VALOR ABSOLUTO Y ENTORNOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "VALOR ABSOLUTO Y ENTORNOS"

Transcripción

1 VALOR ABSOLUTO Y ENTORNOS Valor absoluto Se define el valor absoluto de un número real como el número dado, si éste es positivo, o su opuesto en caso de ser estrictamente negativo. Es decir: si si Ejemplos: =. Aplicando la definicin a sería =. Como es mayor o igual que cero, la definicin nos dice que = =. =. De igual forma, =. Al ser, se tiene que = =. 9 = 9, porque = 9 <, por lo que, según la definicin se tendrá: = 9 = ( 9) = 9. Propiedades ) ) = = ) = ) = y = y = y ) = y = y = y (debe ser y ) 6) d(, y) = y = y lo que quiere decir que la distancia que separa a de y es igual que la diferencia de ambos números, tomada en valor absoluto. ) y = y 8), siempre que y y y 9) y (siendo y ) y y Las dos desigualdades y, y, se verifican simultáneamente. La propiedad es cierta, también, si las desigualdades son estrictas (< en lugar de ). ) y (siendo y ) y y Análoga, si las desigualdades son estrictas. ) = y = y ) = ) ) Desigualdad triangular: + y + y ) y y 6) y y. Análoga si las desigualdades son estrictas. Entornos Se define el entorno de centro a y radio r >, y se utiliza la notacin: E(a, r), como el conjunto de todos los números que están a una distancia de a inferior a r. Es decir: a r r a r a + r E(a, r) = { R / d(, a) < r } d(a, ) IES Fernando de Herrera Prof. R. Mohigefer Página de

2 Según el gráfico, puede estar en cualquier lugar del intervalo coloreado. Por tanto, dicha zona es el entorno de centro a y radio r. Por las propiedades 6 de valor absoluto se tiene que: d(, a) < r a < r. Por tanto, una definicin equivalente de entorno es: E(a, r) = { R / a < r } Pero la propiedad 9 de valor absoluto nos lleva a que: a < r r < a < r Si sumamos a en las tres posiciones de estas desigualdades, la epresin resulta ser equivalente a: a r < < a + r Por tanto, una tercera definicin equivalente es: E(a, r) = { R / a r < < a + r } = (a r, a + r) Es decir, hemos encontrado que el entorno de centro a y radio r es lo mismo que el intervalo abierto (a r, a + r). Se define el entorno reducido de centro a y radio r como E(a, r) ecluido el centro a. La notacin que se emplea es E*(a, r). Es decir: E*(a, r) = E(a, r) {a} Podríamos epresarlo como unin de dos intervalos abiertos: E*(a, r) = (a r, a) (a, a + r) Problemas ) Resolver: = Por la propiedad, esto sucede si, y slo si: Tiene, por tanto, dos soluciones posibles: /. ) Resolver: = + 6 Por la propiedad, esto equivale a: 6 ( 6) Dos soluciones: / /. ) Resolver: = Por la propiedad, la ecuacin equivale a: = = = Dos soluciones:. IES Fernando de Herrera Prof. R. Mohigefer Página de

3 IES Fernando de Herrera Prof. R. Mohigefer Página de ) Resolver: + = Aplicando la propiedad, es equivalente a: Imposible ) ( / Luego tiene una única solucin: = /, porque la segunda igualdad no es cierta para ningún valor de. ) Resolver: = Aplicamos reiteradamente la propiedad : = 6 8 Hay cuatro soluciones posibles:,,,. 6) Resolver: = (dificultad alta) Procedemos de forma análoga al problema anterior: = Resolvemos cada una de estas ecuaciones por separado. Cuando nos surge una ecuacin donde la incgnita aparece dentro y fuera del valor absoluto, hay que comprobar la validez de las soluciones en la ecuacin original. = + / ) ( = / ) ( Al comprobar la validez de las distintas soluciones, obtenemos que = no nos sirve. Por tanto, las soluciones son:, / /. ) Epresar en forma de intervalo E(, ) E(, ) = (, + ) = (, ) 8) Epresar en forma de intervalo o uniones de intervalos: E*(.,.) E*(.,.) = (..,.) (.,. +.) = (.,.) (.,.)

4 9) Epresar en forma de entorno el intervalo abierto (.,.) El centro será el punto medio entre los etremos del intervalo, que obtenemos sumando ambos números y dividiendo entre :...9 El radio será la distancia desde el centro que hemos obtenido a alguno de los dos etremos. Por la propiedad 6 de valor absoluto, valdrá: d(.9,.) =.9. =.9 Luego: (.,.) = E(.9,.9) ) Epresar en forma de intervalo y de entorno el conjunto { R / + < } Por la propiedad 6: + = d(, ) Por tanto, y recurriendo a la definicin de entorno: { R / + < } = { R / d(, ) < } = = E(, ) = (, + ) = (, ) ) Resolver la inecuacin < Por la propiedad 9 de valor absoluto, esto sucede si, y slo si: < < y < < 9 9 Luego las soluciones son todos y cada uno de los puntos del intervalo abierto (, 9) ) Resolver la inecuacin: Según la propiedad de valor absoluto, esto sucederá cuando, y solamente cuando: 8 Lo que sucede cuando (, ] [, +) ) Resolver la inecuacin: > 6 (dificultad alta) Aplicamos, nuevamente, la propiedad, obteniendo: 6 / (6 ) 6 Pero en este tipo de inecuaciones hay una posibilidad adicional: Si 6 <, con toda seguridad el valor absoluto de va a ser mayor que él, puesto que el valor absoluto siempre produce resultados mayores o iguales que. Y eso sucede cuando: 6 < 6 < < / Las tres condiciones obtenidas son: < / < < /. Al dibujarlas, vemos que suceden a la vez se < /. Pero a nosotros nos interesa que se / / IES Fernando de Herrera Prof. R. Mohigefer Página de

5 cumpla alguna de las tres (están relacionadas mediante ""). Y eso sucede si <. Ésta es, pues, la solucin final: < (, ). ) Resolver la inecuacin: + + < (dificultad alta) Empleamos la propiedad 6 de valores absolutos. El segundo miembro no es un valor absoluto. Pero = : puede aplicarse. Al desarrollar, también usaremos las propiedades y : ( + + ) < ( + ) < ( + ) + < < + < + < + + < + / Por la propiedad 9, esto equivale a: / / y / /, que secumple Nos hemos quedado con la inecuacin + / <. Como la ecuacin + / = tiene como soluciones / y /, la parábola y = + / corta al eje OX en dichos valores. Teniendo en cuenta su forma convea (ver gráfico), la solucin de esta inecuacin y, por tanto, la de la inecuacin inicial, son los valores de que hacen que y = + / <. Y estos son los que hacen que la curva quede bajo el eje OX, pues para ellos será y negativo: ( /, /) ) Resolver la inecuacin: + (dificultad alta) La resolucin es similar a la del ejercicio anterior, empleando la propiedad 6 para deshacerse de los valores absolutos: + ( ) ( + ) Para buscar los valores de que hacen positivo o nulo el resultado de , llamamos y = y representamos gráficamente la parábola correspondiente. Teniendo slo en cuenta que la parábola es convea (pues el coeficiente de es positivo: ) y que corta al eje OX en: la gráfica es la adjunta. Por tanto, los valores buscados, que hacen que y quede por encima del eje OX o tocando a dicho eje (para que y ) son: (, 8] [ /, +) IES Fernando de Herrera Prof. R. Mohigefer Página de

INECUACIONES. Por ejemplo 2 3 x 6.

INECUACIONES. Por ejemplo 2 3 x 6. INECUACIONES 1. Desigualdades Una desigualdad es una expresión en la que interviene uno de los signos: ,. Por ejemplo, 3 + 10, que es una desigualdad cierta. 3+ > 5 es una desigualdad falsa.. de primer

Más detalles

IES Fernando de Herrera Curso 2013/14 Primer Examen 2ª evaluación 4º ESO 5 de febrero de 2014 NOMBRE

IES Fernando de Herrera Curso 2013/14 Primer Examen 2ª evaluación 4º ESO 5 de febrero de 2014 NOMBRE IES Fernando de Herrera Curso 0/4 Primer Eamen ª evaluación 4º ESO de febrero de 04 NOMBRE ) Resolver: 4 (, puntos) ) Resolver: 4 + + (, puntos) ) Resolver: log log ( + 4) (, puntos) 8 ( 4) 4) Resuelva

Más detalles

Segundo trimestre 1º Bach CCSS 10 de febrero de 2014 Primer examen 2ª evaluación NOMBRE: x 6x

Segundo trimestre 1º Bach CCSS 10 de febrero de 2014 Primer examen 2ª evaluación NOMBRE: x 6x Segundo trimestre º Bach CCSS 0 de febrero de 04 Primer eamen ª evaluación NOMBRE: ) Resolver: 3 3 8 ( 3) ) Resolver el sistema siguiente: 3 6 0 0 3) Hallar el dominio de y = 4) Decir si es par, impar

Más detalles

Fabio Prieto Ingreso 2003

Fabio Prieto Ingreso 2003 Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien

Más detalles

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1

Más detalles

Tema 4: Sistemas de ecuaciones e inecuaciones

Tema 4: Sistemas de ecuaciones e inecuaciones Tema 4: Sistemas de ecuaciones e inecuaciones Sistemas Lineales pueden ser de No lineales Gráficamente Ecuaciones se clasifican se resuelven Algebraicamente Compatible determinado Compatible indeterminado

Más detalles

Control Global de la 2ª Evaluación Matemáticas Aplicadas a las Ciencias Sociales. 1º de Bachillerato

Control Global de la 2ª Evaluación Matemáticas Aplicadas a las Ciencias Sociales. 1º de Bachillerato Control Global de la ª Evaluación Matemáticas Aplicadas a las Ciencias Sociales. º de Bachillerato. (4 puntos). Dada la función f( ) se pide: 4 a) Su dominio. b) Los puntos de corte con los ejes de coordenadas.

Más detalles

Matemáticas Problemas resueltos de gráficas de funciones (2)

Matemáticas Problemas resueltos de gráficas de funciones (2) Matemáticas Problemas resueltos de gráficas de funciones () PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES () 1) Estudiar y dibujar la gráfica de: y + 1) Dominio: R (es polinómica). ) Par / Impar: f( ) (

Más detalles

ECUACIONES, SISTEMAS DE ECUACIONES E INECUACIONES

ECUACIONES, SISTEMAS DE ECUACIONES E INECUACIONES ECUACIONES, SISTEMAS DE ECUACIONES E INECUACIONES Ejercicio. a) Halle los valores de m para los que la ecuación de segundo grado 8 m 7 m no tiene solución real. b) Resuelva la siguiente inecuación indicando

Más detalles

Teoría Tema 1 Sistema de inecuaciones - Programación lineal

Teoría Tema 1 Sistema de inecuaciones - Programación lineal página 1/6 Teoría Tema 1 Sistema de inecuaciones - Programación lineal Índice de contenido Cómo resolver sistemas de inecuaciones lineales con dos incógnitas?...2 Un ejemplo...4 página 2/6 Cómo resolver

Más detalles

Matemáticas Problemas resueltos de gráficas de funciones (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1)

Matemáticas Problemas resueltos de gráficas de funciones (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1) 1) Halle los intervalos de monotonía y los etremos relativos, los intervalos de curvatura y los puntos de infleión de la función g() + +. Represéntela gráficamente.

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO f(x) = x(x 2) y g(x) = x + 4

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO f(x) = x(x 2) y g(x) = x + 4 UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO - MATEMÁTICAS II Instrucciones: a) Duración: hora y minutos. b) Tienes que elegir entre realizar únicamente los cuatro ejercicios de la

Más detalles

Unidad 10 Integrales definidas. Aplicaciones

Unidad 10 Integrales definidas. Aplicaciones Unidad Integrales definidas. Aplicaciones PÁGINA 5 SOLUCIONES. Las áreas quedan: A u A u A 5 u. El área del recinto viene dada por : ( ) ( ) Área d,5 u PÁGINA 9 SOLUCIONES. La solución queda: Directo:

Más detalles

EJERCICIOS RESUELTOS DE SISTEMAS DE INECUACIONES

EJERCICIOS RESUELTOS DE SISTEMAS DE INECUACIONES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones y de inecuaciones EJERCICIOS RESUELTOS DE SISTEMAS DE INECUACIONES 1. Resolver el sistema de inecuaciones + 5 4 0 3 4 + 8 < 3( 1) Se

Más detalles

Objetivo General: Plantean y resuelven problemas que involucran desigualdades.

Objetivo General: Plantean y resuelven problemas que involucran desigualdades. Liceo Polivalente Juan Antonio Ríos Quinta Normal NIVEL : TERCERO MEDIO Guía de aprendizaje Nº 4 Unidad Temática: Desigualdades e Inecuaciones Objetivo General: Plantean y resuelven problemas que involucran

Más detalles

Capítulo 1: El número real - Desigualdades e inecuaciones

Capítulo 1: El número real - Desigualdades e inecuaciones Capítulo : El número real - Desigualdades e inecuaciones. Resuelve los sistemas de inecuaciones y representa en el eje real dichas soluciones. a) > 8 ) ( b) > > ) ( c) > 6 5. Encuentra el conjunto solución

Más detalles

Ejemplo.- La desigualdad: 2x + 1 > x + 5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4.

Ejemplo.- La desigualdad: 2x + 1 > x + 5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES.- DEFINICION.- Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que solo se verifica para determinados valores de la incógnita o incógnitas.

Más detalles

IES Fernando de Herrera Curso 2012 / 13 Primer trimestre 1º Bach CCSS 22 de octubre de 2012 Números reales. Potencias y radicales. Polinomios NOMBRE:

IES Fernando de Herrera Curso 2012 / 13 Primer trimestre 1º Bach CCSS 22 de octubre de 2012 Números reales. Potencias y radicales. Polinomios NOMBRE: IES Fernando de Herrera Curso 01 / 1 Primer trimestre 1º Bach CCSS de octubre de 01 Números reales. Potencias y radicales. Polinomios NOMBRE: 1) a) Escribir en forma de intervalo: [, 1) [, 4) (1 punto

Más detalles

El par (3, 1) es solución de un sistema si al sustituir x por 3 e y por 1, se verifican ambas igualdades: = 6 1 = ( 1) = = 11

El par (3, 1) es solución de un sistema si al sustituir x por 3 e y por 1, se verifican ambas igualdades: = 6 1 = ( 1) = = 11 PÁGINA 10 Pág. 1 Practica Sistemas lineales 1 Comprueba si el par (3, 1) es solución de alguno de los siguientes sistemas: x + y = 5 b) x y = 5 3x y = 11 4x + y = El par (3, 1) es solución de un sistema

Más detalles

Las desigualdades absolutas son aquellas que se cumplen sea cual sea el valor real que se sustituye. Por ejemplo:

Las desigualdades absolutas son aquellas que se cumplen sea cual sea el valor real que se sustituye. Por ejemplo: MATEMÁTICAS BÁSICAS INECUACIONES INTERVALOS DE NÚMEROS REALES Una desigualdad es la epresión de dos cantidades tales que una es mayor que otra. Las desigualdades en general se clasifican en absolutas y

Más detalles

IES Fernando de Herrera Curso 2013 / 14 Primer examen Segundo trimestre 2º Bach CCSS 30 de enero de 2013 NOMBRE:

IES Fernando de Herrera Curso 2013 / 14 Primer examen Segundo trimestre 2º Bach CCSS 30 de enero de 2013 NOMBRE: IES Fernando de Herrera Curso 01 / 14 Primer eamen Segundo trimestre º Bach CCSS 0 de enero de 01 NOMBRE: 1) Calcule las derivadas de las siguientes funciones: ( puntos) 5 1 f() ; g() ( + ) ln(1 + ) )

Más detalles

Unidad 9 Integrales indefinidas

Unidad 9 Integrales indefinidas Unidad 9 Integrales indefinidas PÁGINA SOLUCIONES. La solución es: a) F ( ) + 8; F( ), 5 b) F() cos ; F( ) cos + c) F ( ) e + ; F( ) e d) F ( ) ln( + ) + 5; F( ) ln( + ). La solución en cada caso: a) F

Más detalles

RESOLUCIÓN DE SISTEMAS DE ECUACIONES E INECUACIONES CON DOS INCÓGNITAS. Prof. Esther Morales

RESOLUCIÓN DE SISTEMAS DE ECUACIONES E INECUACIONES CON DOS INCÓGNITAS. Prof. Esther Morales 1 U N E X P O UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ DEPARTAMENTO DE ESTUDIOS GENERALES SECCIÓN DE MATEMÁTICA RESOLUCIÓN DE SISTEMAS DE ECUACIONES

Más detalles

Geometría Analítica Espacios Vectoriales VECTORES EN EL PLANO

Geometría Analítica Espacios Vectoriales VECTORES EN EL PLANO VECTORES EN EL PLANO 1 ESPACIO VECTORIAL Un vector fijo es una pareja ordenada de puntos en el plano (origen y extremo) Si A y B son dichos puntos, representaremos el vector por AB Gráficamente, lo representamos

Más detalles

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de

Más detalles

EJERCICIOS DE INTEGRALES DEFINIDAS:

EJERCICIOS DE INTEGRALES DEFINIDAS: EJERCICIOS DE INTEGRALES DEFINIDAS: 1.) Se considera, en el primer cuadrante, la región R del plano limitada por: el eje X, el eje Y, la recta x = 2 y la curva y =. a) Calcula razonadamente, el área de

Más detalles

IES Fernando de Herrera Curso 2013 / 14 Primer examen Tercer trimestre 4º ESO Opción B 25 de Abril de 2014 NOMBRE:

IES Fernando de Herrera Curso 2013 / 14 Primer examen Tercer trimestre 4º ESO Opción B 25 de Abril de 2014 NOMBRE: IES Fernando de Herrera Curso 01 / 14 Primer examen Tercer trimestre 4º ESO Opción B 5 de Abril de 014 NOMBRE: 1) Dados los vectores a = (1, 4/) y b = (1, 1/5), se pide: a) Hallar u a y v 5b. (0,1 puntos)

Más detalles

PREPARADURÍA INTRODUCTORIA (Semana 1)

PREPARADURÍA INTRODUCTORIA (Semana 1) Universidad Simón Bolívar Preparadurías de Matemáticas I (MA1111) Preparador: Ricardo J. Fernández Terán ( RicharOrange@hotmail.com ) PREPARADURÍA INTRODUCTORIA (Semana 1) Contenidos: Propiedades de los

Más detalles

Sistemas de inecuaciones de primer grado con dos incógnitas

Sistemas de inecuaciones de primer grado con dos incógnitas SISTEMAS DE INECUACIONES DE PRIMER GRADO CON DOS INCÓGNITAS 1) (Selectividad 2005) Sea el siguiente sistema de inecuaciones: 3y 6; x 2y 4; x + y 8; x 0; y 0. Dibuje la región que definen y calcule sus

Más detalles

Ejercicios de inecuaciones y sistemas de inecuaciones

Ejercicios de inecuaciones y sistemas de inecuaciones Ejercicios de inecuaciones y sistemas de inecuaciones 1) Resuelve la siguiente inecuación (pag 67, ejercicio 4a)): 3(x 5) 5 > 7(x + 1) (2x + 3) Si nos fijamos se trata de una inecuación de primer grado

Más detalles

Tema 13 La integral definida. Aplicaciones

Tema 13 La integral definida. Aplicaciones Tema La integral definida. Aplicaciones. Integral definida. Calcula la integral. ( ) d 4 Calculamos una primitiva de la función f ( ) : G( ) ( ) d Según la regla de Barrow: 4 4 ( ) d G(4) G() 4 8 4 Ahora

Más detalles

Soluciones de las actividades. d) 2x 2 3x + 1 = 0 Δ = 9 8 = 1 > 0 Dos soluciones distintas. 6. Las soluciones son: a) z = b) z = c) z = d) z = e) z =

Soluciones de las actividades. d) 2x 2 3x + 1 = 0 Δ = 9 8 = 1 > 0 Dos soluciones distintas. 6. Las soluciones son: a) z = b) z = c) z = d) z = e) z = Soluciones de las actividades Página 7. Si a 0 y b 0, no tiene solución. Si a 0 y b 0, tiene infinitas soluciones. Si a 0, tiene una única solución, -b / a.. Las soluciones son a) 0 + 8; ; / b) + 8 ; ;

Más detalles

Repaso de Álgebra. Colegio Molière. Repasaremos algunas reglas y procedimientos básicos que te serán útiles a lo largo del curso

Repaso de Álgebra. Colegio Molière. Repasaremos algunas reglas y procedimientos básicos que te serán útiles a lo largo del curso Repaso de Álgebra Colegio Molière Repasaremos algunas reglas y procedimientos básicos que te serán útiles a lo largo del curso Operaciones aritméticas a + b b + a ab ba (Ley Conmutativa) (a + b) + c a

Más detalles

LÍMITES DE FUNCIONES. Sol: Sol: 0. Sol: 1/2 28) Sol: 4 30) Sol: Sol: 13. Sol: + Sol: 2/3. Sol: Sol: 1

LÍMITES DE FUNCIONES. Sol: Sol: 0. Sol: 1/2 28) Sol: 4 30) Sol: Sol: 13. Sol: + Sol: 2/3. Sol: Sol: 1 ) ) ) + 5 + + + + + + + + 5 + ) ( ) + 5) ( + ) + ) ( + ) + LÍMITES DE FUNCIONES ) 7) ( ) + + + / No eiste, porque vale si, y si + 8) ( ) + 9) 5 + 0) 5 + ) 5+ ) 5+ ) + 5+ ) 5) + + + ) + + + + + 7) + + 8)

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO - MATEMÁTICAS II Instrucciones: a) Duración: hora y minutos. b) Tienes que elegir entre realizar únicamente los cuatro ejercicios de la

Más detalles

IES Fernando de Herrera Curso 2012/13 Primer Examen 3ª evaluación 4º ESO 2 de mayo de 2013 NOMBRE

IES Fernando de Herrera Curso 2012/13 Primer Examen 3ª evaluación 4º ESO 2 de mayo de 2013 NOMBRE IES Fernando de Herrera Curso 0/ Primer Eamen ª evaluación 4º ESO de mayo de 0 NOMBRE ) Es el vector c (4, ) combinación lineal de los vectores a (, ) y b (, 4)? (, puntos) ) Dados los vectores a (, )

Más detalles

ECUACIONES E INECUACIONES (MATEMÁTICAS A) (SOLUCIÓN)

ECUACIONES E INECUACIONES (MATEMÁTICAS A) (SOLUCIÓN) Examen de ECUACIONES E INECUACIONES (MATEMÁTICAS A) 9.0.1 (SOLUCIÓN) : 1. Resuelve las siguientes ecuaciones: a. x + 3-10 x : x 4 : x + 10 + x : x : 8x + 1 x + 8x 1 + 10 10x 0 x 0 10 b. x + 4 x 4 + x 4

Más detalles

TEMA 4: Ecuaciones e inecuaciones. Tema 4: Ecuaciones e inecuaciones 1

TEMA 4: Ecuaciones e inecuaciones. Tema 4: Ecuaciones e inecuaciones 1 TEMA : Ecuaciones e inecuaciones Tema : Ecuaciones e inecuaciones Tema : Ecuaciones e inecuaciones .- Ecuaciones de primer grado..- Ecuaciones de segundo grado completas..- Ecuaciones de segundo grado

Más detalles

IES Fernando de Herrera Curso 2014 / 15 Primer trimestre - Primer examen 2º Bach CT NOMBRE:

IES Fernando de Herrera Curso 2014 / 15 Primer trimestre - Primer examen 2º Bach CT NOMBRE: IES Fernando de Herrera Curso / 5 Primer trimestre - Primer eamen º Bach CT NOMBRE: ) Sea la función f : R R definida por f() e ( + ) a) Calcular dominio, cortes con los ejes y asíntotas ( punto) b) Estudiar

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES. a) Eplicar el concepto de función primitiva. b) Sea f () = e + 8, justificar si es primitiva de alguna de las siguientes funciones: g () = e + 8 h

Más detalles

Control Global de la 1ª Evaluación Matemáticas Aplicadas a las Ciencias Sociales 1º de Bachillerato

Control Global de la 1ª Evaluación Matemáticas Aplicadas a las Ciencias Sociales 1º de Bachillerato Control Global de la ª Evaluación Matemáticas Aplicadas a las Ciencias Sociales º de Bachillerato. 5,5 puntos). Resolver las siguientes ecuaciones: a) b) log log ) c) d) ) ).,5 puntos). Dado el polinomio

Más detalles

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2 Integrales. Calcular las siguientes integrales: i) d ii) d 6 iii) sen d i) Operando se tiene: d = / / / / d = 7 / / / / / = c = c 7 7 ii) Ajustando constantes se tiene: d 6d = 6 c 6 6 iii) Haciendo el

Más detalles

> left {> begin{matrix}> 2x & + 3y & = 5 > 5x & + 6y & = 4> end{matrix}> right.> no tenemos más que multiplicar la primera ecuación por

> left {> begin{matrix}> 2x & + 3y & = 5 > 5x & + 6y & = 4> end{matrix}> right.> no tenemos más que multiplicar la primera ecuación por Ecuaciones Lineales y Cuadráticas 1.-ECUACIONES LINEALES: Es un planteamiento de igualdad, involucrando una o más variables a la primera potencia, que no contiene productos entre las variables, es decir,

Más detalles

INECUACIONES LINEALES

INECUACIONES LINEALES INECUACIONES POLINÓMICAS EN UNA VARIABLE Las inecuaciones en general, son desigualdades entre epresiones algebraicas en las que intervienen una o más variables. Cuando las epresiones algebraicas de cada

Más detalles

TEMA 7 SISTEMAS DE ECUACIONES

TEMA 7 SISTEMAS DE ECUACIONES TEMA 7 SISTEMAS DE ECUACIONES 7.1 Ecuaciones lineales con dos incógnitas Actividades página 111 1. Obtén dos soluciones de cada ecuación y representa las rectas correspondientes. b) x y Esto se lee como

Más detalles

MatemáticasI. Características a) b) c) Dominio R R R Recorrido 0, [- 1, 1] R Simetría Eje OY Origen de

MatemáticasI. Características a) b) c) Dominio R R R Recorrido 0, [- 1, 1] R Simetría Eje OY Origen de UNIDAD 10: Propiedades globales de las funciones ACTIVIDADES-PÁG. 6 1. El día 1 de julio ocupará una superficie de 1 1,08 1 = 10,87 cm. La gráfica buscada podría ser la siguiente:. Las características

Más detalles

Inecuaciones: Actividades de recuperación.

Inecuaciones: Actividades de recuperación. Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)

Más detalles

REFUERZO DE FUNCIONES

REFUERZO DE FUNCIONES REFUERZO DE FUNCIONES Dominio de definición 1.- Calcula el dominio de definición de las siguientes funciones: Solución: Para calcular el dominio de lo único que tenemos que tener en cuenta es el denominador.

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuaciones con valor absoluto El valor absoluto de un número real a se denota por a y está definido por: Propiedades a a si a si a 0 a < 0 i a y b son números reales y n es un número entero, entonces:

Más detalles

CARACTERÍSTICAS DE UNA FUNCIÓN

CARACTERÍSTICAS DE UNA FUNCIÓN . DOMINIO CARACTERÍSTICAS DE UNA FUNCIÓN inio de o campo de eistencia de es el conjunto de valores para los que está deinida la unción, es decir, el conjunto de valores que toma la variable independiente.

Más detalles

Tema 5 Inecuaciones y sistemas de inecuaciones

Tema 5 Inecuaciones y sistemas de inecuaciones Tema Inecuaciones y sistemas de inecuaciones. Inecuaciones lineales PÁGINA 9 EJERCICIOS. Comprueba en cada caso si el valor indicado forma parte de la solución de la inecuación. b de la inecuación Sustituimos

Más detalles

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )

Más detalles

Solución de las inecuaciones

Solución de las inecuaciones Marco Teórico Solución de las inecuaciones Y si tuviera una desigualdad con una variable desconocida cómo? Cómo has podido aislar la variable para encontrar su valor? Después de completar este concepto,

Más detalles

Control Global de la 2ª Evaluación Matemáticas Aplicadas a las Ciencias Sociales. 1º de Bachillerato B (2007/08)

Control Global de la 2ª Evaluación Matemáticas Aplicadas a las Ciencias Sociales. 1º de Bachillerato B (2007/08) Control Global de la ª Evaluación Matemáticas Aplicadas a las Ciencias Sociales. º de Bachillerato B (007/08). (4 puntos). Dada la función f( ) se pide: 4 a) Su dominio. b) Los puntos de corte con los

Más detalles

Lección 12: Sistemas de ecuaciones lineales

Lección 12: Sistemas de ecuaciones lineales LECCIÓN 1 Lección 1: Sistemas de ecuaciones lineales Resolución gráfica Hemos visto que las ecuaciones lineales de dos incógnitas nos permiten describir las situaciones planteadas en distintos problemas.

Más detalles

Coordinación de Matemática I (MAT021)

Coordinación de Matemática I (MAT021) Coordinación de Matemática I (MAT01) Taller Primer semestre de 01 Semana 1: Lunes 6 viernes 30 de marzo Ejercicios Ejercicio 1 1. Sea x 0 un número real, mostrar que si x 0 < r para todo r > 0 entonces

Más detalles

Unidad 15 Integrales definidas. Aplicaciones

Unidad 15 Integrales definidas. Aplicaciones Unidad 15 Integrales definidas. Aplicaciones 3 SOLUCIONES 1. La suma superior es: La suma inferior es:. La suma superior es: s ( P) = ( 1) 3 + (3 ) 10 = 3 + 10 = 13 La suma inferior es: s ( P) = ( 1) 1+

Más detalles

INECUACIONES Y SISTEMAS

INECUACIONES Y SISTEMAS www.matesronda.net José A. Jiménez Nieto INECUACIONES Y SISTEMAS. DESIGUALDADES E INECUACIONES En todos los ámbitos encontramos epresiones numéricas o algebraicas que hacen referencia a la desigualdad

Más detalles

Introducción a las funciones

Introducción a las funciones INTRODUCCIÓN A LAS FUNCIONES CONCEPTOS BÁSICOS. DOMINIOS. RECTAS. PARÁBOLAS. INTERSEC- CIONES CON LOS EJES, MONOTONÍA. CURVATURA. 1. CONCEPTO DE FUNCIÓN. DEFINICIONES BÁSICAS. Función es una relación entre

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

Tema 10 Aplicaciones de la derivada

Tema 10 Aplicaciones de la derivada Tema 10 Aplicaciones de la derivada 1. Recta tangente. Dada la parábola y se traza la cuerda que une los puntos de la parábola de abscisas = 1 y = 3. Halla la ecuación de la recta tangente a la parábola

Más detalles

a) Se representa gráficamente la recta que define la igualdad, dando dos valores cualesquiera, por ejemplo 6 2

a) Se representa gráficamente la recta que define la igualdad, dando dos valores cualesquiera, por ejemplo 6 2 Bloque 6. Programación Lineal Ejercicios resueltos 6.-1 Resolver las siguientes inecuaciones: x y a) x+ 2y 6; b) 2x y< 5; c) 3x+ 2y + 5 2 a) Se representa gráficamente la recta que define la igualdad,

Más detalles

Ecuaciones inecuaciones

Ecuaciones inecuaciones 4 Ecuaciones e inecuaciones LECTURA INICIAL ESQUEMA INTERNET ACTIVIDAD En muchas ocasiones el modelo óptimo se consigue mediante sistemas de ecuaciones. Adivina números Busca en la web Adivina números

Más detalles

Las soluciones son los valores que deben tomar las letras para que la igualdad sea cierta.

Las soluciones son los valores que deben tomar las letras para que la igualdad sea cierta. TEMA ECUACIONES, INECUACIONES Y SISTEMAS- 1. ECUACIONES Una ecuación es una igualdad matemática entre dos epresiones algebraicas, denominadas miembros, en las que aparecen valores conocidos o datos, desconocidos

Más detalles

4º ESO ACADÉMICAS INECUACIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa INECUACIONES

4º ESO ACADÉMICAS INECUACIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa INECUACIONES INECUACIONES.- DESIGUALDADES E INECUACIONES Mientras que en una ecuación se trata de buscar el valor que hace que sean iguales dos epresiones algebraicas, en las inecuaciones intentamos localizar los valores

Más detalles

IES Fernando de Herrera Curso 2017 / 18 Tercer trimestre Observación evaluable escrita nº 1 1º Bach C-T NOMBRE:

IES Fernando de Herrera Curso 2017 / 18 Tercer trimestre Observación evaluable escrita nº 1 1º Bach C-T NOMBRE: IES Fernando de Herrera Curso 017 / 18 Tercer trimestre Observación evaluable escrita nº 1 1º Bach C-T NOMBRE: Instrucciones: 1) Todos los folios deben tener el nombre y estar numerados en la parte superior.

Más detalles

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...

Más detalles

Departamento de Matemáticas http://matematicasiestiernogalvancom 1 Desigualdades e inecuaciones de primer grado Hemos visto ecuaciones de 1º y º grados, en los cuales el número de soluciones era siempre

Más detalles

x 3 si 10 <x 6; x si x>6;

x 3 si 10 <x 6; x si x>6; CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000 A Primer parcial + 1 +8 1 a Trace su gráfica b Determine su dominio, rango y raíces Sean si 10 < 6; f

Más detalles

Ecuaciones de primer grado y de segundo grado

Ecuaciones de primer grado y de segundo grado Ecuaciones de primer grado y de segundo grado La forma reducida de una ecuación de primer grado con una incógnita es una igualdad del tipo a b, donde a y b son números reales con a. Para resolverla despejamos

Más detalles

EJERCICIOS ECUACIONES E INECUACIONES

EJERCICIOS ECUACIONES E INECUACIONES EJERCICIOS ECUACIONES E INECUACIONES Ejercicio nº.- Halla las soluciones de las siguientes ecuaciones: a) b) a) b) Cambio: z z z z z Dos soluciones:, z z (no vale) Ejercicio nº.- Resuelve: a) b) a) Comprobación:

Más detalles

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos 64 TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión. Dada la función

Más detalles

EJERCICIOS RESUELTOS DE INECUACIONES

EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES 1. Resolver las inecuaciones: a) 3-8 - 7 b) 6-5 > 1-10 a) Para resolver la inecuación, se pasan los términos con al primer miembro y los independientes al segundo quedando

Más detalles

Experimentación con Descartes na Aula. Galicia 2008

Experimentación con Descartes na Aula. Galicia 2008 Experimentación con Descartes na Aula. Galicia 2008 Follas de traballo Se traballará coas páxinas web da unidade á vez que se completan as follas de traballo, e se realizarán as actividades propostas que

Más detalles

L O G A R I T M O S, E C U A C I O N E S E I N E C U A C I O N E S

L O G A R I T M O S, E C U A C I O N E S E I N E C U A C I O N E S L O G A R I T M O S, E C U A C I O N E S E I N E C U A C I O N E S. L O G A R I T M O S En los cálculos con potencias se pueden dar situaciones en las que se conozcan la base de la potencia y el resultado,

Más detalles

La forma de una ecuación de primer grado puede ser de la siguiente:

La forma de una ecuación de primer grado puede ser de la siguiente: Primer Grado La forma de una ecuación de primer grado puede ser de la siguiente: a b a b a b a b La solución de una inecuación no va a ser un número concreto, sino un intervalo, es por lo que, debemos

Más detalles

PROPUESTA A. 2. Se pide:

PROPUESTA A. 2. Se pide: . Dada la ecuación matricial 6 X X A B PROPUESTA A a) Resuelve matricialmente la ecuación. (.5 puntos) b) Si A, calcula la matri X que cumple A X I, donde I es la matri identidad de 5 orden. (.5 puntos).

Más detalles

TEMA 7 : FUNCIONES. Ejercicio: Justifica por qué los diagramas anteriores no representan funciones.

TEMA 7 : FUNCIONES. Ejercicio: Justifica por qué los diagramas anteriores no representan funciones. . CONCEPTO DE FUNCIÓN TEMA 7 : Observa los siguientes ejemplos: El precio de una llamada telefónica depende de su duración. El espacio que recorre un móvil con movimiento uniforme depende del tiempo invertido.

Más detalles

TEMA 6 ECUACIONES E INECUACIONES

TEMA 6 ECUACIONES E INECUACIONES 6.1 Ecuación. Soluciones TEMA 6 ECUACINES E INECUACINES Ejemplo Resuelve por tanteo las siguientes ecuaciones. 1. x 1 7 La solución es x, pues de esa forma al sustituir nos queda: 1 1 7. x 1 5 La solución

Más detalles

TEMA 7. Representación gráfica de funciones y Optimización Problemas Resueltos

TEMA 7. Representación gráfica de funciones y Optimización Problemas Resueltos Matemáticas Aplicadas a las Ciencias Sociales II. Soluciones de los problemas propuestos. Tema 7 TEMA 7. Representación gráfica de funciones y Optimización Problemas Resueltos Crecimiento y decrecimiento.

Más detalles

Estudio y gráficas de funciones

Estudio y gráficas de funciones PROBLEMAS RESUELTOS DE SELECTIVIDAD DE ESTUDIO Y GRÁFICAS DE FUNCIONES ) Sea f: R R la función definida por f() ( ) e. a) Halla las asíntotas de la gráfica de f. A.H. Hay que calcular ( ) e. Pero como

Más detalles

IES Fernando de Herrera Curso 2012 / 13 Primer examen Segundo trimestre 2º Bach CCSS Enero de 2013 NOMBRE:

IES Fernando de Herrera Curso 2012 / 13 Primer examen Segundo trimestre 2º Bach CCSS Enero de 2013 NOMBRE: IES Fernando de Herrera Curso 01 / 1 Primer eamen Segundo trimestre º Bach CCSS Enero de 01 NOMBRE: 1) Sea la función f : R R definida mediante: ( puntos) e si 0 f() 1 si 0 a) Estudiar la continuidad y

Más detalles

Unidad 12 Aplicaciones de las derivadas

Unidad 12 Aplicaciones de las derivadas Unidad 1 Aplicaciones de las derivadas 4 SOLUCIONES 1. La tabla queda: Funciones Estrictamente Creciente Estrictamente Decreciente f( ) 4,,+ = ( ) ( ) 3 = + (,0) (, + ) (0,) f( ) 3 5 f( ) = 5 + 3 R 3 f(

Más detalles

Inecuaciones. Inecuaciones polinómicas de 1º grado, con una incógnita. Estas inecuaciones, se pueden llegar a escribir de la forma:

Inecuaciones. Inecuaciones polinómicas de 1º grado, con una incógnita. Estas inecuaciones, se pueden llegar a escribir de la forma: Inecuaciones Una inecuación es una desigualdad matemática que presenta al menos una variable en alguno de sus miembros, por eso también se le conoce como desigualdad algebraica. Los signos de desigualdad

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Parciales Matemática CBC Parciales Resueltos - Exapuni.

Parciales Matemática CBC Parciales Resueltos - Exapuni. Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre

Más detalles

Fundamentos matemáticos. Tema 1 Números reales. Polinomios

Fundamentos matemáticos. Tema 1 Números reales. Polinomios Grado en Ingeniería agrícola y del medio rural Tema 1 Números reales. Polinomios José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2017 Licencia Creative

Más detalles

Continuidad y Derivabilidad PROBLEMAS RESUELTOS DE CONTINUIDAD Y DERIVABILIDAD

Continuidad y Derivabilidad PROBLEMAS RESUELTOS DE CONTINUIDAD Y DERIVABILIDAD PROBLEMAS RESUELTOS DE CONTINUIDAD Y DERIVABILIDAD ) Conderar la función f : (, ) R definida por: a 6 f() 5 a) Determinar el valor de a sabiendo que f es continua (y que a > ). Vamos a comprobar que el

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

PROPUESTA A., se pide: a) Calcula las asíntotas verticales y oblicuas de f(x). (1,25 puntos)

PROPUESTA A., se pide: a) Calcula las asíntotas verticales y oblicuas de f(x). (1,25 puntos) PROPUEST. Dada la función f ( ), se pide: a) Calcula las asíntotas verticales y oblicuas de f(). (, puntos) b) Coordenadas de los máimos y mínimos relativos de f(). (, puntos). Calcula las siguientes integrales:

Más detalles

2 = ( ) = con vértice en (0, 3) y cortes con el. Tomando la parte continua de cada una de ellas se obtiene la grafica de la función.

2 = ( ) = con vértice en (0, 3) y cortes con el. Tomando la parte continua de cada una de ellas se obtiene la grafica de la función. Septiembre. Ejercicio B. Puntuación máima: puntos) Se considera la función real de variable real definida por: a si f ) Ln ) si > b) Represéntese gráficamente la función para el caso a. Nota: Ln denota

Más detalles

Problemas de continuidad y límites resueltos

Problemas de continuidad y límites resueltos Problemas de continuidad y límites resueltos Razona de manera justificada el dominio de la siguientes funciones. a) f ()=ln( ) b) f ()= ( )( 3) c) f ()= cos( ) a) La raíz cuadrada solo admite discriminantes

Más detalles

Inecuaciones en. Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas. Propiedades de las desigualdades:

Inecuaciones en. Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas. Propiedades de las desigualdades: Inecuaciones en Introducción Desigualdad: se llama desigualdad a toda relación entre epresiones numéricas o algebraicas unidas por uno de los cuatro signos de desigualdad,,,, Por ejemplo: 6 ; ; 8, etc....

Más detalles