Algoritmo para Calcular Logaritmos
|
|
|
- Sandra Gil Cordero
- hace 9 años
- Vistas:
Transcripción
1 Algoritmo para Calcular Logaritmos José Acevedo Jiménez Santiago, Rep. Dom. Calcular el logaritmo de un número hoy día es tarea sencilla, el uso de tablas y reglas para calcular el valor de los mismos es cosa del pasado. Gracias a las computadoras podemos obtener logaritmos con una precisión antes no imaginada, entonces cabe preguntarnos: De qué sirve un algoritmo que calcule logaritmos si ya existen métodos para calcularlos de forma efectiva? La respuesta la dejo abierta al lector, mas quiero expresar mi opinión sobre la misma, muchos pueden estar pensando: para qué reinventar la rueda? Pues bien mis queridos amigos, no se trata de reinventarla sino de perfeccionarla, agregarle algún valor, si la primera rueda fue de superficie regular, alguien pensó que podía agregarle valor adicionándole ranuras, creo en esa filosofía, la de mejorar lo existente. Basado en esa filosofía y con la creencia firme de que todo puede ser expresado de una forma sencilla, la llevamos a la práctica al crear un algoritmo que permite calcular logaritmos de una manera fácil. En secundaria nos enseñaron a calcular los logaritmos de números cuyos resultados son enteros, ejemplo: Para encontrar el logaritmo en base 10 de 1000 sólo tenemos que descomponer el 1000 de la siguiente forma:
2 Es decir que 10 3 = 1000, como el logaritmo es la operación inversa a la potenciación tendremos que: Log1000 = 3. queremos encontrar el logaritmo en base 2 de 16, también resulta bastante sencillo ya que 16 = 2 4. empre que podamos expresar un número como potencia entera de otro número nos resultará sencillo encontrar el logaritmo (en base de la potencia dada) de dicho número. Para recordar: Un logaritmo se compone de dos partes, la característica (parte entera del logaritmo) y la mantisa (parte decimal). Log 35 = Característica Mantisa Conocer la característica de un logaritmo es bastante sencillo, basta con rodar el punto decimal hacia la izquierda del número dado hasta obtener otro número menor que la base del logaritmo, en el caso del ejemplo mostrado la característica es igual a 1 ya que sólo tenemos que rodar hacia la izquierda el punto decimal una posición para obtener un número menor que la base (en este caso igual a 10) del logaritmo. En otras palabras lo que hicimos fue dividir el número dado entre la base del logaritmo, hasta obtener otro número menor que la base.
3 Ejemplos: a) = = = < 10 C1235 = 3 b) = = = = = 1 1 < 10 C = 5 la base del logaritmo es igual a 2, Cual es la característica(c) de los siguientes números? a) = = = < 2 C15 = 3 b) = = = = = = =
4 < 2 C250 = 7 Como ya dijimos, un logaritmo se compone de dos partes, la característica es cosa fácil de hallar, pero que hay de la mantisa, cómo hacemos para encontrarla? Una vez encontrada la característica del logaritmo, procedemos a buscar la mantisa de la siguiente manera: Anteriormente vimos que la característica de 1235 es igual a 3, en base del logaritmo igual a 10, y lo desarrollamos de la siguiente manera: = = = < 10 C1235 = 3 El primer paso para encontrar la mantisa es tomar el último resultado (1.235) de las divisiones antes efectuadas y elevarlo a la décima potencia (base del sistema decimal usado, si quisiéramos expresar nuestra mantisa en otro sistema numérico, el binario por ejemplo, entonces elevaríamos el número a la segunda potencia, y así para cada caso dependiendo de la base del sistema numérico empleado) = Efectuado este paso, procederemos a desarrollar la operación de división, tal como se hizo para conseguir la característica, hasta obtener un número menor que la base del logaritmo < 10 M1235 = 0.0 Como es menor que 10, no podemos efectuar la división por lo que el primer dígito de la mantisa (M) es igual a cero.
5 Una vez obtenido el menor de los números, tomamos dicho número y lo elevamos a la décima potencia, debemos tener presente que el exponente 10 nos lo da la base del sistema numérico y no debe ser confundido con la base del logaritmo que coinciden en este ejemplo = Para obtener el segundo dígito de la mantisa procederemos a desarrollar la operación de división, hasta obtener un número menor que la base del logaritmo = = = = = = = = = < 10 M1235 = 0.09 Tomamos el menor de los números obtenidos y lo elevamos a la décima potencia, para conseguir el tercer dígito de la mantisa = Para obtener el tercer dígito de la mantisa procederemos a desarrollar la operación de división, hasta obtener un número menor que la base del logaritmo = < 10 M1235 = 0.091
6 Una vez más tomamos el menor de los números obtenidos y lo elevamos a la décima potencia = Para obtener el cuarto dígito de la mantisa procederemos a desarrollar la operación de división a partir del resultado obtenido, hasta conseguir un número menor que la base del logaritmo = = = = = = < 10 M1235 = Realizando este proceso de elevar y dividir, hemos conseguido una mantisa de cuatro cifras, después del punto decimal. Para obtener un resultado más preciso, sólo tenemos que seguir el proceso mostrado una y otra vez hasta conseguir una mantisa con la precisión deseada. han sido buenos observadores, entonces habrán notado que se han tomado los números con una considerable cantidad de dígitos después del punto decimal, esto es importante si queremos conseguir resultados precisos, aunque para nuestro caso no es necesario usar cantidades tan exactas, ya que a modo de ilustración sólo nos ha interesado una mantisa de cuatro cifras decimales. Una forma de comprender mejor lo expuesto es a través del siguiente diagrama de flujo:
7 Diagrama de flujo (Cálculo de logaritmos) Inicio Número(N) Base Log. (B) Div. (D) = N N = N -1 N > B N < 1 D = D/B Div. menor = D Cuenta Div. Efect. (CDE) Borrar CDE 1 D B Característica = CDE
8 1 D = 1 D = D 10 E = D Característica (Caract) Fin D > B Borrar Cuenta (C) Mult. Var. K por 10 (K = 1) E = E/B Cuenta Caract. = (Caract + C/ K) Borrar C E B E = 1 Parar D = E
9 Aplicando el algoritmo de cálculo de logaritmos, encuentre el logaritmo común de 25. Usar sistema de numeración binario = < 10 C25 = = < 10 M25 = = = < 10 M25 = = = < 10 M25 = = < 10 M25 = = < 10 M25 = = = < 10 M25 = Log 25 (base decimal) = (base binaria) ta: Sólo la mantisa queda expresada en el sistema numérico usado (binario en este caso), el valor de la característica debe ser convertido al sistema numérico utilizado.
OPERAR CON POTENCIAS: MULTIPLICACIÓN, DIVISIÓN Y POTENCIA DE POTENCIA
OPERAR CON POTENCIAS: MULTIPLICACIÓN, DIVISIÓN Y POTENCIA DE POTENCIA OBJETIVO MULTIPLICACIÓN DE POTENCIAS Como las potencias son multiplicaciones, se va a trabajar con ellas cuando multiplicamos o dividimos:
Conjunto de Números Racionales.
Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números
Introducción a los Sistemas Digitales. Conceptos básicos de matemática aplicada a los sistemas digitales
Curso-0 1 Introducción a los Sistemas Digitales Conceptos básicos de matemática aplicada a los sistemas digitales 2 Contenidos Conjuntos numéricos Notación científica Redondeo Logaritmos Resumen 3 Conjuntos
OCW-V.Muto Sistemas de numeración Cap. III CAPITULO III. SISTEMAS DE NUMERACION 1. REPRESENTACION DE LA INFORMACION
CAPITULO III. SISTEMAS DE NUMERACION 1. REPRESENTACION DE LA INFORMACION El sistema de numeración usado habitualmente es el decimal, de base 10, que no es adecuado para ser manejado por el ordenador, fundamentalmente
SISTEMAS DE NUMERACIÓN
SISTEMAS DE NUMERACIÓN Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. En un sistema de numeración posicional la norma principal es que un mismo símbolo
TEMA 1. Los números enteros. Matemáticas
1 Introducción En esta unidad veremos propiedades de los números enteros, como se opera con ellos (con y sin calculadora), los números primos, máximo común divisor y mínimo común múltiplo y por últimos
Unidad didáctica 1. Operaciones básicas con números enteros
Unidad didáctica 1 Operaciones básicas con números enteros 1.- Representación y ordenación de números enteros. Para representar números enteros en una recta hay que seguir estos pasos: a) Se dibuja una
Capítulo 5. Operaciones Básicas División
Capítulo Operaciones Básicas División División Tercer Nivel de Abstracción Concepto de división La división es la operación inversa de la multiplicación. En la multiplicación agrupamos o sumamos los cuadritos
Universidad de San Buenaventura - Facultad de Ingeniería
Aproximaciones Para trabajar con números decimales que tienen muchas cifras decimales, o infinitas, hacemos aproximaciones. Decimos que la aproximación de un número es por defecto cuando es menor que el
CAPÍTULO II SISTEMAS NUMÉRICOS. Este método de representar los números se llama sistema de numeración decimal, donde 10 es la base del sistema.
CIENCIAS DE LA COMPUTACIÓN MAT 1104 12 CAPÍTULO II SISTEMAS NUMÉRICOS 2.1 INTRODUCCIÓN Los números usados en Aritmética están expresados por medio de múltiplos o potencias de 10; por ejemplo: 8654= 8*10
EXAMEN DE PENDIENTES PRIMER PARCIAL MATEMÁTICAS DE 1º DE ESO
EXAMEN DE PENDIENTES PRIMER PARCIAL MATEMÁTICAS DE 1º DE ESO 1.- NÚMEROS NATURALES *Los números naturales. *El sistema de numeración decimal. Cifras y orden de las cifras. *Cardinal y ordinal. *Operación
Tema 1: Otros tipos de ecuaciones. En este tema trataremos otras ecuaciones distintas a las de primer y segundo grado.
Tema 1: Otros tipos de ecuaciones En este tema trataremos otras ecuaciones distintas a las de primer y segundo grado. Ecuaciones polinómicas Caso general: son las formadas por un polinomio igualado a cero.
SGUICES023MT21-A16V1. SOLUCIONARIO Logaritmos
SGUICES0MT1-A16V1 SOLUCIONARIO Logaritmos 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Logaritmos Ítem Alternativa 1 A B A E ASE A 6 C 7 B 8 E 9 B 10 A 11 D 1 B 1 E 1 C 1 D 16 E Comprensión 17 E 18 C 19 C 0 C ASE
MATEMATICA GRADO 9 II PERIODO PROF. LIC. ESP. BLANCA NIEVES CASTILLO R. CORREO: cel
GUIA DE TEORIA NO. 1 LO QUE DEBO SABER Regla de Cramer Un sistema de ecuaciones lineales se dice de Cramer cuando cumple las siguientes condiciones: Es un sistema cuadrado, con igual número de ecuaciones
Sistemas de numeración
platea.pntic.mec.es Autor: Luis González SISTEMAS DE NUMERACIÓN binario, octal y hexadecimal Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar
SISTEMAS NUMÉRICOS. Conocer los diferentes sistemas numéricos y su importancia en la informática y la computación
SISTEMAS NUMÉRICOS OBJETIVO GENERAL Conocer los diferentes sistemas numéricos y su importancia en la informática y la computación OBJETIVOS ESPECÍFICOS Distinguir los sistemas de numeración Identificar
5 centenas + 2 decenas + 8 unidades, es decir: = 528
Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan
Universidad De San Buenaventura CALI Guía de Métodos Numéricos Ingeniería Multimedia
CONVERSIÓN DE UN NÚMERO DECIMAL A BINARIO, OCTAL Y HEXADECIMAL El sistema numérico de mayor utilización en el mundo, es el de base decimal, el cual está conformado de 10 dígitos entre el 0 y el 9 que son
Informatic/ejercicios_r... Videos Tutoriales Pulse aquí sino puede mirar este video
1 de 22 26/03/2012 23:13 Ejercicios Resueltos: Videos Tutoriales Clic en las imágenes para ver los videos Pulse aquí sino puede mirar este video 2 de 22 26/03/2012 23:13 TRANSFORMACIÓN DE BINARIO A DECIMAL
RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a
UD : Los números reales RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a (que es lo mismo que decir que a b si
Criterios de divisibilidad y Congruencias
Criterios de divisibilidad y Congruencias Rafael F. Isaacs G. * Fecha: 9 de marzo de 2007 Cuando tenemos un número muy grande escrito en base 10 y deseamos saber si es múltiplo por ejemplo de 9 no necesitamos
2 Números racionales
008 _ 0-000.qxd 9//08 9:06 Página Números racionales INTRODUCCIÓN Los conceptos que se estudian en esta unidad ya han sido tratados en cursos anteriores. A pesar de ello, es importante volverlos a repasar,
Numeración Maya Un sistema posicional de base 20
Numeración Maya Un sistema posicional de base Edgar Anibal Cifuentes Anléu Departamento de Física Universidad de San Carlos de Guatemala Enero de,6. La notación posicional del sistema decimal El sistema
I.E.S Santo Domingo. Departamento Informática. Tema 1 Los Sistemas de Numeración. José Luis Mollinedo Jiménez
I.E.S Santo Domingo Departamento Informática Tema 1 Los Sistemas de Numeración José Luis Mollinedo Jiménez El Ejido - 6 de mayo de 2012 Página:2 Índice 1. Denición 2 2. Ejemplos 2 3. Clasicación 2 3.1.
BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS
Bloque V. Control y programación de sistemas automáticos pág. 1 Bloque V. Control y programación de sistemas automáticos pág. 2 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN
BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS
Bloque V. Control y programación de sistemas automáticos pág. 1 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN BINARIA 1.1. Sistemas de numeración y códigos Def. Sistema de
RADICACIÓN EN LOS REALES
RADICACIÓN EN LOS REALES La raíz n ésima de un número real es otro número real tal que: n a b si y solo si b n Donde el signo se llama radical, n es el índice, a es el radicando y b es la raíz. En la radicación
DIVISIBILIDAD NÚMEROS NATURALES
DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar
PLAN DE REFUERZO NOMBRE ESTUDIANTE: Nº
COLEGIO BETHLEMITAS PLAN DE REFUERZO Fecha: Dia 01 Mes 04 Año 2016 META DE COMPRENSIÓN: Desarrolla comprensión acerca de la evolución histórica de los sistemas de numeración, para ubicar dentro de ellos
Aritmética del Computador
Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Métodos Numéricos Contenido 1 Introducción 2 Teoria de Errores 3 Aritmetica del computador Introducción al estudio de métodos computacionales
Aritmética de Enteros y
1 Aritmética de Enteros y Flotantes 2013 Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas 2 1. Introduccion La aritmética de enteros es aritmética modular en complemento
ING. PEDRO ALBERTO ARIAS QUINTERO
ING. PEDRO ALBERTO ARIAS QUINTERO La mayor parte de esos usuarios del computador no consideran de primer interés a la computación como medio de cálculo con números. En realidad lo que más se utiliza es
REPASO ALGEBRA ELEMENTAL
REPASO ALGEBRA ELEMENTAL OPERACIONES MATEMÁTICAS POR: DRA. KARILUZ DÁVILA DÍAZ Operaciones matemáticas comunes Operaciones matemáticas comunes que se utilizan en el curso de Química General son: Operación
UNIDAD DE APRENDIZAJE II
UNIDAD DE APRENDIZAJE II NÚMEROS RACIONALES Jerarquía de Operaciones En matemáticas una operación es una acción realizada sobre un número (en el caso de la raíz y potencia) o donde se involucran dos números
TEMA 1. Números Reales. Teoría. Matemáticas
1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo
Bloque 1. Aritmética y Álgebra
Bloque 1. Aritmética y Álgebra Los números naturales Los números naturales Los números naturales se definen como: N = { 0,1, 2, 3, 4, 5,...,64, 65, 66,...,1639,1640,1641,1642,... } El sistema de numeración
IES DIONISIO AGUADO LA FUNCION LOGARITMO
LA FUNCION LOGARITMO En tu calculadora hay dos teclas que todavía no has usado, son las designadas por y Ln. Si haces 00 el resultado es, si haces 000 el resultado es, si haces el resultado es 0, si haces
Tema 2. Sistemas de representación de la información
Enunciados de problemas Tema 2. Sistemas de representación de la información Estructura de Computadores I. T. Informática de Gestión / Sistemas Curso 2008-2009 Tema 2: Hoja: 2 / 26 Tema 2: Hoja: 3 / 26
REPASO DE Nºs REALES y RADICALES
REPASO DE Nºs REALES y RADICALES 1º.- Introducción. Números Reales. Números Naturales Los números naturales son el 0, 1,,,. Hay infinitos naturales, es decir, podemos encontrar un natural tan grande como
OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios
OPERACIONES CON MONOMIOS Y POLINOMIOS Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de
Lección 5. Punto flotante
Lección 5. Punto flotante MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Agosto 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida En esta lección aprenderemos lo
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA :
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS NOTA DOCENTE: HUGO BEDOYA TIPO DE GUIA: CONCEPTUAL PERIODO: GRADO FECHA N DURACION 2 7 ABRIL 10 /2015 UNIDADES
GENERALIDADES SOBRE SISTEMAS NUMÉRICOS. Transversal Programación Básica
GENERALIDADES SOBRE SISTEMAS NUMÉRICOS Transversal Programación Básica CONTENIDO I N T R O D U C C I Ó N... 2 1. S O B R E L O S S I S T E M A S N U M É R I C O S... 2 1.1. VALORES POSICIONALES... 2 2.
Sistemas Numéricos Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas
1 Sistemas Numéricos 2013 Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas 2 Introducción Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar
Propiedades de las Funciones Exponenciales
Propiedades de las Funciones Exponenciales Definición: La expresión significa que se multiplica a sí misma un número de veces, se conoce como la base y como el exponente; y se denomina potencia al valor
COMPETENCIA S Y OBJETIVOS DE M A T E M ÁTICAS DE SEXTO
1 CONSEJERÍA DE EDUCACIÓN CEIP EL ZARGAL C/ Zargal s/n; 18190 CENES DE LA VEGA Telfs. 958893177-78 ; FAX 958893179 [email protected] COMPETENCIA S Y DE M A T E M ÁTICAS DE SEXTO ÍNDICE
Introducción al análisis numérico
Introducción al análisis numérico Javier Segura Universidad de Cantabria Cálculo Numérico I. Tema 1 Javier Segura (Universidad de Cantabria) Introducción al análisis numérico CNI 1 / 22 Contenidos: 1 Sistemas
Objetivos. Antes de empezar
Objetivos En esta quincena aprenderás a: Saber si un número es múltiplo de otro. Reconocer las divisiones exactas. Hallar todos los divisores de un número. Reconocer los números primos. Descomponer un
TEMA II: SISTEMAS DE NUMERACIÓN
2012 UNAN LEÓN Departamento de Computación Autor: Ing: Karina Esquivel Alvarado. Asignatura: FUNDAMENTOS DE INFORMÁTICA TEMA II: SISTEMAS DE NUMERACIÓN 2.1 INTRODUCCIÓN: TEMA 2: SISTEMAS DE NUMERACIÓN
Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 1º Año Ciclo Básico de Secundaria Teoría Nº 2 Segundo Trimestre
CONJUNTO DE LOS NÚMEROS ENTEROS Los números enteros están formados por: los números naturales (o enteros positivos y el cero) y los números negativos. El cero no tiene signo, no es ni positivo ni negativo.
UNIDAD 1 CONCEPTOS BÁSICOS. Números naturales, Números enteros, Números racionales, números irracionales y números reales. Dr. Daniel Tapia Sánchez
UNIDAD 1 CONCEPTOS BÁSICOS Números naturales, Números enteros, Números racionales, números irracionales y números reales Dr. Daniel Tapia Sánchez 1.1 Números Naturales (N) 1.1.1 Consecutividad numérica
TEMA 1. Números Reales. Teoría. Matemáticas
1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo
Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca
Tema Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca.1 De las siguientes operaciones, cuál no permite operar cualquier par de números naturales para obtener un resultado natural? a) La suma.
ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I
ARITMÉTICA 1. Números naturales 2. Divisibilidad 3. Números enteros 4. Números decimales 5. Fracciones y números racionales 6. Proporcionalidad 7. Sistema métrico decimal 8. Sistema sexagesimal 9. Números
OPEN KNOWLEDGE CURSO DE METODOS NUMERICOS
OPEN KNOWLEDGE CURSO DE METODOS NUMERICOS Juan F. Dorado Diego F. López Laura B. Medina Juan P. Narvaez Roger Pino Universidad de San Buenaventura, seccional Cali OPEN KNOWLEDEGE CURSO DE METODOS NUMERICOS
Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA
Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA * Se distinguen con negrita en el texto. ESTÁNDAR DE CONTENIDO Y DESEMPEÑO Nº 1 Conocer la estructura
REPRESENTACION DE LA INFORMACION
ANEXO. Fundamentos Computadores I. Telecomunicación. Primer curso REPRESENTACION DE LA INFORMACION Fundamentos de Computadores. Departamento de Automática Dpto. Automática. Fundamentos de computadores.
Tema 2. Sistemas de representación de la información
Tema 2. Sistemas de representación de la información Soluciones a los problemas impares Estructura de Computadores I. T. Informática de Gestión / Sistemas Curso 2008-2009 Tema 2: Hoja: 2 / 36 Tema 2: Hoja:
1. SISTEMAS DE NUMERACIÓN, REPRESENTACIÓN Y ORDENACIÓN 1.1.-UTILIDAD Los números naturales sirven para muchos usos cotidianos, tales como:
1 UNIDAD 1 1. SISTEMAS DE NUMERACIÓN, REPRESENTACIÓN Y ORDENACIÓN 1.1.-UTILIDAD Los números naturales sirven para muchos usos cotidianos, tales como: IDENTIFICAR TELÉFONOS, DNI, MATRÍCULAS, CÓDIGOS POSTALES,
SCUACAC030MT22-A16V1. SOLUCIONARIO Ejercitación Operatoria de Logaritmos
SCUACAC00MT-A6V SOLUCIONARIO Ejercitación Operatoria de Logaritmos TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN DE OPERATORIA DE LOGARITMOS Ítem Alternativa B A A 4 A 5 B 6 E ASE 7 B ASE B 9 B 0 E D
Tecnólogo en Informática Paysandú - Uruguay
Tecnólogo en Informática Paysandú - Uruguay Sistemas de Numeración Arquitectura de Computadoras (Versión 4.3-2012) 1 SISTEMAS DE NUMERACIÓN 1.1 Introducción En este capítulo expondremos brevemente (a modo
Número, algoritmo y errores
Número, algoritmo y errores Índice 1.! Introducción 2.! Errores absolutos y relativos 3.! Almacenamiento de números en un ordenador! Números enteros! Números reales 4.! Concepto de algoritmo 5.! Clasificación
POTENCIAS Y RAÍZ CUADRADA
POTENCIAS Y RAÍZ CUADRADA 1. POTENCIAS. 1.1. CONCEPTO DE POTENCIA. ELEMENTOS. Una potencia es un producto de factores iguales. Las potencias están formadas por: Base: factor que se repite. Exponente: número
Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.
Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos
Tema 1: Conceptos generales del Análisis Numérico
Tema 1: Conceptos generales del Análisis Numérico Asignatura: Cálculo Numérico I 1er. curso Grado en Matemáticas Anna Doubova Dpto. EDAN, Universidad de Sevilla 5 de febrero de 2018 A. Doubova (Dpto. EDAN)
Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:
1 CONOCIMIENTOS PREVIOS. 1 Logaritmos. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Operaciones básicas con números reales. Propiedades de
TEMA 1 NÚMEROS NATURALES
TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado
Tema 1: Números reales.
Tema 1: Números reales. Ejercicio 1. Hallar el valor absoluto de: a) 7,4 b) 0 c) -5,87 d) raíces cuadradas de 9 e) 1 3 Solución: a) 7,4 7, 4 1. Hacemos clic en la pestaña operaciones y seleccionamos el
3º ESO PMAR NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa NÚMEROS REALES
º ESO PMAR NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. NÚMEROS REALES.- NÚMEROS RACIONALES Los números racionales son lo que habitualmente conocemos como fracciones. Un número racional o fracción está
Introducción al sistema binario. El bit (dígito binario)
Introducción al sistema binario A finales de la década de 1930, Claude Shannon mostró que utilizando interruptores que se encontraban cerrados para "verdadero" y abiertos para "falso", se podían llevar
APUNTES DOCENTES ASIGNATURA: ANALISIS NUMERICO ASIGNATURA: ANALISIS NUMERICO UNIDADES TECNOLÓGICAS DE SANTANDER
APUNTES DOCENTES ASIGNATURA: ANALISIS NUMERICO ASIGNATURA: ANALISIS NUMERICO PROFESOR: ESP. PEDRO ALBERTO ARIAS QUINTERO 1. ERRORES Y ARITMETICA DE PUNTO FLOTANTE 1.1. Introducción a la Computación Numérica
Ejercicio Reto. Potenciación. ENCUENTRO # 7 TEMA: Propiedades de las potencias CONTENIDOS: 1. Potenciación. Cálculo de potencias.
ENCUENTRO # 7 TEMA: Propiedades de las potencias CONTENIDOS:. Potenciación. Cálculo de potencias. 2. Propiedades de las potencias de exponente entero. 3. notación científica. DESARROLLO Ejercicio Reto.
Procedimiento para usar la Tabla 1 (Tabla de Logaritmos)
Procedimiento para usar la Tabla 1 (Tabla de Logaritmos) Ejercicio: Escribe en el espacio correspondiente el nombre de cada una de las partes de un logaritmo (sugerencia, leer módulo 11 del libro de texto):
Capítulo 4. Operaciones Básicas Multiplicación
Capítulo Operaciones Básicas Multiplicación Multiplicación Segundo Nivel de Abstracción Concepto de multiplicación Multiplicar significa sumar en forma rápida las unidades de área (cuadritos) que hay dentro
Un sistema de numeración está compuesto por el conjunto de símbolos y reglas que se utilizan para representar cantidades.
Repaso Sistemas Numéricos Un sistema de numeración está compuesto por el conjunto de símbolos y reglas que se utilizan para representar cantidades. A la cantidad de símbolos, que componen dicho conjunto,
Programación y Métodos Numéricos Errores de de redondeo en en la la representación de de números reales: EXPRESIÓN DE NÚMEROS EN BASE 2
Programación y Métodos Numéricos Errores de de redondeo en en la la representación de de números reales: EXPRESIÓN DE NÚMEROS EN BASE 2 Arturo Hidalgo LópezL Alfredo López L Benito Carlos Conde LázaroL
Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta
Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 1 Representación de la Información
1. NUMEROS REALES a. Los Números Reales
1. NUMEROS REALES a. Los Números Reales Los números reales comprenden todo el campo de números que utilizamos en las matemáticas, a excepción de los números complejos que veremos en capítulos superiores.
Operatoria con Potencias y Raíces
PreUnAB Clase # 3 Junio 2014 Definición Se llama potencia a una expresiń de la forma, donde a es la base y n es el exponente. Potencia de Exponente Entero a n = a a a... a Cuando el exponente es un número
TEMA 1: DIVISIBILIDAD Y NÚMEROS ENTEROS.
TEMA : DIVISIBILIDAD Y NÚMEROS ENTEROS.. La relación de divisibilidad Ejemplos de multiplos y divisores: Determina si las siguientes parejas de números son múltiplos o divisores: a) 5 y 25 Lo primero será
Resolución de ecuaciones no lineales y Método de Bisección
Resolución de ecuaciones no lineales y Método de Bisección Recordemos algunas ecuaciones 1) Resolver [ ] [ ] Sol: 2) Resolver la siguiente ecuación literal para la variable ; Sol: 3) Resolver Solución:
DIVISIBILIDAD NÚMEROS NATURALES
DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar
TEORÍA DE DIVISIBILIDAD
TEORÍA DE DIVISIBILIDAD MÚLTIPLOS Y DIVISORES.- Dados dos números naturales a y b, con a b, se dice que a es divisible por b o que a es múltiplo de b o que b es divisor de a, si la división de a : b es
UNIDAD 1: NÚMEROS NATURALES OBJETIVOS
UNIDAD 1: NÚMEROS NATURALES Realizar las operaciones con números naturales (suma, resta, multiplicación y división) y operaciones combinadas de las anteriores. Diferenciar entre división exacta y entera,
CRITERIOS EVALUACIÓN MATEMÁTICAS
CRITERIOS DE EVALUACIÓN ÁREA MATEMÁTICAS NIVEL 6º EDUCACIÓN PRIMARIA Identifica situaciones en las cuales se utilizan los números. Comprende las reglas de formación de números en el sistema de numeración
NIVELACIÓN MATEMÁTICA
NIVELACIÓN MATEMÁTICA OPERATORIA DE LOS NÚMEROS RACIONALES MAPA CONCEPTUAL: Definición Conjunto de los Números Racionales Operatoria Básica: Adición, Sustracción, Multiplicación y División Ejercicios combinados
SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: = =8245,97
SISTEMAS DE NUMERACIÓN Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. La norma principal en un sistema de numeración posicional es que un mismo símbolo
NOTACIÓN CIENTÍFICA. CIFRAS SIGNIFICATIVAS
COLEGIO INTERNACIONAL - SEK - EL CASTILLO Departamento de Ciencias APG FÍSICA I - UNIDAD I: INTRODUCCIÓN A LA FÍSICA NOTACIÓN CIENTÍFICA. CIFRAS SIGNIFICATIVAS TEMPORALIZACIÓN: SEPTIEMBRE 1,5 MÓDULOS S
Realizar la siguiente suma y expresar el resultado en hexadecimal: Teniendo los 3 valores expresados en la misma base, podemos realizar la suma:
Realizar la siguiente suma y expresar el resultado en hexadecimal: 83/ d + 33/ 4 + 0/ b El primer paso consiste en expresar todos lo valores con la misma base. Para eso convertiremos los dos primeros valores
