SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS
|
|
|
- María Luz Iglesias Ortega
- hace 9 años
- Vistas:
Transcripción
1 PROBLEMAS PROPUESTOS PARA LA ETAPA DE ZONA SEGUNDO GRADO 1. Tenemos tres balanzas equilibradas, como muestran las figuras. Cuántas tazas se necesitan para equilibrar la jarra? Se presentan dos formas de solución por aquello de que algún alumno lo realice de forma algebraica. Primeramente marcar o enumeran las balanzas como para referenciar con cual están trabajando. Todo es referido al peso de los objetos para equilibrar las balanzas. a) solución en representación algebraica. j = jarra, b= botella, t= taza, p= plato Balanza 1 j=b balanza 2 j= p+t balanza 3 3p= 2b balanza 4 j=? Las nombrare como ecuaciones1,2,3 y 4 De la ecuación tres 3p=2b entonces: b = p ( 2 puntos) Sustituyendo el valor anterior en la ecuación 1 j=b Tenemos que p= j ( 2 puntos) Sustituyendo la expresión anterior en la ecuación 2 j= p + t t + tenemos que: = t t= ( 2 puntos) Sustituyendo j=3t ( 1 punto) b) puede trabajar sin lenguaje algebraico, a resultados iguales puntajes iguales.
2 2. Cuál es el valor de x si = 2 x? 4 20 se puede representar como ( 2 2 ) 20 = 2 40 ( tres puntos). Entonces = 2 x ( 1 punto) Dos veces 2 40 se representa 2(2 40 ) ( dos puntos) Entones 2(2 40 ) = = 2 x Por lo tanto x= 41 ( 1 punto) 3. Cuántos números de tres cifras hay tales que la suma de las primeras dos cifras es igual a la tercera cifra? a + b= c entonces c puede tomar cualquier valor de 1 a 9 ( 1 punto) Analiza por partes y concluye que: Sí a= 1 entonces b puede tomar valor desde 0 a 8 entonces se tienen 9 números diferentes para el valor de b ( 1 punto). Repite el análisis para todos los números o encuentra otra estrategia para encontrar que: con a=2, b tiene ocho números; para a= 3, siete números; con a=4 b seis números; con a=5 cinco números; con a= 6 cuatro números; con a=7, tres números; con a=8 dos números y con a=9 un número. Entonces tenemos (4puntos). Se tienen 45 números de tres cifras ( 1 Punto). 4. Cuántos números de cuatro cifras y menores que 2014 cumplen estas condiciones: son pares, son múltiplos de 3 y no son múltiplo de 5? Explica cómo los contaste. Para ser un número de 4 cifras debe ser mayor o igual que 1000 y por las condiciones del problema menor que 2014.( 1 punto) Los números que son pares terminan en 0, 2, 4, 6, u 8. Y los múltiplos de 3, sus dígitos deben sumar 3 o un múltiplo de 3. Pero si debe cumplir las dos condiciones basta con encontrar los múltiplos de 6. ( 1 punto) El primer múltiplo de 6 de 4 cifras es el 1002 porque es par y múltiplo de 3. Si analizamos a partir del 1002 al 2013, el último número antes del 2013 que cumple las condiciones es Entonces hay que buscar cuantos números hay del 1002 al 2010 que cumplen las condiciones de ser múltiplo de = 1018
3 1018 entre 6 = 168 números múltiplos de 6, más el uno que es el 1002 tenemos 169 números múltiplos de 6 del 1000 al (2puntos) Nota. Puede presentar toda la serie y no realizar la división. Tiene el mismo puntaje si afirmar que son 169 números pares y múltiplos de tres(o bien múltiplos de 6) Aquí están incluidos los múltiplos de 5; los múltiplos de 5 terminan en cero o en cinco. Y si cumplen las condiciones de ser múltiplos de 6 y 5 entonces son los múltiplos de 30. De aquí el primer múltiplo de 30 mayor que 1000 es el 1020 y ya tenemos que de la condición anterior es el último el 2010 ya debe ser menor que 2014 entonces tenemos = 990 de aquí 990 entre 30 = 33 números múltiplos de 30 más el 1020 tenemos 34 números múltiplos de 30. (2puntos) Nota. Puede presentar toda la serie y no realizar la división. Tiene el mismo puntaje. Por último de 169 múltiplos de 6 hay 34 que son múltiplos también múltiplos de 5(de 30) = 135 números que cumplen con las condiciones del problema. ( 1 punto). 5. Se tienen dos dados. En las caras de uno de ellos aparecen los números 2, 4, 8, 16, 32 y 64, mientras que en las caras del otro aparecen los números del 1 al 6. Tiramos los dados y multiplicamos los dos números que obtengamos. Cuál es la probabilidad de que esta multiplicación sea un cuadrado perfecto? Cómo son 2 cubos y cada uno tiene seis caras se tienen 36 resultados posibles. (Puede realizar las combinatorias, una tabla o un diagrama de árbol para observar el número de posibilidades y cuáles cumplen la condición del problema).( 3puntos) Dado 1 Dado De aquí se tiene que los que son múltiplos perfectos son: 4, 16, 64, 256 ( 3 puntos) La probabilidad es 9 de 36 = ( 1 punto) no necesariamente tiene que reducir la fracción.
4 6. ABCD y AMON son rectángulos. AB = 3BC. M es punto medio de AB; N es punto medio de AD. El perímetro de AMON es 64 cm. Cuál es el área de ABCD? Identifica la relación entre las medidas de los lados de los dos rectángulos: ABCD Y AMON( 2PUNTOS)algo similar a lo siguiente: Si BC = x Y AB = 3BC entonces AB= 3x M es punto medio de AB; entonces: AM = N es punto medio de AD; entonces : AD = Plantea la relación entre la suma de los lados del rectángulo AMON y el dato del perímetro. (2puntos) PERÍMETRO DE AMON = 64 CM 64 = (puede presentarla de otra manera pero llegar a lo siguiente) 64 = (2PUNTOS) Resuelve la ecuación X= 16 el cual es la medida del lado BC ( 1 punto) Medida del lado AB = 3x AB= 3(16) AB = 48 cm (1 punto) Área del rectángulo ABCD Bxh = 16 x48 Área del rectángulo ABCD = 768 cm 2 ( 1 PUNTO)
5 7. La figura está armada por 4 rectángulos iguales. En cada rectángulo, la base es el triple de la altura y el perímetro es de 64 cm. Cuál es el perímetro de la figura? Como la base es igual a 3h y como la figura está armada por rectángulos iguales. Queda de la siguiente forma. ( 1 punto) Plantea una expresión del perímetro de un rectángulo. P=2( 3h +h) 64= 8h Entonces h= 8 cm la medida de la altura ( 2 puntos) La base de los rectángulos es 3 x 8 Base = 24 cm ( 1 punto) Entonces el perímetro de la figura es. P= 3h+3h+h+h+h+3h+3h+h+h+h ó P= 2( 6h+3h) 2PUNTOS P= 18h P= 18 X 8 P= 144 cm (1 PUNTO)
6 8. En el triángulo ABC es equilátero. Hallar β El triángulo ABC es equilátero, por lo tanto sus ángulos interiores miden 60 El ángulo ABC= 60 ( 1 punto) El ángulo ABE = El ángulo ABE = 25 ( 2 PUNTOS) En el triángulo ABF la suma de sus ángulos interiores es igual a 180. Ángulo ABF + Ángulo BAD + Ángulo AFB = Ángulo AFB = 180 Ángulo AFB = 180 = 135 ( 3 PUNTOS) Y como el ángulo β= ángulo AFB Entonces el ángulo β= 135 ( 1 punto) 9. En un jardín en forma de rectángulo, con dimensiones de 7m * 4m se trazó una vereda diagonal de 1m desde las esquinas, como se muestra la figura. Calcula el área de la vereda. Si el jardinero utiliza para regar 5 litros de agua (por cada metro cuadrado), cuántos litros necesita el jardinero para regar la vereda? El área de la vereda es el área total del rectángulo menos el área de los 2 triángulos. Así: 7m * 4m = 28m 2. (El área total) ( 2puntos ) Ahora el área de cada triángulo: (6m * 4m) / 2 = 12m 2 (El área de cada triángulo) y como son dos triángulos 24 m 2 ( 2puntos ) Entonces el área de la vereda es el área del rectángulo menos el área de los dos rectángulos: 28m 2-24m 2 = 4m 2. ( 2puntos ) Por lo que el jardinero necesita 4 * 5 = 20 litros de agua. ( 1 PUNTO)
7 10. La figura ABCD es un rectángulo determina el valor del ángulo α. ABCD es un rectángulo entonces el ángulo C y el ángulo B miden 90 ( 1punto) Sí el ángulo DCF =45 entonces el ángulo ECB =45 ( 1punto) Sí él ángulo DBE= 30 entonces el ángulo DBC = El ángulo DBC = 60 ( 1punto) En el triángulo FCB. La suma de ángulos interiores es igual a CFB = 180 Ángulo CFB = 75 ( 2 puntos) Ángulo CFB = α por ser opuestos por el vértice. ( 1punto) El resultado: Ángulo CFB = 75 ( 1punto) Algún alumno puede auxiliarse de la figura y plantear la siguiente solución pero debe de escribir toda la argumentación.
8 11. Luis y Elena van a formar cada uno de ellos un número de tres cifras. Para ello, eligen alternativamente un dígito cada uno entre los números 1, 2, 3, 4, 5 y 6 (los dígitos no se pueden repetir). Luis gana si el número formado es múltiplo de 3. En caso contrario, gana Elena. Si eligen los números al azar, qué probabilidad de ganar tendría Luis? Vamos a imaginar que sólo elige uno de los jugadores, y que el otro se conforma con lo que queda, ya que para contar las opciones y saber si sale o no múltiplo de 3 nos da igual lo que haga el otro jugador. Para elegir la primera cifra tiene 6 opciones, para la segunda, 5, independientemente de la cifra que eligiese en primer lugar, y para la tercera, cuatro opciones. Esto, contando todas las posibles ramificaciones del número, haría un total de 6*5*4 = 120 números posibles. ( 3 puntos) De todos ellos, vamos a contar los que sean múltiplos de 3. El primer número, hemos visto que puede ser cualquiera (6 opciones), pero el segundo sólo puede ser uno de los cuatro que no son del mismo tipo que el primero, y el tercero únicamente puede ser del tipo restante, formado por sólo dos números, es decir, que tendríamos 6*4*2 = 48 posibilidades. ( 3 puntos) En definitiva, jugando al azar, Luis tendría una probabilidad de ganar de 48/120, equivalente a 2/5, un 40% en porcentaje. ( 1 punto) Otra opción es que dibuje un diagrama de árbol o enumere todas las posibilidades si está completo y correcto son ( 6 puntos)
9 12. En el triángulo ABC, el ángulo A y el ángulo B suman 110º, y D es un punto sobre el segmento AB tal que CD=CB y el ángulo DCA mide 10º. Cuánto mide el ángulo A? Ángulo A + ángulo B = 110, DC=CB. En el triángulo ABC la suma de sus ángulos interiores es 180 y si conocemos que Dos suman 110 entonces el ángulo BCA= 70 (1 PUNTO) El ángulo BCA = ángulo BCD + ángulo DCA y cómo el DCA mide 10 Entonces el ángulo DCA = 60 ( 2 PUNTOS) El triángulo BCD es isósceles ya que, DC=CB. Entonces los ángulos en D y en B son iguales. ( 2 PUNTOS) Ángulo D+ ángulo B + ángulo BCD = 180 2áng. B + 60 = 180 Ángulo B= 60 ( 1 PUNTO) Sí el ángulo B=60 y la suma de los ángulos A +B = 110 Entonces el ángulo A= 50 (1 PUNTO) 13. Cuál es el digito que ocupa el lugar 2014 en el desarrollo decimal de? = RESPUESTA Se observa que se repiten los períodos de 4. ( 3 puntos) Entonces vamos a dividir 2014/4 = 503 (cociente entero) y tiene un residuo de 2. Termina el ciclo de 4 número de la serie *4 = representa 2(que sobraron) ( 3 puntos) Por lo tanto le corresponde el segundo lugar de la serie de los cuatro dígitos que se repiten 3960 el dígito que ocupa el lugar 2014 es el 3 (1 PUNTO)
10 14. Calcula la suma de los primeros 37 múltiplos de 3: RESPUESTA Todo el proceso para encontrar la suma se le asignan 6 puntos. Puede identificar que es igual a la serie de suma de números consecutivos 37(37+1)/2 = 703 ( 6 puntos) O hacer la suma de todos los números. ( 6 puntos) Ese resultado se multiplica por 3 (por ser múltiplo de tres) = 703 X 3 = 2109 ( 1 PUNTO) 15. La suma de 14 números pares consecutivos es 1442, halle el mayor de dichos números. RESPUESTA. Los números consecutivos son x, x+1, Para asegurar que sean números pares deben de multiplicarse por 2Primer par = 2x, segundo par 2(x+1) y tercer par = 2(x+2).. ( 2 puntos) Entonces tenemos: 2x+ 2(x+1)+ 2(x+2)+ 2(x+3)+ 2(x+4)+ 2(x+5)+ 2(x+6)+ 2(x+7)+ 2(x+8)+ 2(x+9)+ 2(x+10)+ 2(x+11)+ 2(x+12)+ 2(x+13)= 1442 ( 2 puntos) 28x = 1442 ( 1 punto) 28x = 1260 X = 45 ( 1 punto) El primer número par es 2x entonces es 2( 45) = 90 ( 1 punto)
SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS
PROBLEMAS PROPUESTOS PARA LA ETAPA DE ZONA PRIMER GRADO 1. Marcos tiene todas las letras del abecedario en tres tamaños: grandes, medianas y pequeñas: A,B,C,D,E,...,Z A,B,C,D,E,...,Z A,B,C,D,E,...,Z Usando
SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS
PROBLEMAS PROPUESTOS PARA LA ETAPA DE ZONA TERCER GRADO 1. Cuánto mide el área sombreada A entre el área sombreada B en la siguiente figura? Para referenciar las argumentaciones se le inscriben letras
MATEMÁTICA N O 6. Santillana FASCÍCULO PSU N O 6 MATEMÁTICA. Santillana
FASCÍCULO PSU N O 6 MATEMÁTICA . El valor de 0, 0, + es igual: A) B) C) D) 4 45 6 45 5 8 9 E) 0 9. La medida del segmento AE es: A A) 8 cm B) 4 cm C) 0 cm D) cm E) cm. 4-4 - =? - A) - 4 B) 8 C) 4 D) -
XX OLIMPIADA NACIONAL DE MATEMÁTICA PRIMERA RONDA COLEGIAL - 23 DE MAYO DE NIVEL 1. Nombre y Apellido:... Grado:... Sección:...
PRIMERA RONDA COLEGIAL - 23 DE MAYO DE 2008 - NIVEL 1 Nombre y Apellido:................................. Grado:....... Sección:...... Puntaje:.......... Los dibujos correspondientes a los problemas de
Problemas y ejercicios de áreas de polígonos
Problemas y ejercicios de áreas de polígonos 1Un campo rectangular tiene 170 m de base y 28 m de altura. Calcular: 1Las hectáreas que tiene. 2El precio del campo si el metro cuadrado cuesta 15. 2 Calcula
XX OLIMPIADA NACIONAL DE MATEMÁTICA SEGUNDA RONDA COLEGIAL - 1 DE AGOSTO DE NIVEL 1. Nombre y Apellido:... Grado:... Sección:...
SEGUNDA RONDA COLEGIAL - 1 DE AGOSTO DE 2008 - NIVEL 1 Nombre y Apellido:................................. Grado:....... Sección:...... Puntaje:.......... Los dibujos correspondientes a los problemas de
2. (10pts.) Cuál es el producto de los divisores comunes de 99 y 275?
3raEtapa (Examen Simultáneo) 1ro de Secundaria 1. (10 pts.) Si son números para los cuales : Hallar a) 20 b) 18 c) 16 d) 11 d) 17 e) Ninguno 2. (10pts.) Cuál es el producto de los divisores comunes de
XVI OLIMPIADA NACIONAL DE MATEMÁTICA. TERCERA RONDA - REGIONAL - 4 DE SETIEMBRE DE NIVEL 1 Nombre y Apellido:... Grado:... Sección:...
TERCERA RONDA - REGIONAL - 4 DE SETIEMBRE DE 2004 - NIVEL 1 Nombre y Apellido:................................. Grado:....... Sección:...... Colegio:............................................... Puntaje:..........
SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL A
XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP ITCR UCR UNA UNED - MICIT SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL A 01 7 3 9 7 13 1. El resultado de la operación + 1 1 16 3 40 16 a) 319 30 b) 319 90
NÚMEROS ENTEROS. (1) Laura anotó en fichas las temperaturas a partir de las 8 de la mañana, pero las fichas de le
NÚMEROS ENTEROS Matemática Año (1) Laura anotó en fichas las temperaturas a partir de las 8 de la mañana, pero las fichas de le desordenaron. Ayudá a Laura a escribir la temperatura correspondiente a cada
IMPORTANTE SOLO IMPRIMA LO QUE CORRESPONDA A EJERCICIOS, LAS EXPLICACIONES SON OPCIONALES
TRABAJO DE REFUERZO OPERACIONES CON EXPRESIONES ALGEBRAICAS Y GEOMETRIA PERIODO Chía, Mayo de 07 Señores Estudiantes Grados 0,07,0, a continuación encontrarán una serie de ejercicios que han sido bajados
Soluciones Nota nº 1
Soluciones Nota nº 1 Problemas Propuestos 1- En el paralelogramo ABCD el ángulo en el vértice A es 30º Cuánto miden los ángulos en los vértices restantes? Solución: En un paralelogramo, los ángulos contiguos
XXI OLIMPIADA NACIONAL DE MATEMÁTICA PRIMERA RONDA COLEGIAL - 24 DE ABRIL DE NIVEL 1. Nombre y Apellido:... Grado:... Sección:...
PRIMERA RONDA COLEGIAL - 24 DE ABRIL DE 2009 - NIVEL 1 Nombre y Apellido:................................. Grado:....... Sección:...... Puntaje:.......... Los dibujos correspondientes a los problemas de
GEOMETRÍA ANALÍTICA PARA LA CLASE. A (x 2 ;y 2 ) y 2. d(a,b) y 2 y 1. x 1 x 2. y 1. B (x 1 ;y 1 ) x 2. Geometría Analítica DISTANCIA ENTRE DOS PUNTOS
GEOMETRÍA ANALÍTICA La Geometría Analítica hace uso del Álgebra y la Geometría plana. Con ella expresamos y resolvemos fácilmente problemas geométricos de forma algebraica, siendo los sistemas de coordenadas
Seminario de problemas. Curso Hoja 5
Seminario de problemas. Curso 2014-15. Hoja 5 29. Encuentra los números naturales N que cumplen las siguientes condiciones: sus únicos divisores primos son 2 y 3, y el número de divisores de N 2 es el
open green road Guía Matemática CUADRILÁTEROS tutora: Jacky Moreno .co
Guía Matemática CUADRILÁTEROS tutora: Jacky Moreno.co 1. Polígonos Epistemológicamente, la palabra polígono significa muchos ángulos. Los polígonos son figuras cerradas planas que están formadas por la
Criterios de evaluación. Tema 1. Matemáticas. 5º Primaria
Criterios de evaluación. Tema 1. Matemáticas. 5º Primaria Leer, escribir, descomponer y comparar números de hasta nueve cifras Aproximar números naturales a distintos órdenes. Utilizar las aproximaciones
Trabajo Práctico de Orientación Segundo año (2012)
COLEGIO SECUNDARIO LA PLATA Colegio Secundario La Plata Educar para un mundo mejor Trabajo Práctico de Orientación Segundo año (01) 1) Resolver el siguiente ejercicio combinado con potencias y raíces:
Soluciones de los problemas del taller especial
Soluciones de los problemas del taller especial Este taller fue preparado para satisfacer la inquietud de los docentes que solicitaron más capacitación Olimpiada Akâ Porâ Olimpiada Nacional de Matemáticas
MATEMÁTICAS-FACSÍMIL N 12
MATEMÁTICAS-FACSÍMIL N 12 1. Se define A) B) C) E) 1 1 9 1 6 21 9 49 2 m p m p 2 1 =, luego = s t s t 5 2 2. En la figura ABC es equilátero y DCB es recto. Cuál(es) de las siguientes afirmaciones es(son)
XVIII OLIMPIADA NACIONAL DE MATEMÁTICA. Nombre y Apellido:... Grado:... Sección:... Puntaje:...
SEGUNDA RONDA COLEGIAL - 4 DE AGOSTO DE 2006 - NIVEL 1 Nombre y Apellido:........................... Grado:...... Sección:..... Puntaje:..... Los dibujos correspondientes a los problemas de Geometría,
RAZONAMIENTO GEOMÉTRICO
RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros
NIVEL 1 (6.º y 7.º grado)
NIVEL 1 (6.º y 7.º grado) 25.ª OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA 3ª RONDA ZONAL - 29 de junio de 2013 Nombre y Apellido:.............................................. Colegio:..........................
XXII OLIMPIADA NACIONAL DE MATEMÁTICA PRIMERA RONDA COLEGIAL - MAYO DE NIVEL 1
Primera Ronda Nivel 1 XXII OLIMPIADA NACIONAL DE MATEMÁTICA PRIMERA RONDA COLEGIAL - MAYO DE 2010 - NIVEL 1 Nombre y Apellido:................................. Grado:....... Sección:...... Puntaje:..........
2 da OLIMPIADA CIENTIFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA MATEMATICA 3 ra Etapa (Examen Simultáneo) 1ro. de secundaria
ro. de secundaria. Hallar la suma de todos los divisores pares de 000. Pedro escribe números racionales (fracciones) positivos simplificados con denominadores ó ó ó 4 ó 5 ó 6 y máximo 7 que son menores
EJERCICIOS DE EXPRESIONES ALGEBRAICAS
EJERCICIOS DE EXPRESIONES ALGEBRAICAS Ejercicio nº.- Epresa en lenguaje algebraico cada uno de los siguientes enunciados: a El 0% de un número. b El área de un rectángulo de base cm y altura desconocida.
PRUEBA DE CUARTO GRADO.
PRUEBA DE CUARTO GRADO. Francisco tiene 10 cajas y 44 monedas. Quiere poner las monedas en las cajas repartiéndolas de modo que cada caja contenga un número distinto de monedas. Puede hacerlo? Si puede,
INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES REPARTIDO Nº 6. 3) Calcular la diagonal de un cuadrado de 7 cm de lado.
REPARTIDO Nº 6 1) Calcular la hipotenusa de un triángulo rectángulo sabiendo que los catetos miden 6 cm y 8 cm respectivamente. 2) Si la hipotenusa de un triángulo rectángulo mide 13 cm y uno de sus catetos
. M odulo 7 Geometr ıa Gu ıa de Ejercicios
. Módulo 7 Geometría Guía de Ejercicios Índice Unidad I. Conceptos y elementos de geometría. Ejercicios Resueltos... pág. 02 Ejercicios Propuestos... pág. 09 Unidad II. Áreas y perímetros de figuras planas.
Esta prueba contiene 70 preguntas, divididas en las siguientes secciones:
MATEMÁTICA FACSÍMIL Esta prueba contiene 70 preguntas, divididas en las siguientes secciones: Números y proporcionalidad. Álgebra y funciones. Geometría. Estadística y probabilidades. Ejercicios de selección
XXI OLIMPIADA NACIONAL DE MATEMÁTICA
TERCERA RONDA REGIONAL - 22 DE AGOSTO DE 2009 - NIVEL 1 Nombre y Apellido:................................. Puntaje:.................... Colegio:................................... Grado:........... Sección:..........
25.º OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA CUARTA RONDA DEPARTAMENTAL NIVEL 1 17 de agosto de 2013
CUARTA RONDA DEPARTAMENTAL NIVEL 1 Nombre y Apellido:............................................... Colegio:............................. Grado/Curso:...... Sección:..... Ciudad:................................
CONCURSO NACIONAL DE MATEMÁTICA SECUNDARIA BÁSICA CURSO TEMARIO COMÚN
CONCURSO NACIONAL DE MATEMÁTICA SECUNDARIA BÁSICA CURSO 2005 2006 TEMARIO COMÚN NOMBRE: GRADO: ESCUELA: MUNICIPIO: TIEMPO: 4 HORAS. Una panadería vende panecillos a $0.30 cada uno, o 7 panecillos en $.00
Nivel: A partir de 4ESO. Solución: La relación entre la apotema y el lado del hexágono es la misma que entre la altura y
Página 1 de 9 SOLUCIONES MAYO 2017 Soluciones extraídas de los libros: XVI CONCURSO DE PRIMAVERA 2012 XVII CONCURSO DE PRIMAVERA 2013 Obtenibles en http://www.concursoprimavera.es#libros AUTORES: Colectivo
4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.
7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.
PRIMERA ELIMINATORIA NACIONAL
XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP ITCR UCR UNA UNED - MICIT PRIMERA ELIMINATORIA NACIONAL NIVEL A 01 Estimado (a) estudiante: La Comisión de las Olimpiadas Costarricenses de Matemática 01
NIVEL 1. Nombre y Apellido:... Puntaje:...
NIVEL 1 Nombre y Apellido:............................................ Puntaje:... Grado/Curso....... Sección:...... Los dibujos correspondientes a los problemas de Geometría, no están hechos a medida
Nombre y Apellido:... Puntaje:... Colegio:... Grado:... Teléfono (L B):... Celular: Número de Cédula de Identidad:...
XXII OLIMPIADA NACIONAL DE MATEMÁTICA RONDA REGIONAL 14 DE AGOSTO DE 2010 - NIVEL 1 PEGÁ TU STICKER AQUÍ Nombre y Apellido:............................................ Puntaje:......... Colegio:.......................................................
Enunciados de los problemas (1)
Enunciados de los problemas (1) Problema 1. El peso de tres manzanas y dos naranjas es de 255 gramos. El peso de dos manzanas y tres naranjas es de 285 gramos. Si todas las manzanas son del mismo peso
TERCER NIVEL (10, 11 y 12 )
OLIMPIADA COSTARRICENSE DE MATEMÁTICA PROYECTO INTERINSTITUCIONAL UNA-UNED-UCR-ITCR-MICIT-MEP SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL (10, 11 y 1 ) 01 OLCOMA-01 1. La medida del perímetro del triángulo
( ) ( ) SOLUCIONES MINIMOS 2º ESO TEMA 5 ECUACIONES. IES CINCO VILLAS TEMA 5 2º ESO Página 1. b) = 3. Ejercicio nº 1.- a) 4. b) 2x.
SOLUCIONES MINIMOS 2º ESO TEMA 5 ECUACIONES Ejercicio nº 1.- Indica cuál de los siguientes valores es solución de la ecuación x + 6 =. a) 4 b) 2 c) 4 c) 4 a) + 5 = 2 b) 3 + 5x = x 1 a) + 5 = 2 = 2 5 x
CURSO PROPEDÉUTICO 2017
CURSO PROPEDÉUTICO 2017 MATEMÁTICAS OBJETIVO GENERAL El alumno al término del curso tendrá un conocimiento sobre la importancia de las matemáticas para el desempeño de su vida profesional y personal, así
Alumno Fecha Actividad 13 Expresiones algebraicas 1º ESO
Alumno Fecha Actividad 1 Expresiones algebraicas 1º ESO Las expresiones que resultan de combinar números y letras relacionándolos con las operaciones habituales se llaman expresiones algebraicas y se utilizan
Guía Nº 1 - Revisión
A. Completar con V o F según sea verdadero o falso. 1) Dos ángulos opuestos por el vértice siempre son iguales. 2) Dos ángulos opuestos por el vértice son suplementarios. 3) Dos ángulos opuestos por el
Tema 6: Ecuaciones de primer y segundo grado x x
Matemáticas º ESO Ejercicios Tema Bloque II: Álgebra Tema : Ecuaciones de primer y segundo grado. A) Resuelve las siguientes ecuaciones de primer grado:.- 0.-.- 8.- 9.- ( ) ( ).- ( ) ( ) ( ) 8.- ( ) (
CANGURO MATEMÁTICO 2011 CUARTO DE SECUNDARIA
CANGURO MATEMÁTICO 20 CUARTO DE SECUNDARIA INDICACIONES Las marcas en la hoja de respuestas se deben realizar, únicamente, con LÁPIZ. Escriba su apellido paterno, apellido materno y nombres con letras
24ª OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA 3ª RONDA ZONAL - 30 de junio de 2012
Nombre y Apellido:............................................ Puntaje: Colegio:..........................Grado:............ E-mail:............... Fecha de nacimiento:.................nº de Cédula de
PRUEBA REGIONAL SÉPTIMO GRADO 2005
PRUEBA REGIONAL SÉPTIMO GRADO 2005 1.- Iván cobra en un banco un cheque por Bs. 270.000 y le pide al cajero que le entregue cierta cantidad de billetes de Bs. 1000, 20 veces esa cantidad de billetes en
Semejanza. Razones. Teorema de Thales. Proporciones. a = b. c d
Semejanza Razones Razones y proporciones Teorema de Thales Triángulos semejantes Teoremas de semejanza Teoremas de Euclides Perímetro y Área a) Razón. Es el cuociente entre dos números (positivos). b)
PRUEBA DE MATEMÁTICA FACSÍMIL N 2
PRUEBA DE MATEMÁTICA FACSÍMIL N. Si a - b = 5 y c d = 4, entonces 4a + c b 4d = A) 8 B) 9 C) 0 D) 9 E) 8. t es un número que cumple las siguientes tres condiciones: t > -6; 3t < 6. Entonces cuál de los
ÁNGULOS. 2. En el triángulo ABC, el ángulo B se obtiene aumentando en 50% el ángulo A o también reduciendo en 25% el ángulo C. Cuál es la medida de B?
ENTRENAMIENTO COMPETENCIA COTORRA 2015 GEOMETRÍA (PROBLEMAS INTRODUCTORIOS) IIS AMIR MADRID GARZÓN Enero / 2015 ÁNGULOS 1. Cuántos ángulos hay en la siguiente figura? a) 13 b) 14 c) 21 d) 18 2. En el triángulo
Guía de Estudio Matemáticas SEP En una multiplicación de signos diferentes, el resultado será: a) Negativo b) Indiferente c) Positivo d) Cero
1. En una multiplicación de signos diferentes, el resultado será: a) Negativo b) Indiferente c) Positivo d) Cero 2.- Los conjuntos A = {x N es un número impar positivo menor que 10} y B = {2, 3, 5, 6,
Taller especial de capacitación de los profesores del 4º Ciclo
Taller especial de capacitación de los profesores del 4º Ciclo Este taller fue preparado para satisfacer la inquietud de los docentes que solicitaron más capacitación Olimpiada Akâ Porâ Olimpiada Nacional
2.- Escribe la lectura o escritura de las siguientes fracciones:
EDUCACIÓN PREESCOLAR 04PJN0020V EDUCACIÓN PRIMARIA Decroly más que un colegio 04PPR0034O EDUCACION SECUNDARIA 04PES0050Z MARATON DE MATEMÁTICAS 1.- Una fracción está compuesta por un numerador y un denominador.
LICEO MILITAR GENERAL ARTIGAS 13 / 01 / 10
4 1 PRUEBA TEÓRICA INGRESO A CUARTO Complete correctamente las siguientes afirmaciones: a Cada uno de los ángulos de un triángulo equilátero mide... b Los lados opuestos de un paralelogramo son.. c La
PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA
CURSO PRE FACULTATIVO II-01 PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA 1. En una circunferencia de centro O, se traza el diámetro AB y se prolonga hasta el punto C a partir del
UNIVERSIDAD SIMÓN BOLÍVAR CATÁLOGO 2008 SOLUCIONARIO del MODELO DE EXAMEN DE ADMISIÓN
993 77 993 30 UNIVERSIDAD SIMÓN BOLÍVAR CATÁLOGO 008 SOLUCIONARIO del MODELO DE EXAMEN DE ADMISIÓN Resuelto por los profesores del Instituto ALBERT EINSTEIN Conocimientos de Matemática.- Se tiene: Desarrollando:
1. NÚMEROS NATURALES 2. POTENCIAS
. NÚMEROS NATURALES. Aplica la propiedad distributiva y opera: a) 5 (9 5)= b) (8 5+4) 6= c) (9 6) = d) (9+4 0+) =. Opera: a) (6 4) 5+6 (7 5)= b) (0 5 4) 7 (8 4):= c) (6+5 ) 8 (4 ) (5 )= d) 5+(6 8) (0 )
PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES:
PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES: http://espaiescolar.wordpress.com CONCEPTOS PREVIOS PROPORCIONALIDAD Recta: línea continua formada por
SOLUCIONES SEPTIEMBRE 2016
Página de 9 SOLUCIONES SEPTIEMBRE 206 Soluciones extraídas de los libros: XII CONCURSO DE PRIMAVERA 2008 XV CONCURSO DE PRIMAVERA 20 XVI CONCURSO DE PRIMAVERA 202 Obtenibles en http://www.concursoprimavera.es#libros
Secundaria Matemáticas 1
Secundaria Matemáticas 1 Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales pueden personalizar
Matemáticas Nivel 4 (con QuickTables)
Matemáticas Nivel 4 (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales
1. Teoremas válidos para triángulos rectángulos
1. Teoremas válidos para triángulos rectángulos Sea ABC triángulo rectángulo en C, entonces: El lado opuesto al ángulo recto, AB, es llamado HIPOTENUSA, y los lados AC y BC, CATETOS. cateto hipotenusa
TREBALL D ESTIU MATEMATIQUES 4t ESO
Pàgina 1 de 7 Alumnes suspesos: fer tot el treball obligatòriament. Altres alumnes: Es recomana que realitzeu aquells apartats on heu tingut més dificultats durant el curs. 1.- Efectúa las siguientes operaciones
ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2.
1. Resolver las siguientes ecuaciones en Q. ARITMÉTICA a) b) 3. x + 1 = 3 83 3,90x x = 3 31 c) 0,x + x 4,16 = 6 d) ( x ) ( x ) + 3 1 = + 1 4 e) f) g) x x + = 0,3 0, 6x 3 0, 6 1x + 6x = 0,3 8 0,86x 0,73
Nombre completo: Fecha: Clave:
Instituto Evangélico América Latina EDUCACIÓN A DISTANCIA PROCESO DE MEJORAMIENTO DEL APRENDIZAJE PRIMER SEMESTRE Matemática 2 Año Básico por Madurez Punteo Nombre completo: Fecha: Clave: I Serie: (7 puntos)
NIVEL 1 (6.º y 7.º grado)
NIVEL 1 (6.º y 7.º grado) 23.ª OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA Nombre y Apellido:............................................ Puntaje: Colegio:..........................Grado/Curso:............
Reporte de Actividades 15
Reporte de Actividades 15 Profesores: Arturo Ramírez, Alejandro Díaz. Tutores: Paulina Salcedo, Filomeno Alcántara. 1. Sesión del 8 de junio de 2011. 1.1 Resumen de la clase con Alejandro Díaz Barriga.
PROBLEMARIO CATEGORÍA 3 SECUNDARIA
PROBLEMARIO CATEGORÍA 3 SECUNDARIA Estimados estudiantes, recuerden que los problemas se resuelven con habilidad, utilizando algunas veces la lógica o inferencias, esto a través de un enfoque analítico,
INSTITUTO UNIVERSITARIO DE CALDAS GUÍA TALLER GEOMETRÍA ANALÍTICA. GRADO 11-4 DOCENTE: CRISTINA CANO.
Distancia entre dos puntos del plano INSTITUTO UNIVERSITARIO DE CALDAS Dados dos puntos cualesquiera A(1,y1), B(,y), definimos la distancia entre ellos, d(a,b), como la longitud del segmento que los separa.
C Capítulo 1. Capítulo 3. Capítulo 2. Adición y sustracción: resultados hasta 18. Suma y resta de números con 2, 3 y 4 dígitos
C Capítulo 1 Adición y sustracción: resultados hasta 18 Adición: resultados hasta 18... 1 escoge una estrategia...2 Adición de tres o cuatro números... 3 Oraciones matemáticas - conjunto solución... 4
TEMA 6 SEMEJANZA. APLICACIONES -
TEMA 6 SEMEJANZA. APLICACIONES - 1. SEMEJANZA: ESCALAS LECCIÓN I ESCALA: es el cociente entre cada longitud de reproducción (mapa, plano, maqueta) y la correspondiente longitud en la realidad. Es, por
donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.
Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices
Primaria Quinto Grado Matemáticas (con QuickTables)
Primaria Quinto Grado Matemáticas (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios
Ejercicios Resueltos: Geometría Plana y del Espacio
Ejercicios Resueltos: Geometría Plana y del Espacio 1. Determine el valor del ángulo en el triángulo de la figura: Ejercicios extraídos de pruebas parciales. Roberto Vásquez B. x x 4x x x 180º 1x 180º
Examen Nacional para la Educación Superior ENES PRUEBA PILOTO GG2
Examen Nacional para la Educación Superior ENES PRUEBA PILOTO GG2 Proceso de ingreso a la educación superior Junio 2014 1. Si un campanario toca 10 campanadas en 27 segundos. Cuántas campanadas tocará
a) 312 b) 322 c) 393 d)333 e) Ninguno a) 15 b) 14 c) 12 d) 10 e) Ninguno
1ro de Secundaria 1. (10 pts.) En una división el dividendo es 375, el divisor es 21, el cociente es 17 y el resto es 18. Hallar una división con el mismo cociente y cuyo resto sea el doble a) 312 b) 322
OLIMPÍADA JUVENIL DE MATEMÁTICA 2008 CANGURO MATEMÁTICO PRUEBA PRELIMINAR
OLIMPÍADA JUVENIL DE MATEMÁTICA 2008 CANGURO MATEMÁTICO PRUEBA PRELIMINAR 8 Y 9 GRADO RESPONDE LA PRUEBA EN LA HOJA DE RESPUESTA ANEXA 1. Cuántos cuadrados se pueden formar al unir con segmentos los puntos
Examen Canguro Matemático 2007 Nivel Olímpico
Examen Canguro Matemático 007 Nivel Olímpico Instrucciones: En la hoja de respuestas, llena el círculo que corresponda a la respuesta correcta para cada pregunta. Si en una misma pregunta aparecen dos
Anexo 2. Dificultad y porcentaje de aciertos de habilidades y conocimientos evaluados por el Excale 06 de Matemáticas
Anexo 2 Dificultad y porcentaje de aciertos de habilidades y conocimientos evaluados por el Excale 06 de Matemáticas Anexo 2: Dificultad y porcentaje de aciertos de habilidades y conocimientos evaluados
OLIMPÍADA RECREATIVA DE MATEMÁTICA CANGURO MATEMÁTICO PRUEBA PRELIMINAR PRUEBA CADETE SÉPTIMO GRADO
OLIMPÍADA RECREATIVA DE MATEMÁTICA CANGURO MATEMÁTICO PRUEBA PRELIMINAR PRUEBA CADETE SÉPTIMO GRADO 1) Hay 17 árboles desde la casa de Juan a su colegio. Juan marca algunos árboles con una cinta roja de
I Eliminatoria Separemos la figura así: Considere la figura: el área sonbreada en esta figura es 7,5. Ahora considere la figura:
1. Determine el área sombreada en la figura adjunta 11 (a) 15 (b) 16 (c) 17 (d) 18 Separemos la figura así: Considere la figura: el área sonbreada en esta figura es 7,5. Ahora considere la figura: 6 Su
Matemática. Conociendo unidades de medida. Cuaderno de Trabajo. Clase 7
Cuaderno de Trabajo Clase 7 Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales multigrado Cuaderno de trabajo Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales
ECUACIONES DE PRIMER GRADO. 3º ) Pasa todos los términos que contenga la incógnita a un lado de la igualdad y los demás al otro lado.
ECUACIONES DE PRIMER GRADO Para resolver las ecuaciones: 1º ) Quitar denominadores, si los tiene. Para ello se multiplica ambos lados de la igualdad por el mínimo común múltiplo de los denominadores. º
Teoremas del triángulo rectángulo
Pre-universitario Manuel Guerrero Ceballos Clase N 07 MODULO COMPLEMENTARIO Teoremas del triángulo rectángulo Resumen de la clase anterior Triángulos Elementos Generalidades Clasificación primarios secundarios
La suma de dos números consecutivos x + (x + 1) El cuádruple de la suma de dos números 4 (x + y)
TEMA 5 : ÁLGEBRA 1. Un número cualquiera x Un número más tres x + 3 El doble de un número La quinta parte de un número 2 x x 5 La suma de dos números consecutivos x + (x + 1) El cuádruple de la suma de
MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes
MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos
Tema 10: Problemas métricos en el plano
Tema 10: Problemas métricos en el plano 10.1 Relaciones angulares Construye un polígono de cinco lados, divídelo en triángulos para averiguar la suma de los ángulos interiores del pentágono. Nuestro pentágono
Serie de ejercicios para el examen de Matemáticas II PAE-Periodo
Serie de ejercicios para el examen de Matemáticas II PAE-Periodo 016-1 1- Se desea cercar un terreno de forma cuadrada que tiene una superficie de 400 m. Cuántos metros de tela de alambre se necesitan?
PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA
CURSO PRE FACULTATIVO 1-011 PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA 1. En una circunferencia de centro O, se traza el diámetro AB y se prolonga hasta el punto C a partir del
Mª Rosa Villegas Pérez
Mª Rosa Villegas Pérez FIGURAS PLANAS G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Polígonos.- / 14 POLÍGONOS Un polígono es una figura plana y cerrada formada al unir tres o
TEMARIO PARA EL EXAMEN DE RECUPERACIÓN 4TO AÑO SECUNDARIA 2013
TEMARIO PARA EL EXAMEN DE RECUPERACIÓN 4TO AÑO SECUNDARIA 2013 1.- FUNCIONES: Dominio y rango, función real de variable real, operaciones con funciones, composición de funciones. 2.- ÁNGULOS: congruencia
1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 25
1. ESQUEMA - RESUMEN Página. EJERCICIOS DE INICIACIÓN Página 6. EJERCICIOS DE DESARROLLO Página 17 5. EJERCICIOS DE REFUERZO Página 5 1 1. ESQUEMA - RESUMEN Página 1.1. EXPRESIONES ALGEBRAICAS. 1.. VALOR
Colegio Fernando de Aragón Departamento de matemática Prof. Sergio Moreno SEMEJANZA N 15 NOMBRE: II FECHA: / /201
Colegio Fernando de Aragón Departamento de matemática Prof. Sergio Moreno N lista: SEMEJANZA N 15 NOMBRE: II FECHA: / /201 ALTERNATIVAS Cómo se puede saber si los polígonos ABCD y A B C D (figura 1) son
REAL SOCIEDAD MATEMÁTICA ESPAÑOLA. XLIII OLIMPIADA MATEMÁTICA ESPAÑOLA Comunidad de Madrid. Primera sesión, viernes 24 de noviembre de 2006
REAL SOCIEDAD MATEMÁTICA ESPAÑOLA XLIII OLIMPIADA MATEMÁTICA ESPAÑOLA Comunidad de Madrid Primera sesión, viernes 4 de noviembre de 006 En la hoja de respuestas, rodea con un círculo la opción que creas
BÁSICOS DE GEOMETRÍA: Solución a los Ejercicios Propuestos
CONCEPTOS BÁSICOS DE GEOMETRÍA: Solución a los Ejercicios Propuestos Tutor Carmen Aleisy Rodríguez Junio de 009 Solución a los Ejercicios propuestos 1. El grafico muestra las rectas paralelas m y n y la
EGRESADOS. Matemática PROGRAMA. Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano. Ejercicios PSU
PROGRAMA EGRESADOS Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano Ejercicios PSU 1. Si P(3, 4) y Q(8, 2), entonces el punto medio de PQ es A) (11, 2) D) (5, 2) B) ( 5 2, 3 ) E)
SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1
SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT-A16V1 1 TABLA DE CORRECCIÓN Ítem Alternativa 1 B E Comprensión 3 B 4 B 5 D 6 C 7 E 8 A 9 A 10 B 11 C 1 C 13 B 14 E 15 A 16 D 17 B 18 D Comprensión
Guía Nº 3. CONTENIDOS: Perímetro y Área Nombre: Marque la alternativa correcta. Realice sus cálculos al costado de cada ejercicio.
SUBSECTOR : Electivo de Álgebra y Geometría NIVELES : IIIº/VIº Medio PROFESORES : Martín Andrés Martínez Santana AÑO : 017 CONTENIDOS: Perímetro y Área Nombre: Guía Nº IIIº/IV Marque la alternativa correcta.
