Recuerda lo fundamental
|
|
|
- Juan Antonio Sánchez Muñoz
- hace 9 años
- Vistas:
Transcripción
1 11 Combinatoria Recuerda lo fundamental Curso:... Fecha:... COMBINATORIA VARIACIONES CON REPETICIÓN Son las agrupaciones ordenadas de n elementos que se pueden formar a partir de m elementos distintos. Pueden repetirse e influye el orden. El número de variaciones con repetición de m elementos tomados de n en n es: VR m, n EJEMPLO: Cuántos resultados pueden salir al tirar una moneda dos veces? VR 2, 2 =... Y tres veces?... VARIACIONES Son las agrupaciones ordenadas de n elementos no repetidos que se pueden formar a partir de m elementos distintos. El número de variaciones con repetición de m elementos tomados de n en n es: V m, n EJEMPLO: De cuántas maneras 6 atletas pueden quedar primero, segundo y tercero en una carrera?... PERMUTACIONES Son las distintas formas en que se pueden ordenar los m elementos de un conjunto. El número de permutaciones de m elementos es: P m EJEMPLO: De cuántas maneras puedo colocar tres libros en una estantería, de izquierda a derecha?... COMBINACIONES Son los distintos subconjuntos de n elementos que se pueden obtener con un conjunto de m elementos. No influye el orden. No se pueden repetir. El número de combinaciones de m elementos tomados de n en n es: C m, n EJEMPLO: Cuántos tríos puedo escoger de un grupo de cinco alumnos?...
2 11 Combinatoria Ficha de trabajo A Curso:... Fecha:... 1 Cuatro equipos de fútbol-sala A, B, C, D se enfrentan entre sí, todos contra todos, en un torneo. De cuántas formas diferentes pueden quedar al final el 1.º y el 2.º? Utiliza un diagrama de árbol. 2 En una liga de 10 equipos de balonmano, de cuántas formas pueden quedar clasificados los tres primeros? En cuántas de ellas A es campeón? 3 Lanzo un tetraedro (4 caras) numerado. Cuántos resultados pueden salir? Y si lo lanzo dos veces? Y si lo lanzo tres veces? 4 Con dos colores: A (azul) y R (rojo), cuántas banderas de dos franjas verticales puedes formar? Y con tres colores para tres franjas? 5 Queremos que tres pueblos A, B, C tengan todos entre sí línea telefónica. Cuántas líneas tenemos que instalar? Y si fueran cuatro pueblos? Y si fueran diez pueblos?
3 Ficha de trabajo A APLICA. FABRICACIÓN DE YOGURES En una fábrica de yogures tienen el siguiente sistema para codificar los distintos productos que elaboran. Hay tres sabores: Natural (N), Fresa (F) y Plátano (P). Por cada sabor producen dos tipos de yogures: Entero (código 0) y Desnatado (código 1). De cada tipo fabrican dos modalidades: con cereales (código 0) y sin cereales (código 1). A su vez, pretenden utilizar dos tipos de envases: de un cuarto de litro (código 0) y de un litro (código 1). 1 Un día encontraron unas etiquetas que decían P101. A qué producto pertenecen? 2 El departamento de compras quiere saber cuántas etiquetas distintas deben elaborar para todos los productos. Puedes decírselo? 3 Han decidido fabricar otros dos sabores: Kiwi (K) y Melocotón (M). Cuántos tipos de productos lanzará ahora al mercado la empresa? 4 En el laboratorio han observado que los yogures obtenidos al mezclar dos sabores entre los cinco elaborados dan un resultado excelente. Cuántas mezclas pueden obtener?
4 11 Combinatoria Ficha de trabajo B Curso:... Fecha:... 1 Cinco atletas A, B, C, D, E participan en la final de los 100 m. De cuántas formas diferentes pueden llegar a meta? En cuántas de ellas sería A el 3.º? 2 En un juego de cartas, de una baraja de 40, cada jugador recibe en cada mano 5 cartas. Cuántas manos diferentes puede recibir un jugador al empezar? 3 Un entrenador de baloncesto dispone de 2 jugadores para el puesto de base, 4 para los dos puestos de aleros y 3 para los dos puestos de pívot. Cuántos equipos distintos podrá formar? 4 Sabiendo que C m, n = m, podrías encontrar, por tanteo, la solución de la igualdad 5 5 x x + 1 ( ) = ( )? ( )
5 Ficha de trabajo B APLICA. RESOLVER UN ENIGMA ES ENCONTRAR UN TESORO Vincent MacArrow dedica toda su vida a buscar un tesoro oculto. Sus pesquisas le llevan a una cripta que se abre con una cerradura formada por cinco cilindros giratorios, cada uno de ellos con los dígitos del 0 al 9 en su superficie. Solo una de las combinaciones numéricas abrirá la puerta. Sería imposible probar todas las combinaciones, pero MacArrow ha ido recorriendo medio mundo para recoger cinco pistas que, al resolverlas, le darán las cinco cifras clave para abrir la cripta. PRIMER ACERTIJO (CIFRA DE LAS DECENAS DE MILLAR) Con las letras de TESORO, tantas palabras que terminan en O menos las que empiezan en consonante, resta las cifras de la cantidad resultante. SEGUNDO ACERTIJO (CIFRA DE LAS UNIDADES DE MILLAR) Juega con dos dados y con tres ducados. Cuántos resultados tendrás? Su 48.ª parte calcularás! TERCER ACERTIJO (CIFRA DE LAS CENTENAS) Oh, dodecaedro hermoso 20 vértices estamos ni yo, ni mis 9 vecinos nos hablamos calcula 1/20 de los caminos (diagonales) que contamos! CUARTO ACERTIJO (CIFRA DE LAS DECENAS) Acuérdate de Tartaglia. Sin desarrollar combinatoria, halla x y sigue hacia la gloria QUINTO ACERTIJO (CIFRA DE LAS UNIDADES) Desde A hasta el tesoro irás. Nunca subir podrás. De cuántos caminos dispondrás? Ya tienes el número mágico? La cerradura abrirás si con sus cifras 5 2 sumaras. E 9 9 ( ) ( ) x = x + 1 A B D G C H F
6 SOLUCIONES UNIDAD 11 Ficha de trabajo A 1 De 12 formas (V 4, 2 ). 2 V 10, 3 = = 720. Fijando A en el 1.º, quedan 9 equipos para quedar 2.º y 3.º, y esto ocurrirá de V 9, 2 = 9 8 = 72 formas. 3 1 vez 8 4 resultados 2 veces = 16 3 veces = 64 4 AR, RA 8 2 banderas ABC, ACB, BAC, BCA...: P 3 = 3! = 6 5 A B AB BC C3, 2 = 3 AC C Para 4 pueblos: C 4, 2 = Para 10 pueblos: C 10, 2 = = 6 líneas = 45 líneas APLICA 1 Es un yogur de plátano, desnatado, con cereales y de un litro. 2 Para cada sabor, el total de etiquetas es VR 2, 3 = 2 3 = 8. Como hay 3 sabores, habrá, en total, 8 3 = 24 etiquetas. 3 Ahora tenemos 5 sabores. Habrá, en total, = 40 tipos de productos distintos. 4 Al mezclar dos sabores, tenemos: C 5, 2 = 10 mezclas. } Ficha de trabajo B 1 P 5 = = 120 A sería 3.º en los casos ( A ) P 4 = 24 casos V 40, 5 = = C 2,1 C 4,2 C 3,2 = 2 = 36 equipos VR 2, 3 = 2 3 = 8 mensajes k = 2, pues 2 3 APLICA 1 PRIMER ACERTIJO: Fijada una O como última letra, hay P 5 = 120 palabras que terminan en O. De estas últimas, las que empiezan por una consonante fijada son P 4 = 24. Como hay 3 consonantes, hay 24 3 = 72 palabras que empiezan por consonante. Restando: = 48 Restando cifras: 8 4 = 4. El primer número es el 4. SEGUNDO ACERTIJO: Con dos dados hay 36 resultados. Con 3 ducados hay VR 2, 3 = 8 resultados. Con los dos dados y los tres ducados hay 36 8 = 288 resultados. Por tanto, el segundo número es 288 : 48 = 6. TERCER ACERTIJO: De cada vértice salen 10 diagonales. Por tanto, en total habrá 200 diagonales. Como así contamos dos veces cada diagonal, tendremos 100 diagonales. Por tanto, el tercer número es 100/20 = 5. CUARTO ACERTIJO: 9! x! (9 x)! 9! = 8 (x + 1)! (9 x 1)! 8 (x + 1)! (9 x 1)! = x! (9 x )! 8 x + 1 = 9 x Por tanto, x = 4. ( ) = ( ). QUINTO ACERTIJO: Hay 6 caminos hasta el tesoro. Uniendo todas las soluciones, nos queda el número , que abre la cripta. Si sumamos sus cifras, nos da 25 = 5 2.
TEMA 17: PROBABILIDAD
TEMA 17: PROBABILIDAD Probabilidad de un suceso aleatorio es un numero entre 0 y 1 (más cerca del 0, mas difícil que ocurra. Más cerca del 1 más fácil que ocurra). Suceso seguro: Su probabilidad es 1.
47! 44! 3! 3. Calcula: c) ( 5 2 ) ( 5 3 ) B)PROBLEMAS MEDIANTE VARIACIONES, PERMUTACIONES Y COMBINACIONES.
Ejercicios y problemas. A) NÚMEROS FACTORIALES Y COMBINATORIOS. 1. Calcula: a) 3! b) 5! c) 7! d) 4! 2. Simplifica al máximo, a) 15! 18! b) 23! 20! c) 33! 2! 35! d) 47! 44! 3! 3. Calcula: a) ( 6 2 ) b)
Ejercicios de Combinatoria
Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: Combinatoria Capacidades/Destreza/Habilidad: Racionamiento Matemático/ Aplicación / Calcular, Resolver Valores/ Actitudes: Respeto,
3. Qué posibilidades hay de que me toquen los cuatro ases en una mano de tute?.
Capítulo 1 COMBINATORIA Previamente al estudio de la probabilidad en sí, conviene dedicar algún tiempo al repaso de las técnicas combinatorias. Recordemos que la Combinatoria es la parte de las Matemáticas
Probabilidad. Literature de ficción para níños. Literature de no ficción para níños. Literature de ficción para adultos. Otras
C APÍTULO 0 Probabilidad Resumen del contenido El Capítulo 0 presenta unos conceptos básicos de probabilidad, incluyendo clases especiales de eventos, valores esperados y permutaciones y combinaciones
1 CÁLCULO CON RADICALES. Nota: Para m = 2, es l raíz cuadrada y el 2 no se escribe.
DEFINICIÓN : 1 CÁLCULO CON RADICALES ( m 2, 3, 4,.. ) Ejemplo: Nota: Para m 2, es l raíz cuadrada y el 2 no se escribe. SIMPLIFICACIÓN DE RADICALES: Se escribe el radical en forma de potencia, se simplifica
EJERCICIOS DE VARIACIONES
EJERCICIOS DE VARIACIONES 1. Cuántos resultados distintos pueden producirse al lanzar una moneda cuatro veces al aire.. Cuántos números de cuatro cifras distintos pueden formarse con los elementos del
Normalmente usamos la palabra "combinación" descuidadamente, sin pensar en si el orden de las cosas es importante. En otras palabras:
ENCUENTRO # 43 TEMA: Permutaciones y Combinatoria Ejercicio Reto Resolver las ecuaciones: a) b) DEFINICION: Permutación y Combinaciones Qué diferencia hay? Normalmente usamos la palabra "combinación" descuidadamente,
EJERCICIOS Y PROBLEMAS DE COMBINATORIA
EJERCICIOS Y PROBLEMAS DE COMBINATORIA En estas hojas se presenta una colección variada de ejercicios y problemas de combinatoria. Los ejercicios están mezclados de forma que no se prevea si se trata de
PREPARACION OLIMPIADA MATEMATICA CURSO
Comenzaremos recordando algunos conocimientos matemáticos que nos son necesarios. Para ello veamos el concepto de factorial de un número natural. Es decir, es un producto decreciente desde el número que
11 Soluciones a las actividades de cada epígrafe
oluciones a las actividades de cada epígrafe PÁGIN 6 Pág. Irene, además de 4 pantalones y 6 camisetas, tiene 3 gorras. uántas indumentarias de pantalón-camiseta-gorra puede llevar? 4 6 3 = Puede llevar
METODOS DE CONTEO Y PROBABILIDAD
METODOS DE CONTEO Y PROBABILIDAD PROBABILIDAD Cuando realizamos un experimento, diremos que es: Determinista: dadas unas condiciones iniciales, el resultado es siempre el mismo. Aleatorio: dadas unas condiciones
Combinatoria. En todo problema combinatorio hay varios conceptos claves que debemos distinguir:
Conceptos de combinatoria Combinatoria En todo problema combinatorio hay varios conceptos claves que debemos distinguir: 1. Población Es el conjunto de elementos que estamos estudiando. Denominaremos con
Academia, Librería, Informática Diego E S Q U E M A D E C O M B I N A T O R I A. CUADRO RESUMEN Sí (Variaciones o Permutaciones) m n m=n
E S Q U E M A D E C O M B I N A T O R I A m = Número de elementos de que se dispone. n = De cuánto en cuánto se cogen. Influye el orden? CUADRO RESUMEN Sí (Variaciones o Permutaciones) m n m=n No (Combinaciones)
Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada
Álgebra Lineal y Estructuras Matemáticas J. C. Rosales y P. A. García Sánchez Departamento de Álgebra, Universidad de Granada Capítulo 8 Combinatoria La combinatoria es la técnica de saber cuántos elementos
GUIA No.3 TERCER PERIODO ESTADISTICA GRADO ONCE
GUIA No.3 TERCER PERIODO ESTADISTICA GRADO ONCE PERMUTACIONES Para considerar la técnica de la permutación es necesario definir la operación factorial, el operador factorial se define sobre los números
CUADERNO DE CÁLCULO:
CUADERNO DE CÁLCULO: 2013-2014 TERCER CICLO 6º PRIMARIA ALUMNO/A:... Cálculo 6º Ed. Primaria Colegio Romareda 2013/14 Página 2 Cálculo 6º Ed. Primaria Colegio Romareda 2013/14 Página 3 Índice Cálculo mental
ÁLGEBRA Algunas soluciones a la Práctica 2
ÁLGEBRA Algunas soluciones a la Práctica Combinatoria (Curso 009 010) 7. Sea A un conjunto con n elementos. Cuántos subconjuntos tiene el conjunto A?. Probar que el número de subconjuntos de cardinal par
Bienvenidos al mundo de las variaciones, arreglos,permutaciones.!
Bienvenidos al mundo de las variaciones, arreglos,permutaciones.! Conceptos previos. PRINCIPIO SUMATIVO: Si un evento se da de n formas diferentes y otro evento se da de m formas diferentes.la elección
Iniciaremos nuestro estudio de teoría combinatoria enunciando los principios aditivo y multiplicativo de conteo.
COMBINATORIA Introducción a la Combinatoria Recuento A menudo se presenta la necesidad de calcular el número de maneras distintas en que un suceso se presenta o puede ser realizado. Otras veces es importante
COMBINATORIA. Elaborado por Ildefonso Aranda y Paco Cuenca, profesores de Matemáticas en el I.E.S. Gil de Zático de Torreperogil (Jaén)
COMBINATORIA Elaborado por Ildefonso Aranda y Paco Cuenca, profesores de Matemáticas en el I.E.S. Gil de Zático de Torreperogil (Jaén) 1. FACTORIAL DE UN NÚMERO (Factorial de un número ) El factorial de
Alfabeto Braille. El total de posibilidades será: = 12. Teoría de la Computabilidad Prof. Carlos Iván Chesñevar DCIC, UNS
Capítulo : Combinatoria Teoría de la Computabilidad Módulo 9 Combinatoria La combinatoria trata, ante todo, de contar el número de maneras en que unos objetos dados pueden organizarse de una determinada
SOLUCIÓN: a1.- Cuál es la probabilidad de que la palabra formada empiece por dos consonantes? Diagrama de árbol
EJERCICIO: Se colocan ( al azar) en línea las letras de la palabra matemáticas. Cuál es la probabilidad de que la palabra formada empiece por dos consonantes? Y por dos vocales? y la de que empiece por
Matemáticas Discretas L. Enrique Sucar INAOE. Permutaciones y Combinaciones
Matemáticas Discretas L. Enrique Sucar INAOE Permutaciones y Combinaciones Contenido Introducción Reglas de la suma y el producto Permutaciones Combinaciones Generación de permutaciones Teorema del Binomio
Capítulo 6 Combinatoria
Capítulo 6 Combinatoria 6.1 Introducción Se trata de contar el número de elementos de un conjunto finito caracterizado por ciertas propiedades. Principios fundamentales 1. Principio de la multiplicación
ANÁLISIS COMBINATORIO
ANÁLISIS COMBINATORIO 1. Es la rama de la matemática que estudia los diversos arreglos o selecciones que podemos formar con los elementos de un conjunto dado. 2. De acuerdo al principio fundamental del
Unidad Temática 2 Probabilidad
Unidad Temática 2 Probabilidad Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza. 1. El experimento que consiste
DEPARTAMENTO DE MATEMATICAS DEPARTAMENTO DE MATEMATICAS
PARA PODER TRABAJAR EN ESTA LECCION, DEBES HABER ESTUDIADO MUY BIEN LA LECCION ANTERIOR -. Contesta a estas preguntas: 1. Qué cifra ocupa el lugar de las centenas en el número 45.782. 2. Qué cifra ocupa
(DOCUMENTO DE TRABAJO ELABORADO A PARTIR DE RECURSOS ENCONTRADOS EN LA WEB: AULAFACIL 1 Y VADENUMEROS 2 )
PROBABILIDAD (DOCUMENTO DE TRABAJO ELABORADO A PARTIR DE RECURSOS ENCONTRADOS EN LA WEB: AULAFACIL 1 Y VADENUMEROS 2 ) La probabilidad mide la frecuencia relativa (proporción) de un resultado determinado
SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS
PROBLEMAS PROPUESTOS PARA LA ETAPA DE ZONA SEGUNDO GRADO 1. Tenemos tres balanzas equilibradas, como muestran las figuras. Cuántas tazas se necesitan para equilibrar la jarra? Se presentan dos formas de
2) Una persona tiene 6 chaquetas y 10 pantalones. De cuántas formas distintas puede combinar estas prendas?.
ACTIVIDADES COMBINATORIA 1) Se distribuyen tres regalos distintos entre cinco chicos. De cuántas formas pueden hacerlo si: a) cada chico sólo puede recibir un regalo b) a cada chico le puede tocar más
Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.
Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 Técnicas de conteo En muchos problemas de probabilidad, el reto mayor es encontrar
11Soluciones a los ejercicios y problemas
Soluciones a los ejercicios y problemas PÁGI 4 Pág. P C T I C F o r m a r a g r u p a c i o n e s a) En una urna hay una bola blanca, una roja y una negra. Las extraemos de una en una y anotamos ordenadamente
DEPARTAMENTO DE MATEMATICAS DEPARTAMENTO DE MATEMATICAS
-. Copia y completa la tabla: -. Escribe el nombre de estos números de cinco cifras: -. Escribe en cifras los siguientes números: número Dieciséis mil doscientos ocho Veintisiete mil cuatrocientos treinta
Espacio Muestral, se denota con la letra S, y representa el conjunto de todos los sucesos aleatorios. Por ejemplo: Si tiramos una moneda el espacio se sucesos está formado por: S= {Ø, {C}, {X}, {C,X}}.
Factorial de un número Se define como la multiplicación sucesiva de los primeros números naturales.
Combinatoria Principio multiplicativo Un elemento se puede elegir de formas diferentes, un elemento se puede elegir de formas diferentes hasta un elemento enésimo que puede ser elegido de formas diferentes.
UNIDAD X Teoría de conteo
UNIDAD X Teoría de conteo Regla de la suma UNIDAD 10 TEORÍA DE CONTEO Se les denomina técnicas de conteo a las combinaciones, permutaciones y diagrama de árbol, que nos proporcionan la información de todas
Técnicas de conteo. Permutaciones y combinaciones. Álvaro José Flórez. Febrero - Junio Facultad de Ingenierías
Técnicas de conteo Permutaciones y combinaciones Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Técnicas de conteo En el enfoque clásico,
Calcular probabilidad clásica mediante regla de Laplace. Reconocer elementos básicos en las probabilidades.
Guía N 18 Nombre: Fecha: Contenidos: Probabilidad Clásica Objetivos: Calcular probabilidad clásica mediante regla de Laplace. Reconocer elementos básicos en las probabilidades. Métodos de conteo Los métodos
ENTRETENIMIENTOS MATEMÁTICOS. Nacho Diego
ENTRETENIMIENTOS MATEMÁTICOS Nacho Diego El Gordo de la Lotería ha correspondido al número que cumple todas estas condiciones Averigua cuál ha sido: Es mayor que 50.000 y menor que 60.000. La cifra de
Prueba Matemática Coef. 1 NM-4
1 Centro Educacional San Carlos de Aragón. Sector: Matemática. Prof.: Ximena Gallegos H. Prueba Matemática Coef. 1 NM-4 Nombre: Curso: Fecha. Porcentaje de Logro Ideal: 100% Porcentaje Logrado: Nota: Unidad:
Materia: Matemática de Octavo Tema: Conjunto Q (Números Racionales)
Materia: Matemática de Octavo Tema: Conjunto Q (Números Racionales) Vamos a recordar los conjuntos numéricos estudiados hasta el momento. (1.) Conjunto de los números Naturales Son aquellos que utilizamos
RESUMEN PARA EL ESTUDIO
RESUMEN PARA EL ESTUDIO 1. Números de siete cifras U. millón CM DM UM C D U Cómo se lee 2 8 9 6 7 8 2 Cómo se descompone: 2.896.782 = 2 U. millón + 8 CM + 9 DM + 6 UM + 7 C + 8 D + 2 U Cómo se compone:
RELACIÓN EJERCICIOS PROBABILIDAD 4º B CURSO
RELACIÓN EJERCICIOS PROBABILIDAD 4º B CURSO 00- Sea el experimento consistente en lanzar un dado cúbico y los sucesos A={,,3} y B={3,4}. Halla A I B Lanzamos un dado cúbico, cuál es la probabilidad de
Departamento de Matemáticas COMBINATORIA. http://www.colegiovirgendegracia.org/eso/dmate.htm I. COMBINATORIA.
I.. 1. INTRODUCCIÓN. La combinatoria es la rama de la Matemática que tiene por objeto el estudio de los diferentes agrupamientos y ordenaciones que pueden recibir los elementos de un conjunto y, a la hora
EJERCICIOS DE MATRICES
EJERCICIOS DE MATRICES a) º) Escribir los siguientes sistemas en forma matricial: x+ y= x + y = 0 x+ y z = x+ y+ z = 0 ; b) x y= 3 ; c) y + z = ; d) 6x + y = 4 x + z = 3 x = 3 y = 4 z = 5 ; e) x+y+z+t=3
Olimpiada de Matemáticas para Alumnos de Primaria y Secundaria en Guanajuato. 13 de diciembre de Tercer Selectivo (NIVEL PRIMARIA)
Olimpiada de Matemáticas para Alumnos de Primaria y Secundaria en Guanajuato Instrucciones. 13 de diciembre de 2014 Tercer Selectivo (NIVEL PRIMARIA) 1. Tienes 4 horas y media para hacer el examen. Lee
Cuaderno de matemáticas 1. Numeración: Concepto y grafía del número 5.
Cuaderno de matemáticas 1 Numeración: Concepto y grafía del número 1. Conceptos matemáticos: Formas geométricas. Nociones espacio-temporales: Dentro, fuera, en el borde. Ampliación y refuerzo: Atención
OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Experimento determinista. Experimento aleatorio. Espacio muestral. Suceso elemental.
Probabilidad INTRODUCCIÓN El estudio matemático de la probabilidad surge históricamente vinculado a los juegos de azar. Actualmente la probabilidad se utiliza en muchas disciplinas unidas a la Estadística:
27/01/2011 TRIGONOMETRÍA Página 1 de 7
β 27/01/2011 TRIGONOMETRÍA Página 1 de 7 Notación en un triángulo: En un triángulo cualquiera llamaremos a, b y c a sus lados y A, B y C a sus vértices de forma que A sea el vértice formado por los lados
UNIVERSIDAD AUTÓNOMA LATINOAMERICANA FACULTAD DE ADMINISTRACIÓN EJERCICIOS DE REPASO PARA EXAMEN FINAL DE ESTADÍSTICA
1 UNIVERSIDAD AUTÓNOMA LATINOAMERICANA FACULTAD DE ADMINISTRACIÓN EJERCICIOS DE REPASO PARA EXAMEN FINAL DE ESTADÍSTICA A continuación se presentan unos ejercicios que tiene como intención repasar los
CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.
CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad
Espacio muestral. Operaciones con sucesos
Matemáticas CCSS. 1º Bachiller Tema 12. Probabilidad Espacio muestral. Operaciones con sucesos 1. Determina el espacio muestral de los siguientes experimentos a) Lanzar una moneda y anotar el resultado
Nombre: Fecha: Curso:
REPASO 1 Begoña tiene camisetas para hacer deporte de tres colores: blancas, grises y negras. Completa la siguiente tabla de frecuencias con los datos del dibujo. Cuántas camisetas tiene en total? frecuencia
Univ. Nacional de Colombia, Medellín Escuela de Matemáticas Matemáticas Discretas Abril 6, Soluciones Taller 7
Univ. Nacional de Colombia, Medellín Escuela de Matemáticas Matemáticas Discretas Abril 6, 2010 Soluciones Taller 7 1. Pruebe el principio de inclusión-exclusión para tres conjuntos A B C = A + B + C A
PROBLEMAS ÚLTIMO SELECTIVO
PROBLEMAS ÚLTIMO SELECTIVO 1.- Sea ΔABC un triángulo rectángulo con ángulo recto en A y ACB = 30. Sea M el punto medio de BC y sea P la circunferencia que pasa por A y es tangente a BC en M y Q la circunferencia
Probabilidad. Generalidades
robabilidad Generalidades a probabilidad estudia experimentos en los que se pueden esperar varios resultados y no solamente uno. os experimentos se pueden clasificar como aleatorios o determinísticos.
Socioestadística I Análisis estadístico en Sociología
Análisis estadístico en Sociología Capítulo 4 TEORÍA DE LA PROBABILIDAD Y SUS PRINCIPIOS. ESTADÍSTICA INFERENCIAL 1. INTRODUCCIÓN A LA ESTADÍSTICA INFERENCIAL En los capítulos anteriores, hemos utilizado
Soluciones - Tercer Nivel Juvenil
SOIEDD EUTORIN DE MTEMÁTI ETP LSIFITORI "VII EDIIÓN DE LS OLIMPIDS DE L SOIEDD EUTORIN DE MTEMÁTI" Soluciones - Tercer Nivel Juvenil 01 de abril de 010 1. Una mesa cuadrada tiene 1 m de lado. uál es el
TEÓRICO-PRÁCTICO Nº 2 Combinatoria
TEÓRICO-PRÁCTICO Nº 2 Combinatoria EJERCICIOS INTRODUCTORIOS: 1. Cuántos números de 3 cifras diferentes se pueden formar con los dígitos 0, 1, 2 y 3? Y si se repiten los dígitos? 2. Cuantos números de
DETERMINANTES UNIDAD 3. Página 76
UNIDAD 3 DETERMINANTE Página 76 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes: 2x + 3y 29 5x 3y 8 4x + y
Técnicas de Conteo TÉCNICAS DE CONTEO
TÉCNICAS DE CONTEO En matemáticas, contar cosas es un concepto fundamental. No obstante, no siempre es simple. El área de las matemáticas que se ocupa de resolver problemas que consisten en contar un cierto
MOOC UJI: La Probabilidad en las PAU
6. Ampliación: combinatoria y probabilidad Si la cantidad de resultados de un experimento es pequeña es fácil contarlos, pero si es grande necesitaremos introducir determinadas fórmulas. Estas fórmulas
Problema 1. Para un planeta general del interior, la probabilidad de visita se calculará a partir de la probabilidad de los planetas anteriores. .
Problema l comandante de la flota escarlata está muy interesado en saber cual es la probabilidad de encuentro con la flota azul, que si ocurre tal encuentro será en algún planeta de la diagonal central.
LAS CIENCIAS DE LA PLANIFICACIÓN
LAS CIENCIAS DE LA PLANIFICACIÓN 5. EL PROBLEMA DEL VIAJANTE (PV) (The Traveling Salesman Problem TSP) Un problema como el de las vacaciones, pero vital para las empresas, es el problema del viajante (PV):
MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN
MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN OBJETIVOS Conocer los cuatro primeros órdenes de unidades y las equivalencias entre ellos. Leer, escribir y descomponer números de hasta cuatro cifras.
Lección 2: Combinatoria
Lección 2: Combinatoria Quizás algún estudiante no esta familiarizado con la combinaroria. El objetivo de esta lección es dar los conceptos básicos de de esta disciplina. 1 Variaciones 1.1 Variaciones
DIVISIBILIDAD Y NÚMEROS PRIMOS I
DIVISIBILIDAD Y NÚMEROS PRIMOS I LUZ MARÍA SÁNCHEZ GARCÍA 1. NÚMEROS PRIMOS Todas las cosas que pueden ser conocidas tienen número, pues no es posible que, sin número, nada pueda ser conocido ni concebido.
PROBABILIDAD. Experiencia aleatoria es aquella cuyo resultado depende del azar.
PROBABILIDAD. 1 EXPERIENCIAS ALEATORIAS. SUCESOS. Experiencia aleatoria es aquella cuyo resultado depende del azar. Suceso aleatorio es un acontecimiento que ocurrirá o no dependiendo del azar. Espacio
SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE
16 1 Pág. 1 Página 220 Ruperto sale de su casa, R, compra el periódico en el quiosco, K, y va a buscar a su amiga Pilar, P. Cuántos caminos distintos puede tomar para ir de su casa al quiosco? Cuántos
Criterios de divisibilidad Divisibilidad entre 2 Un número natural es divisible entre 2, cuando termina en cero o en cifra par.
ACTIVIDADES SENTIDO NUMÉRICO Y PENSAMIENTO ALGEBRAICO. Divisores de un número. Recuerda que la división, es una operación que sirve para repartir o agrupar equitativamente una cantidad de cosas o elementos
De las siguientes tablas obtén el RANGO, INTERVALO, EL NÚMERO DE GRUPOS Y LOS LIMITES INFERIORES Y SUPERIORES
GUIA PARA EL EXAMEN FINAL DE MATEMÁTICAS V 1º PARCIAL 1. Qué es la estadística? 2.Indica cuál es la división de la estadística. 3. Qué es la estadística descriptiva? 4.Define estadística inferencial. 5.
Elementos de Combinatoria
Elementos de Combinatoria 1 Introducción Previamente al estudio de la probabilidad en sí, conviene dedicar algún tiempo al repaso de las técnicas combinatorias. Recordemos que la Combinatoria es la parte
EJERCICIOS PROPUESTOS
OMINTORI EJERIIOS PROPUESTOS. Una pastelería elabora galletas de tres sabores: sencillas, cubiertas de chocolate y rellenas de mermelada, y las envasa en cajas de 00, 00 y 400 gramos. Forma un diagrama
Solución del I Examen de Matemáticas Discreta
Solución del I Examen de Matemáticas Discreta 1. En un grupo hay 10 hombres y 15 mujeres: (a De cuantas maneras se puede elegir una comisión de 5 personas si hay al menos un hombre y dos mujeres? (b De
Combinatoria. Probabilidad. Números complejos. Combinatoria. Técnicas de recuento. Tabla de números aleatorios.
Tema 4 Combinatoria. Probabilidad. Números complejos. Introducción. Combinatoria. Técnicas de recuento. Tabla de números aleatorios. Probabilidad de un suceso. Ley de los grandes números. Probabilidad
TEMA 11. PROBABILIDAD
TEMA 11. PROBABILIDAD 11.1. Experimentos aleatorios. - Espacio muestral asociado a un experimento aleatorio. - Sucesos. Operaciones con sucesos. 11.2. Probabilidad. - Regla de Laplace 11.3. Experiencias
Tema 10: Combinatoria.
Tema 10: Combinatoria. En este tema, vamos a perfeccionar una técnica que todos conocemos desde pequeños, vamos a aprender a contar. Lógicamente, todos habéis contado cosas en vuestra vida desde pequeños
Probabilidad del suceso imposible
2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 4.- PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------
PROBABILIDADES, COMBINACIONES, VARIACIONES Y PERMUTACIONES
PROBABILIDADES, COMBINACIONES, VARIACIONES Y PERMUTACIONES PROBABILIDADES La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento. Ejemplo: tiramos
Tema 10 Combinatoria Matemáticas B 4º ESO 1
Tema 10 Combinatoria Matemáticas B 4º ESO 1 TEMA 10 COMBINATORIA EJERCICIO 1 : Con las cifras 1, 3, 4, 5 y 6, cuántos números de cuatro cifras distintas se podrán formar de modo que acaben en cifra par?
ESTADISTICA 1 CONTEO
ESTADISTICA 1 CONTEO PRINCIPIO DE ENUMERACION PERMUTACIONES Y COMBINACIONES PRINCIPIO DE ENUMERACION Si un suceso puede ocurrir de m maneras diferentes y, después de que ha sucedido, un segundo suceso
Combinatoria: factorial y números combinatorios.
Combinatoria: factorial y números combinatorios. 1. Realiza las siguientes actividades en tu cuaderno 2. Una vez resueltas, utiliza las escenas de la página para comprobar los resultados. 3. Para el manejo
Si a los lados de un cuadrado se les aumenta el 10% de su medida. en qué porcentaje se incrementa su área?
Ejercicio 75 Si a los lados de un cuadrado se les aumenta el 10% de su medida. en qué porcentaje se incrementa su área? Respuesta Si el lado del cuadrado es x Area= lado por lado El área del nuevo cuadrado
Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas.
TEMA 6 EXPRESIONES ALGEBRAICAS Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas. Ejemplo: 2 x, 2 a + 3, m (n - 3),... Usamos las expresiones
Introducción a la Probabilidad
Introducción a la Probabilidad Tema 3 Ignacio Cascos Depto. Estadística, Universidad Carlos III 1 Ignacio Cascos Depto. Estadística, Universidad Carlos III 2 Objetivos Entender el concepto de experimento
DEPARTAMENTO DE MATEMATICAS DEPARTAMENTO DE MATEMATICAS
-. Completa la tabla: Fíjate en el ejemplo RECUERDA Millones MILLARES UNIDADES NUMERO Cm Dm Um CM DM UM C D U 470.531 4 7 0 5 3 1 Millones MILLARES UNIDADES NUMERO Cm Dm Um CM DM UM C D U 140.609 78.451
SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS
SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por
Enigmas y detectives. Leer y comprender matemáticas
Enigmas y detectives. Leer y comprender matemáticas En un lejano país, de los mil que pueden existir, un grupo de amigos, Ana, Juan, Lucas y Pilar, juega en la plaza sin sospechar que grandes secretos
1. TARJETAS NUMERADAS.
1. TARJETAS NUMERADAS. Alex y Bea tienen 10 tarjetas numeradas con los números 1, 2, 3,... 10. Juegan a un juego en el que uno de ellos debe usar tres tarjetas para obtener la suma que diga su compañero.
FICHA DE REPASO: ESTADÍSTICA
FICHA DE REPASO: ESTADÍSTICA 1. Indica la población y la muestra de los siguientes estudios estadísticos: a) El número de móviles de los alumnos de 2º de la E.S.O de nuestro instituto. b) La altura de
Unidad 1 Los números de todos los días
CUENTAS ÚTILES Módulo nivel intermedio. 3ra. Edición. Primaria Unidad 1 Los números de todos los días Los números naturales son aquellos que utilizamos para contar: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
FICHAS DE ESTUDIO No.1. Definición del conjunto N NOMBRE FECHA
21 FICHAS DE ESTUDIO No.1. UNIDAD 1: NUMEROS NATURALES Lámina 1.1 Definición del conjunto N NOMBRE FECHA I OBJETIVOS: Al concluir esta Guía podrás: 1. Identificar los elementos del conjunto de los números
XXV Olimpiada Mexicana de Matemáticas en Tamaulipas Examen Selectivo 2 de octubre de 2011
XXV Olimpiada Mexicana de Matemáticas en Tamaulipas Examen Selectivo 2 de octubre de 2011 1. Un maestro de matemáticas avisa a sus alumnos que preguntará la demostración de tres de los ocho teoremas vistos
Problema nº2 Halla el número de capicúas de 8 cifras. Cuántos capicúas hay de 9 cifras?
Problema nº1 Las matrículas de los coches de un país están formadas por dos letras diferentes seguidas de tres números repetidos o no. Cuántos coches se podrán matricular sin cambiar el sistema? Se supone
Teorema de Pitágoras Distancia y Puntos Medios
Slide 1 / 78 Teorema de Pitágoras Distancia y Puntos Medios Tabla de Contenidos Slide 2 / 78 Teorema de Pitágoras Haga clic en un tema para ir a esa sección Fórmula de la Distancia Puntos Medios Slide
Tema 7 QUÉ ESTÁ ANTES Y DESPUÉS DEL PUNTO?
Tema 7 QUÉ ESTÁ ANTES Y DESPUÉS DEL PUNTO? Aprendizajes esperados: Analiza y resuelve situaciones problemáticas en las que se utilizan los números decimales y las operaciones básicas. Al acompañar a mamá
EJERCICIOS DE GEOMETRÍA
EJERCICIOS DE GEOMETRÍA 1. Se consideran las rectas r x 2 = 0 x 2z = 1, s y + 3 = 0 y + z = 3 a) Estudiar la posición relativa de r y s. b) Hallar la mínima distancia entre ambas. Se pide: Sol: Se cruzan
ESTADISTICA Y PROBABILIDAD ESTADÍSTICA
ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta
Cálculo de perímetros y áreas
Cálculo de perímetros y áreas 1. Calcula el perímetro de las siguientes figuras planas: 2. Calcula el perímetro de las siguientes figuras geométricas: 3. La rueda de un triciclo tiene 30 cm de radio. Cuántos
