semántica La sintaxis se refiere a las notaciones necesarias para escribir programas, y
Conjuntos y relaciones
Conjuntos y relaciones Introducción Propiedades de las relaciones Sobre un conjunto Reflexivas Simétricas y transitivas Cerradura Relaciones de equivalencia Órdenes parciales Diagramas de Hasse Introducción
Teoría de Conjuntos. Conjunto es: colección de cosas, o una colección determinada de objetos.
Teoría de Conjuntos Apuntes Fernando Toscano tomados por A.Diz-Lois La teoría de conjuntos es una herramienta formal semántica que trata de dotar de significado, o lo que es lo mismo dotar de interpretación.
Demostración Automática. Tema 2. Procesamiento del conocimiento con la Lógica Matemática
Demostración Automática de Teoremas Tema 2. Procesamiento del conocimiento con la Lógica Matemática Temas Introducción Sistemas de axiomas Teoría de la demostración. Sistema de Kleene Deducción natural
Semántica de la Lógica de Predicados de Primer Orden. Significado de las Fórmulas
Semántica de la Lógica de Predicados de Primer Orden Semántica de la Lógica de Predicados 1 Significado de las Fórmulas Pregunta: Cuándo se cumple Γ = ϕ? Ejemplo para un lenguaje de tipo P
TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.
TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de
3.7. DEFINICIÓN FORMAL DEL LENGUAJE PROPOSICIONAL.
3.7. DEFINICIÓN FORMAL DEL LENGUAJE PROPOSICIONAL. El punto de partida para la definición de un lenguaje formal es el establecimiento del alfabeto del lenguaje, todos los lenguajes comportan un conjunto
Proposiciones Condicionales
SENTENCIAS CONDICIONALES SIMPLES: if- Anteriormente se discutió que una de las estructuras utilizadas en la programación estructurada es la Estructura Selectiva o Condicional. Se explican aquí las sentencias
Teoría de conjuntos. Tema 1: Teoría de Conjuntos.
Tema 1: Teoría de Conjuntos. La teoría de Conjuntos es actualmente una de las más importantes dentro de la matemática. Muchos de los problemas que se le han presentado a esta disciplina en los últimos
Los orígenes de la lógica intensional (Cáp. 1 de Lógica, Lenguaje y Significado Vol. II de L.T.F. Gamut) Resumen / Handout
Los orígenes de la lógica intensional (Cáp. 1 de Lógica, Lenguaje y Significado Vol. II de L.T.F. Gamut) Resumen / Handout 1. Introducción i. La lógica intensional es la extensión más importante de la
Lógica Proposicional. Guía Lógica Proposicional. Tema III: Cuantificadores
Guía Lógica Proposicional Tema III: Cuantificadores 1.7.2. CUANTIFICADORES Los cuantificadores permiten afirmaciones sobre colecciones enteras de objetos en lugar de tener que enumerar los objetos por
Capítulo 3 Cálculo proposicional 3.5 Razonamientos con proposiciones
3.5 Razonamientos con proposiciones Si nos entregan el valor de verdad de las proposiciones simples es posible deducir el valor de verdad de la proposición compuesta. p: Holmes nació antes que Marx, es
Tema 3: Conjuntos y Funciones
Tema 3: Conjuntos y Funciones Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2008 09 LC, 2008 09 Conjuntos y Funciones 3.1 Conjuntos Escribimos
Elementos de teoría de conjuntos y lógica elemental. P. Kisbye y A. L. Tiraboschi
Elementos de teoría de conjuntos y lógica elemental P. Kisbye y A. L. Tiraboschi Resumen. Este cuadernillo tiene la intención de presentar herramientas matemáticas básicas a alumnos de las carreras de
Guía de Matemáticas Discretas I
Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Lecturas en Ciencias de la Computación ISSN 1316-6239 Guía de Matemáticas Discretas I Prof. Marlliny Monsalve ND 2007-02 Centro
Cuantificadores y Métodos de Demostración
Cuantificadores y Métodos de Demostración 1. Cuantificadores... 1 1.1. Cuantificador Existencial... 2 1.2. Cuantificador Universal... 3 2. Métodos de Demostración... 4 1. Cuantificadores Hasta ahora habíamos
CONJUNTOS. Consideremos, por ejemplo, los siguientes conjuntos:
CONJUNTOS En una Teoría Intuitiva de Conjuntos, los conceptos de conjunto y pertenencia son considerados primitivos, es decir, no se definen de un modo formal; se les acepta como existentes de manera axiomática,
Un poco sobre Teoría de Conjuntos
A. Duarte & S. Cambronero 1 Un poco sobre Teoría de Conjuntos 1 Introducción Generalmente, en una teoría matemática, los términos que denotan las nociones primarias de esa teoría no se pueden definir.
Lógica proposicional. Ivan Olmos Pineda
Lógica proposicional Ivan Olmos Pineda Introducción Originalmente, la lógica trataba con argumentos en el lenguaje natural es el siguiente argumento válido? Todos los hombres son mortales Sócrates es hombre
Lógica de primer orden: Repaso y notación
Lógica de primer orden: Repaso y notación IIC3263 IIC3263 Lógica de primer orden: Repaso y notación 1 / 29 Lógica de primer orden: Vocabulario Una fórmula en lógica de primer orden está definida sobre
Introducción a la Teoría de Automátas
a la Teoría de Automátas Universidad de Cantabria Primeras Consideraciones Fijar un modelo de cálculo que haga referencia a los fundamentos de la comunicación y el lenguaje. Todo cálculo algorítmico consiste
UNIDAD DE APRENDIZALE III UNIDAD DE APRENDIZAJE 3 ( 8 HORAS)
UNIDAD DE APRENDIZALE III UNIDAD DE APRENDIZAJE 3 ( 8 HORAS) Saberes procedimentales Saberes declarativos Identifica y utiliza operaciones básicas con Literales: definición y uso. expresiones algebraicas.
Apuntes de Matemática Discreta 2. Operaciones con Conjuntos
Apuntes de Matemática Discreta 2. Operaciones con Conjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 2 Operaciones con Conjuntos
Capítulo 8 Sistemas completos de contectivos
Capítulo 8 Sistemas completos de contectivos por G 3 Agosto 2014 Resumen Un conectivo de aridad n, es una función que asigna un valor de verdad a un conjunto de n proposiciones ordenadas. Mostramos que
1.1. Proposiciones, conectivos, fórmulas proposicionales
Capítulo 1 Lógica Proposicional 1.1. Proposiciones, conectivos, fórmulas proposicionales Definición 1. Una proposición es una afirmación que puede ser verdadera o falsa. Una proposición es atómica si es
La Lógica Proposicional
La Lógica Proposicional 1. Las proposiciones y sus tipos. Una proposición es una oración enunciativa, es decir, una oración que afirma o niega algo y que puede ser verdadera o falsa. Las proposiciones
Matemáticas I: Hoja 1
Matemáticas I: Hoja 1 1. Números complejos Hasta ahora, hemos visto que los números reales son aquellos que poseen una expresión decimal y que podemos representar en una recta infinita. No obstante, para
Repaso de Lógica de Primer Orden
Repaso de Lógica de Primer Orden IIC3260 IIC3260 Repaso de Lógica de Primer Orden 1 / 29 Lógica de primer orden: Vocabulario Una fórmula en lógica de primer orden está definida sobre algunas constantes
Lógica proposicional o Lógica de enunciados
Tema 3 Lógica proposicional o Lógica de enunciados 1. Qué es la Lógica? 2. El cálculo de proposiciones 2.1. Las conectivas 2.2. Las tablas de verdad 2.3. La deducción natural Bibliografía Deaño, A.: Introducción
Los signos auxiliares frente a las leyes de asociatividad. Reglas de inferencia
Los signos auxiliares frente a las leyes de asociatividad Recordemos que al establecer las reglas de formación se dijo que dos fórmulas unidas por una conectiva diádica debían estar encerradas en un par
Lógica de Predicados de Primer Orden
Lógica de Predicados: Motivación Todo natural es entero y 2 es un natural. Luego 2 es entero. p q r p, q r es claramente un razonamiento válido pero no es posible demostrarlo desde la Lógica Proposicional
Lógica Proposicional y Teoría de Conjuntos
Lógica Proposicional y Teoría de Conjuntos Curso 2011-2012 1. Rudimentos de Lógica 1.1. El método axiomático Matemáticas es el estudio de las relaciones entre ciertos objetos ideales como números, funciones
Lógica Matemática, Sistemas Formales, Cláusulas de Horn
Lógica Matemática, Sistemas Formales, Cláusulas de Horn Lic. José Manuel Alvarado La lógica se ocupa de las argumentaciones válidas. Las argumentaciones ocurren cuando se quiere justificar una proposición
Práctico 6 Lógica de Predicados
Práctico 6 Lógica de Predicados Ejercicio 1 Considere un conjunto A de números reales que incluya al 0. Considere un lenguaje de primer orden con un símbolo de relación binario M que denota la relación
La Jerarquía de Chomsky
La Apuntes sobre la Complejidad Universidad de Cantabria Esquema Motivación 1 Motivación 2 Ideas y Nociones Motivación Como se ha mencionado anteriormente, los lenguajes son conjuntos de palabras definidos
TEMA 1: LÓGICA. p p Operador conjunción. Se lee y y se representa por. Su tabla de verdad es: p q p q
TEMA 1: LÓGICA. Definición. La lógica es la ciencia que estudia el razonamiento formalmente válido. Para ello tiene un simbolismo que evita las imprecisiones del lenguaje humano y permite comprobar la
Matemáticas Discretas Lógica
Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Lógica Cursos Propedéuticos 2010 Ciencias Computacionales INAOE Lógica undamentos de Lógica Cálculo proposicional Cálculo de predicados
operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario:
Potencias y raíces Potencias y raíces Potencia operaciones inversas Raíz exponente índice 7 = 7 7 7 = 4 4 = 7 base base Para unificar ambas operaciones, se define la potencia de exponente fraccionario:
Matemáticas Discretas Tc1003 Lógica Matemática. Lógica Matemática
OBJETIVOS Unidad Tema Subtema Objetivos II 2.1 Lógica Proosicional 2.2 Lógica de Predicados 2.3 Métodos de Demostración El establecimiento de cualuier teoría o conceto se hace mediante declaraciones y/o
En toda argumentación podemos distinguir 3 elementos:
LENGUA Y LITERATURA. LA ARGUMENTACIÓN. CONCEPTO Y ELEMENTOS. La argumentación. Argumentar significa defender una idea o una opinión aportando un conjunto de razones que justifiquen nuestra postura. La
Notación de Conjuntos
1 A. Introducción UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS MAEC 2140: Métodos Cuantitativos Prof. J.L.Cotto Conferencia: Conceptos Matemáticos Básicos Notación
Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable.
Cardinalidad Dados dos conjuntos A y B, decimos que A es equivalente a B, o que A y B tienen la misma potencia, y lo notamos A B, si existe una biyección de A en B Es fácil probar que es una relación de
Documento de lógica n 1 Frege Carlos Bermejo Esquema de Frege. El nombre propio es un signo. El nombre común es un signo.
Esquema de El nombre propio es un signo. El nombre común es un signo. Nombre propio Se refiere a lo que no tiene carga predicativa. Nombre común Se refiere a lo que sí tiene carga predicativa. En lingüística
Tema 2: Teoría de la Demostración
Tema 2: Teoría de la Demostración Conceptos: Estructura deductiva Teoría de la Demostración Sistemas axiomáticos: Kleene Fórmulas válidas Teorema de la Deducción Introducción a la T. de la Demostración
Repaso para el dominio de la materia
LECCIÓN. Repaso para el dominio de la materia sar con las páginas 66 a 7 OJETIVO Representar gráficamente y comparar números positivos y negativos. EJEMPLO Los números enteros positivos son los números
Módulo 1. Segunda Parte NOCIONES DE LÓGICA SIMBÓLICA
Módulo 1 Segunda Parte NOCIONES DE LÓGICA SIMBÓLICA Qué es una PROPOSICIÓN? ES TODA EXPRESIÓN O ENUNCIADO DE LA CUAL SE PUEDE DECIR SI ES VERDADERA O FALSA Ejemplos: 2 es un número par (Proposición verdadera)
Lección 5.1: Matrices y determinantes. Primeros conceptos. Objetivos de esta lección
Matemáticas Tema 5: Conceptos básicos sobre matrices y vectores Objetivos Lección 5.: y determinantes Philippe Bechouche Departamento de Matemática Aplicada Universidad de Granada 3 4 [email protected] 5 Qué
Lección 10: Representación gráfica de algunas expresiones algebraicas
LECCIÓN Lección : Representación gráfica de algunas epresiones algebraicas En la lección del curso anterior usted aprendió a representar puntos en el plano cartesiano y en la lección del mismo curso aprendió
Unificación. Unificación
Unificación C 1 = P(a, y) Q(x, y) C 2 = P(x, y) R(x, b) P(a, y) y P(x, y) no son literales complementarios Si sustituimos x/a se obtienen C 1 = P(a, y) Q(a, y) C 2 = P(a, y) R(a, b) Instancias de C 1 y
Excel - Fórmulas y Funciones
Excel - Fórmulas y Funciones Fórmulas elaboradas por el usuario Además de las fórmulas y las funciones que provee Excel (como autosuma y promedio), el usuario puede fabricar sus propias fórmulas. Hay que
Material preparado para el curso MA-0270 Geometría I
Proposiciones matemáticas 1 1. Nociones básicas Definición 1. Proposición o enunciado (simple): es una afirmación que es falsa o verdadera pero no ambas. Ejemplos 1. Luis vino a clases hoy. 2. Amaneció
UNIDAD I. ALGORITMOS
UNIDAD I. ALGORITMOS 1.1 Definición Un algoritmo es una serie de pasos organizados que describe el proceso que se debe seguir, para dar solución a un problema específico. 1.2 Tipos Cualitativos: Son aquellos
Definición 2.- Las proposiciones se combinan mediante conectivos lógicos para formar otras proposiciones. Los conectivos lógicos básicos son:
ii Matemática Discreta : Contenidos Capítulo 1 Lógica 1.1 Cálculo proposicional El Cálculo Proposicional se encarga del estudio de las relaciones lógicas entre objetos llamados proposiciones. Definición
Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: a i. o e
Conjuntos Notación de conjuntos Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: A 1,2,3 B 2,5,6 C a, e, i, o, u D #,&,*,@ Es bastante corriente dibujar los
Lógica Proposicional. Guía Lógica Proposicional. Tema I: Proposiciones
Guía Lógica Proposicional Tema I: Proposiciones El hombre ha hecho uso del lenguaje para comunicarse entre sí; usa conjuntos de palabras del idioma que organizadas coherentemente en un contexto determinado
Un conjunto se considera como una colección de objetos, llamados miembros o elementos del conjunto. Existen dos formas de expresar un conjunto:
I.- Teoría de conjuntos Definición de conjunto Un conjunto se considera como una colección de objetos, llamados miembros o elementos del conjunto. Existen dos formas de expresar un conjunto: a) Por extensión
Los números naturales
Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos
Lógica Lógica de Predicados. Motivación
Lógica de Predicados 1 Motivación Un sistema informático no es otra cosa que un modelo de una parte de la realidad, típicamente de un servicio. el servicio que debe proveer la bedelía de la facultad o
