NÚMEROS ENTEROS Y DIVISIVILIDAD
|
|
|
- Salvador Quintana Toro
- hace 9 años
- Vistas:
Transcripción
1 TEMA 1. NÚMEROS ENTEROS Y DIVISIVILIDAD Roger Bacon, científico inglés, en el siglo XIII, dijo: El olvido de las matemáticas perjudica a todo el conocimiento, ya que el que las ignora no puede conocer las otras ciencias ni las cosas de este mundo. Se dice que una cuenta bancaria está en números rojos cuando tiene un saldo negativo (se ha sacado más dinero del que había y le debemos una cantidad al banco). La expresión números rojos viene de que antiguamente en los libros de contabilidad se registraban las cifras positivas en negro y las negativas en color rojo para que no hubiera errores. La palabra ARITMÉTICA es de origen griego. Aritmos significa número. La palabra CÁLCULO viene de los antiguos romanos que utilizaban piedras pequeñas para echar sus cuentas. En latín, calculus significa piedra pequeña. Hay faltas de ortografía? Los signos matematicos + y -, no se empezaron a husar hasta el siglo XV. La primera vez que aparecierón fue en una aritmetica comercial escrita en 1489 por Johan Widman un maestro calculista aleman. Antes se usaban las letras p y m, de latin plus y minus. IES ANTONIO CALVÍN 1
2 TEMA 1. NÚMEROS ENTEROS Y DIVISIBILIDAD 1. NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales son los números que utilizamos para contar los elementos de un conjunto. Hay cuatro macetas El conjunto de los números naturales se designa con la letra N N = 0,1,2,,30,..90. Pero hay situaciones que no se pueden expresar con números naturales, como por ejemplo: Tengo 4 en mi cuenta y me llega una factura de 10 cuál es mi nuevo saldo? 4-10 = El resultado de esta operación se sale del conjunto de los números naturales, ya que es un número negativo. El conjunto de los números enteros reúne a los números naturales (positivos y cero) y a los correspondientes negativos. Se designa por la letra Z Z =,-3, -2, -1, 0, 1, 2, 3, 4,. Números enteros en la recta. La representación gráfica del conjunto de los números enteros en la recta sería: A distancia desde un punto al origen es lo que se llama valor absoluto. El valor absoluto de un número entero es el que resulta al eliminar el signo y se representa entre dos barras verticales y 3 3 Dos números enteros son opuestos si tienen distinto signo e igual valor absoluto 5 y -5 son opuestos IES ANTONIO CALVÍN 2
3 ACTIVIDADES: 1. Representa mediante un número entero: a) He adelgazado 10 kg. b) He ingresado en mi cuenta 2000 c) Perdí en la lotería 400 d) Me han regalado por mi cumpleaños 50 e) Platón nació en el año 427 antes de Cristo f) La temperatura es de 8 grados centígrados bajo cero g) He crecido 10 cm. 2. Cuántos números naturales hay entre -6 y 6? Y enteros? 3. Ordena los siguientes números de menor a mayor: 3,+8,0,-1,-3, Indica el valor absoluto de los siguientes números: a) +222 = c) -48 = b) -323 = d) 48 = 5. En el ejercicio anterior, qué número tiene mayor valor absoluto? y menor? 6. Escribe dos números enteros que tengan el mismo valor absoluto. 7. Representa en una recta numérica los siguientes números y ordénalos de mayor a menor. 7, 3, -6, -9,5, 0, 1, -1 y -4 IES ANTONIO CALVÍN 3
4 8. Escribe: a) Todos los números enteros cuyo valor absoluto sea menor que 5. b) Todos los números enteros cuyo valor absoluto sea mayor que 7. c) Todos los números enteros cuyo valor absoluto sea igual a 8 2. OPERACIONES Suma y resta. Para sumar números positivos y negativos: Si los dos números tienen el mismo signo, se suman y el resultado tiene ese mismo signo = =-10 Si tienen signos distintos se restan y el resultado tendrá el signo del mayor = = -4 Al suprimir un paréntesis que tiene delante un signo más, los signos interiores no varían: +( ) = = 2 Al quitar un paréntesis que tiene delante un signo menos, los signos interiores se cambian: mas por menos y menos por mas. -(5 7 +4) = = - 2 IES ANTONIO CALVÍN 4
5 SIGNOS CON PARÉNTESIS +(+a) = +a +(-a) = - a -(+a) = - a -(-a) = +a ACTIVIDADES: 9. Primero quita paréntesis y después calcula: a) 11 ( ) b) ( ) (3 2 8) c) (2 5) (3 7) ( 6 + 1) d) 5 ( 3 10) + ( ) ( ) e) ( ) + ( ) IES ANTONIO CALVÍN 5
6 f) 7 -[5 (4 + 3) - 7] g) 9+ ( ) [4 +( ) ( )] h) 2537 ( ) ( ) 10. Calcula: a) b) 15 - [ 13 (6 8)] c) 2 - [6 (12 3 1)]- 8 IES ANTONIO CALVÍN 6
7 d) (6 10) - [(5 3) (4 6)] Multiplicación y división En la multiplicación y la división se emplea la misma regla de signos, que es la siguiente: El producto de dos números es: - Positivos si los factores tienen signos iguales. - Negativo si los factores tienen signos distintos REGLA DE SIGNOS + + = = = = + ACTIVIDADES: 11. Realiza las siguientes operaciones: a) (- 1) (+2) (-3) b) (-3) (-4) (-2) c) (-30):(-2) (+5) IES ANTONIO CALVÍN 7
8 d) (-30): [(-2) (+5)] e) (+75): (-25): (+3) f) (-30) : [(-24) : (+4)] 12. Calcula el valor de estas expresiones: a) (+60) : (+10) : (-2) b) (+60) : [(+10):(-2)] c) [(+8) (-9)] : [(+6) (-12)] Operaciones combinadas En las operaciones combinadas, la regla de prioridad es: 1. Se hacen las operaciones que están dentro del paréntesis 2. Las multiplicaciones y las divisiones en el orden en el que aparecen. 3. Las sumas y restas ACTIVIDADES: 13. Calcula: IES ANTONIO CALVÍN 8
9 a) 5 (3-7) + 4 (8:2) 5 (2-10) b) 3-2 [5-4 (7-3 2)] c) 22-[5 3-4 (8-3)]- 6 4 d) 2(3-7) :4:2(3-5) e) [2(8-6):4(7-3)]: [2(8-6):4(7-3)] f) -2(8:4-3) + 4(9-5) 4. LA RELACIÓN DE DIVISIBILIDAD La relación que existe entre dos números cuando uno contiene al otro una cantidad exacta de veces, recibe el nombre de relación de divisibilidad. Ejemplo: Se puede dividir una clase de 10 alumnos y alumnas en equipos de 5? Y en equipos de 7? 10 : 5 = 2 DIVISIÓN EXACTA IES ANTONIO CALVÍN 9
10 10 = 5 2 El 5 cabe exactamente dos veces en : 7 DIVISIÓN NO EXACTA 10 = El 7 no cabe un número exacto de veces en 10 Se dice que 10 es divisible entre 5 pero no entre 7 Múltiplos y divisores Cuando dos números están emparentados por la relación de divisibilidad, a uno lo llamamos múltiplo y a otro divisor. 10 : 5 es exacto, 10 es múltiplo de 5 y 5 es divisor de 10 ACTIVIDADES: 14. Se pueden envasar 125 litros en un número exacto de bidones de 5 l? y en bidones de 10l? 15. Busca todos los números x, tales que la división 80 :x sea exacta. IES ANTONIO CALVÍN 10
11 16. Es 1209 múltiplo de 13? Razona tu respuesta. 17. Busca: a) Tres múltiplos de 20; b) tres divisores de 20. Múltiplos de un número. Los múltiplos de un número son otros números que lo contienen una cantidad exacta de veces. Los múltiplos de un número a se obtienen al multiplicar a por cualquier otro número k: a k múltiplo de a 12 1 = = = = 48 12, 24, 36 y 48 son múltiplos de Divisores de un número. Los divisores de un número son otros números que caben en él una cantidad exacta de veces 12 : 1 = : 2 = 6 12: 3 = 4 12: 4 = 3 12 : 6 = 2 12 : 12 = 1 Los números 1,2,3,4,6 y 12 son todos los divisores de 12 ACTIVIDADES 18. Busca todos los divisores de : a) 15 b) 18 IES ANTONIO CALVÍN 11
12 c) 36 d) Busca los cinco primeros múltiplos de Busca el primer múltiplo de 13 mayor que 500. Mínimo común múltiplo de dos o más números El mínimo común múltiplo (m.c.m) de varios números, es el menor de sus múltiplos comunes. Para calcularlo se descomponen los números en factores primos y de todos los factores se toman los comunes y no comunes elevados al mayor exponente. ACTIVIDADES 21. Cacula el m.c.m de: a) (12,18) b) (84, 126) IES ANTONIO CALVÍN 12
13 c) (24,36) d) (4,6,8) e) (14,21) f) (60,72,90) IES ANTONIO CALVÍN 13
14 g) (36,45) h) (50,100,125) Máximo común divisor de dos o más números El máximo común divisor (M.C.D) es el mayor de sus divisores comunes. Para calcularlo se descomponen los números en factores primos y se toman sólo los factores comunes elevados al menor exponente. ACTIVIDADES 22. Calcula el M.C.D de: a) (50, 75) IES ANTONIO CALVÍN 14
15 b) ( 12,18,24) c) (63,99) d) (20,30,40) IES ANTONIO CALVÍN 15
16 e) (216, 240) f) (24,36,60) g) (165, 231) h) (360, 450) IES ANTONIO CALVÍN 16
17 EJERCICIOS: 1. Calcula: a) b) c) d) Quita paréntesis: a) a + (b + c) b) a (b +c) c) a + (b c) IES ANTONIO CALVÍN 17
18 d) a (b c) 3. Quita paréntesis y después opera: a) 1 (7-2 10) (3 8) b) (8 4 3) (5 8 1) c) (3 5) (1 4) + (5-8) d) 3 (5 8) (11 4) + (13 9) 4. Calcula operando primero dentro de los paréntesis: a) (2-6- 3) + (5-3- 1) (2 4-6) b) (8 11 5) (12 13) + (11 + 4) IES ANTONIO CALVÍN 18
19 c) 15 + ( ) ( ) + (1 3 6) 5. Quita paréntesis y calcula: a) 3 - [( 5 8) (3 6)] b) 1 (3 -[ 4 (1 3)]) c) (2 + 7) (5 -[6 (10 4)]) 6. Calcula: a) (-7) (+11) b) (-6) (-8) c) (+5) (+7) (-1) IES ANTONIO CALVÍN 19
20 d) (-2) (-3) (-4) e) (-45): (+3) f) (+85) : (+17) g) (+36) : (-12) h) (-85) : (-5) i) (-100 ) : ( -10) 7. Opera las expresiones siguientes: a) (+400) : (-40) : (-5) b) (+400) : [(-40) : (-5)] c) (+7) (-20) : (+10) d) (+7) [(-20): (+10)] IES ANTONIO CALVÍN 20
21 e) (+300) : (+30) (-2) f) (+300): [(+30) (-2)] 8. Calcula: a) b) c) 5 (-4)+(-2) 4-6 (-5)-3 (-6) d) (-4)-3 (-2) e) (-5) (8-13) f) (2+3-6) (-2) h) (+4) (1-9+2):(-3) IES ANTONIO CALVÍN 21
22 i) (-12-10):(-2-6-3) j) 13-[8-(6-3)-4 3] :(-7) k) 5 (8-3)-4 (2-7)+5 (1-6) l) 12 (12-14)-8 (16-11)-4 (5-17) 9. Realiza las siguientes operaciones: a) 18-40:(5+4-1)-36:12 b) 4+36:9-50:[12+(17-4)] c) 48:[5 3-2 (6-10)-17] IES ANTONIO CALVÍN 22
23 d) :[12+4 (2-7)+5] 10. Indica si es verdadero o falso: a) 195 es múltiplo de 13 b) 13 es divisor de 195 c) 745 es múltiplo de 15 d) 18 es divisor de Escribe los cinco primeros múltiplos de 15 que sean mayores de Escribe todos los divisores de Calcula cuánto debe valer a para que el número 71a: a) sea múltiplo de 2 b) sea múltiplo de 3 c) sea múltiplo de 5 IES ANTONIO CALVÍN 23
Divisibilidad I. Nombre Curso Fecha
Matemáticas 2.º ESO Unidad 1 Ficha 1 Divisibilidad I Un número b es divisor de otro número a si al dividir a entre b la división es exacta. Se dice también que a es múltiplo de b. 1. Completa con la palabra
RESUMEN DE CONCEPTOS
RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo
Los números naturales sirven para numerar. Por ejemplo, decimos que una alumna es la 15º (decimoquinta) de la lista.
MATEMÁTICAS ºACT TEMA. REPASO. NÚMEROS NATURALES. Cuando contamos los alumnos y alumnas de una clase o el número de losetas que hay en el suelo, lo contamos con los números naturales. Los números naturales
TEMA 1 NÚMEROS NATURALES
TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado
Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =
1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite
MATEMÁTICAS 2º ESO. TEMA 1
MATEMÁTICAS 2º ESO. TEMA 1 1. DIVISIBILIDAD Y NÚMEROS ENTEROS 1. Los divisores son siempre menores o iguales que el número. 2. Los múltiplos siempre son mayores o iguales que el número. 3. Para saber si
LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.
Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA III : LOS NÚMEROS ENTEROS Los números negativos. Su necesidad. El conjunto de los números enteros. Valor absoluto de un número entero. Opuesto de un número entero. Suma
Tema 1: NUMEROS ENTEROS
COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS 1º ESO. NÚMEROS ENTEROS Tema 1: NUMEROS ENTEROS Los números enteros (representados por la letra Z), son un conjunto de número
Ampliación Tema 3: Múltiplo y divisores
- Múltiplo. Divisible. Divisor Ampliación Tema 3: Múltiplo y divisores 56 8 56 es divisible por 8 0 7 56 es múltiplo de 8 Para indicar que 56 es múltiplo de 8 se escribe sobre el divisor 8 un punto :(8)
PRIORIDAD DE OPERACIONES:
PRIORIDAD DE OPERACIONES 1º Hay que resolver o quitar los paréntesis. º Se hacen las multiplicaciones y divisiones en el orden que aparezcan de izquierda a derecha º Se hacen las sumas y las restas en
Por ejemplo, la necesidad de representar el dinero adeudado, temperatura bajo cero, profundidades con respecto al nivel del mar, etc.
NÚMEROS ENTEROS 1. LOS NÚMEROS ENTEROS. Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el sustraendo, pero en la vida nos encontramos con operaciones de este
Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, }
Los números enteros La unión de los números naturales y los enteros negativos forma el conjunto de los números enteros, que se designa con la palabra Z. Está constituido por infinitos elementos y se representan
Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares.
1.- Divisibilidad Teoría (resumen) Múltiplos de un número. Son aquellos que se obtienen al multiplicar dicho número por los números naturales 1, 2, 3,. Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12,
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número
TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1
TEMA : Potencias y raíces Tema : Potencias y raíces ESQUEMA DE LA UNIDAD.- Concepto de potencia..- Potencias de exponente natural..- Potencias de exponente entero negativo..- Operaciones con potencias..-
POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.
1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.
Los números enteros. Dado que los enteros contienen los enteros positivos, se considera a los números naturales son un subconjunto de los enteros.
Los números enteros Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde
DIVISIBILIDAD NÚMEROS NATURALES
DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar
CURSO UNICO DE INGRESO 2010
INSTITUTO SUPERIOR ZARELA MOYANO DE TOLEDO PROF. ING. ELSA MEDINA CURSO UNICO DE INGRESO 2010 MATEMATICAS INTRODUCCION El presente material supone un REPASO sobre los temas fundamentales y necesarios para
NÚMEROS ENTEROS. Números naturales: sirven para contar, ordenar y comunicar información.
NÚMEROS ENTEROS 15 Números naturales: sirven para contar, ordenar y comunicar información. representa al conjunto de todos los número naturales. = {0, 1, 2, 3, 4, 5, 6, } Hay infinitos números naturales.
Ejercicios Pendientes Matemáticas 2º ESO Curso Números Enteros Los Números Enteros
Los 1) 2) 1 3) 4) 5) 9) ) 2 11) 12) 16) 3 17) 18) 19) 4 20) 21) En qué orden se realizan las operaciones con números enteros Para resolver varias operaciones combinadas con números enteros, se debe seguir
TEMA 2: NÚMEROS ENTEROS 1º ESO. MATEMÁTICAS
TEMA 2: NÚMEROS ENTEROS 1º ESO. MATEMÁTICAS Por qué aparecen los números enteros? Por qué aparecen los números enteros? La cueva de Voronia, es la cueva conocida más profunda de la Tierra, localizada
Operaciones de números racionales
Operaciones de números racionales Yuitza T. Humarán Martínez Adapatado por Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo El conjunto de los números racionales consiste
1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE AMPLIACIÓN Página 21
1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 7 3. EJERCICIOS DE DESARROLLO Página 19 4. EJERCICIOS DE AMPLIACIÓN Página 21 5. EJERCICIOS DE REFUERZO Página 22 1 1. ESQUEMA - RESUMEN
TEMA 3. NÚMEROS RACIONALES.
TEMA 3. NÚMEROS RACIONALES. Concepto de fracción Una fracción es el cociente de dos números enteros a y b, que representamos de la siguiente forma: b denominador, indica el número de partes en que se ha
Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c.
DIVISIBILIDAD Múltiplos Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c. 18 = 2 9 18 es múltiplo de 2, ya que resulta de multiplicar 2 por 9. Tabla
FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.
FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto
Ejercicios resueltos de aritmética
Ejercicios resueltos de aritmética 1) Calcula: a) 5 3 7 + 1 + 8 b) 2 3 + 4 + 1 8 + 2 c) 1 3 + 5 7 + 9 11 d) 2 + 4 6 8 + 10 12 + 14 2) Quita paréntesis: a) a + (b + c) b) a (b + c) c) a + (b c) d) a (b
CEIP Mediterráneo. 1º relación de divisibilidad: múltiplos y divisores.
Melilla DIVISIBILIDAD 1º relación de divisibilidad: múltiplos y divisores. Dos números están emparentados por la relación de divisibilidad cuando el cociente entre el mayor y el menor es exacto. El mayor
TEMA 1: NÚMEROS REALES
TEMA 1: NÚMEROS REALES 1. INTRODUCCIÓN El conjunto formado por los números racionales e irracionales es el conjunto de los números reales, se designa por Con los números reales podemos realizar todas las
CONJUNTO DE LOS NUMEROS ENTEROS
República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental Politécnica de la Fuerza Armada Núcleo Caracas CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS NUMEROS
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x
Opuesto de un número +3 + (-3) = (+5) = 0. N = 0,1, 2,3,4, Conjunto de los números naturales
Números enteros Opuesto de un número Los números enteros son una extensión de los números naturales, de tal forma, que los números enteros tienen signo positivo (+) ó negativo (-). Los números positivos
Tema 2. Divisibilidad. Múltiplos y submúltiplos.
Tema 2. Divisibilidad. Múltiplos y submúltiplos. En el tema 1, se ha mostrado como realizar cuentas con números naturales y enteros. Antes de conocer otras clases de números, los racionales, irracionales
Diviértete pensando: Expresa el numero 10 empleando 5 nueves. Indica, como mínimo, 2 procedimientos de los múltiples que hay para realizarlo.
PRIMER DÍA 1. Calcular el m.c.d. y m.c.m. de: 2, 10 y 0. ( m.c.d.= 12, m. c. m. = 210) 2. Responde justificando tu respuesta. Es 12 múltiplo de 11? b) Es 11 divisor de 12?. Completa la tabla es divisible
NÚMEROS ENTEROS. En la recta numérica se pueden representar los números naturales, el cero y los números negativos.
NÚMEROS ENTEROS El conjunto de los números enteros está formado por: Los números positivos (1, 2, 3, 4, 5, ) Los números negativos ( El cero (no tiene signo) Recta numérica En la recta numérica se pueden
1 Números enteros OBJETIVOS CONTENIDOS PROCEDIMIENTOS
898 _ 0-008.qxd /9/07 :0 Página Números enteros INTRODUCCIÓN La representación numérica en la recta de los números enteros nos introduce en el estudio de su ordenación y comparación, el concepto de valor
Matemáticas Orientadas a las Enseñanzas Aplicadas IES
Matemáticas Orientadas a las Enseñanzas Aplicadas IES Los números enteros y racionales. Contenidos 1. Números enteros. Representación y orden. Operaciones. Problemas. 2. Fracciones y decimales. Fracciones
Continuación Números Naturales:
Continuación Números Naturales: Múltiplos y divisores de un número natural. Reglas de divisibilidad. Mínimo común múltiplo y Máximo común divisor. Ejercicios de aplicación. Continuación Números Naturales:
TEMA 2 DIVISIBILIDAD 1º ESO
Alumno Fecha TEMA 2 DIVISIBILIDAD 1º ESO Si la división de un número A entre otro número B, es exacta, entonces decimos que: - El número A es divisible por el número B. Ej.: 12 : 4 = 3 12 divisible por
DIVISIBILIDAD 2 3 = 8. Es decir, el resultado de multiplicar 2 por cualquier número natural.
DIVISIBILIDAD I. Múltiplos y Divisores 1. MULTIPLOS Los múltiplos de 2 son = 2 2 1 = 4 2 2 = 6 2 3 = 8 2 4 etc Es decir, el resultado de multiplicar 2 por cualquier número natural. Múltiplo de un número
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual
PASAPALABRA BLOQUE NÚMEROS
EMPIEZA POR A 1) Rama de las Matemáticas que se encarga del estudio de los números y sus propiedades: ARITMÉTICA 2) Valor de una cifra, independientemente del lugar que ocupe o del signo que la precede:
TEMA 1 CONJUNTOS NUMÉRICOS
TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones
Representación de los números naturales
Números naturales El conjunto de los números naturales se representa por la letra, y está formado por: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...} Los números naturales sirven para contar los elementos de un
TEMA Nº 1. Conjuntos numéricos
TEMA Nº 1 Conjuntos numéricos Aprendizajes esperados: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales
2º. Representa en una recta numérica los números: (+4), (-3), (0), (+7), (-2), (+2) y luego escríbelos de forma ordenada.
TEMA 01 - NÚMEROS ENTEROS 1º. Indica el número que corresponde a cada letra. º. Representa en una recta numérica los números: (+) (-) (0) (+7) (-) (+) y luego escríbelos de forma ordenada. º. En un museo
FICHAS DE TRABAJO REFUERZO
FICHAS DE TRABAJO REFUERZO DEPARTAMENTO DE MATEMATICAS CONTENIDO 1. Números naturales a. Leer y escribir números naturales b. Orden de cifras c. Descomposición polinómica d. Operaciones combinadas e. Potencias
DIVISIBILIDAD. 1º relación de divisibilidad: múltiplos y divisores.
CEPA Carmen Conde Abellán Matemáticas IyII Divisibilidad DIVISIBILIDAD 1º relación de divisibilidad: múltiplos y divisores. Dos números están emparentados por la relación de divisibilidad cuando el cociente
2. Subraya los múltiplos de 4: Subraya los múltiplos de 2:
TEMA 2. DIVISIBILIDAD Se dice que entre dos números hay una relación de divisibilidad cuando al dividir el mayor de ellos entre el menor la división es exacta. Se dice entonces que el número mayor es múltiplo
13 ESO. «El estudio es un esfuerzo total para aprender, y sólo es verdaderamente provechoso cuando se aprende» Morgan. Profesor
«El estudio es un esfuerzo total para aprender, y sólo es verdaderamente provechoso cuando se aprende» 13 ESO Morgan. Profesor N N ÍNDICE: EL NIF DIA DEL MEDIO AMBIENTE 1. NÚMEROS NATURALES 2. MÚLTIPLOS
DIVISIBILIDAD NÚMEROS NATURALES
DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar
Conjunto de Números Racionales.
Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números
GAIA.- Números Enteros
GAIA.- Números Enteros 1.- EL CONJUNTO DE LOS NÚMEROS ENTEROS.- El conjunto de los números enteros está formado por todos los números naturales (N) precedidos del signo más (+), los números naturales precedidos
UNIDAD: NÚMEROS Y PROPORCIONALIDAD. Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números
GUÍA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS NÚMEROS NATURALES (ln) Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números naturales NÚMEROS ENTEROS (Z) Los elementos
Tema 2 Divisibilidad
1. Relación de Divisibilidad Tema 2 Divisibilidad Entre dos números a y b existe la relación de divisibilidad si al dividir a : b la división es exacta. Existe la relación de divisibilidad entre estos
Tema 1 Conjuntos numéricos
Tema 1 Conjuntos numéricos En este tema: 1.1 Números naturales. Divisibilidad 1.2 Números enteros 1.3 Números racionales 1.4 Números reales 1.5 Potencias y radicales 1.7 Logaritmos decimales 1.1 NÚMEROS
primarios = 3; 5 4 = 1; 2(3) = 6; 3. Observa todos los valores usados en
Unidad 1. Conjuntos de números II. Operaciones y expresiones 1. Operaciones con números racionales. Las operaciones con números racionales las estamos realizando desde los grados 12 primarios. 1 + 2 =
TEMA 1: NÚMEROS ENTEROS
Números enteros 1 OBJETIVO 1: Significado de los números enteros TEMA 1: NÚMEROS ENTEROS 1. Expresa las siguientes situaciones con números enteros a) El año 2500 a.c... b) Pasear por la orilla del mar...
Instrucciones. 1. Revisión de conceptos asociados a los números enteros. 2. Desarrollo de ejemplos en pizarra.
Colegio Antil Mawida Departamento de Matemática Profesora: Nathalie Sepúlveda Guía nº1 Taller PSU Refuerzo Contenido y Aprendizaje N Fecha Tiempo 2 Horas Nombre: Unidad Nº Núcleos temáticos de la Guía
UNIDAD 12: ESTADISTICA. OBJETIVOS
UNIDAD 12: ESTADISTICA. OBJETIVOS Conocer y manejar los términos básicos del lenguaje de la estadística descriptiva elemental. Conocer y manejar distintas técnicas de organización de datos estadísticos
Los números enteros y racionales
Los números enteros y racionales Objetivos En esta quincena aprenderás a: Representar y ordenar números enteros Operar con números enteros Aplicar los conceptos relativos a los números enteros en problemas
Números fraccionarios y decimales
Unidad didáctica Números fraccionarios y decimales 1.- Las fracciones. a Una fracción es un número racional, escrito en la forma, tal que b 0 y representa una parte b de un total. El denominador (el número
Los Números Enteros (Z)
Los Números Enteros (Z) Los números enteros: representación gráfica, orden, modulo o valor absoluto. Operaciones en Z, procedimientos y propiedades de estas. Prioridades de operaciones y paréntesis. Problemas
TEMA 1. Números Reales. Teoría. Matemáticas
1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo
Refuerzo. Matemáticas 2ESO
Refuerzo Matemáticas 2ESO Índice 1 Números enteros 1. Conocer los números enteros y representarlos en la recta numérica 8 2. Comparar números enteros 9 3. Sumar y restar dos números enteros 10 4. Escribir
UNIDAD DIDÁCTICA #1 CONTENIDO
UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA
Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.
Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones
1. NUMEROS REALES a. Los Números Reales
1. NUMEROS REALES a. Los Números Reales Los números reales comprenden todo el campo de números que utilizamos en las matemáticas, a excepción de los números complejos que veremos en capítulos superiores.
Suma de números enteros
NÚMEROS ENTEROS. RESUMEN Los números enteros son del tipo: = {... 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5...} Es decir, los naturales, sus opuestos (negativos) y el cero. Valor absoluto El valor absoluto de un
SUBDIRECCION DE EDUCACION DEPARTAMENTO COLEGIOS LICEO CAMPESTRE CAFAM GUIA DE APRENDIZAJE No. 1 AREA: MATEMATICAS
SUBDIRECCION DE EDUCACION DEPARTAMENTO COLEGIOS LICEO CAMPESTRE CAFAM GUIA DE APRENDIZAJE No. 1 AREA: MATEMATICAS ASIGNATURA: Matemáticas TEMA: Números Naturales GRADO: Quinto PERIODO: Primero PROFESOR:
EXPRESIONES ALGEBRAICAS. POLINOMIOS
Unidad didáctica 5 EXPRESIONES ALGEBRAICAS. POLINOMIOS. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones
Múltiplos y divisores
Múltiplos y divisores Para practicar. Es 6 múltiplo de,,,, 6,,,,? Aplica los criterios de divisibilidad o realiza la división para ver si el resto es 0. o Divisibilidad por o por que la última cifra lo
EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS
EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS
Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9
Números Naturales Cuando comenzamos a contar los objetos, los años, etc, nos hemos encontrado con los números de forma natural; por eso a este conjunto de números así aprendidos se les denomina números
Suma de números enteros
NÚMEROS ENTEROS. RESUMEN Los números enteros son del tipo: = {... 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5...} Es decir, los naturales, sus opuestos (negativos) y el cero. Valor absoluto El valor absoluto de un
UNIDAD 2. MÚLTIPLOS Y DIVISORES
UNIDAD. MÚLTIPLOS Y DIVISORES. MÚLTIPLOS DE UN NÚMERO.. DIVISORES DE UN NÚMERO. 3. NÚMEROS PRIMOS Y NÚMEROS COMPUESTOS. 4. CRITERIOS DE DIVISIBILIDAD. 5. MÍNIMO COMÚN MÚLTIPLO. 6. MÁXIMO COMÚN DIVISOR..
RADICACIÓN EN LOS REALES
RADICACIÓN EN LOS REALES La raíz n ésima de un número real es otro número real tal que: n a b si y solo si b n Donde el signo se llama radical, n es el índice, a es el radicando y b es la raíz. En la radicación
Unidad 2. Los números enteros.
Unidad 2. Los números enteros. Ubicación curricular en España: 6º Primaria, 1º ESO, 2º ESO. Objetos de aprendizaje: 2.1 Introducción a los números enteros. Expresar situaciones de la vida cotidiana en
Tema 1 : NÚMEROS NATURALES. DIVISIBILIDAD. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.
2009 Tema 1 : ÚMEROS ATURALES. DIVISIBILIDAD. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León mgdl 01/01/2009 Tema 01: úmeros aturales. Divisibilidad IDICE: 01.
Apuntes de los NÚMEROS REALES
Apuntes de los NÚMEROS REALES Apuntes y notas tomadas de la dirección URL: http://dgenp.unam.mx/direccgral/secacad/cmatematicas/pdf/m4unidad03.pdf pág. 1 tres posibilidades ESQUEMA DE LOS NÚMEROS REALES
Tutorial MT-b1. Matemática Tutorial Nivel Básico. Elementos básicos de Aritmética
12345678901234567890 M ate m ática Tutorial MT-b1 Matemática 2006 Tutorial Nivel Básico Elementos básicos de Aritmética Matemática 2006 Tutorial Algunos elementos básicos de Aritmética Marco teórico: 1.
FIN EDUCATIVO FIN INSTRUCTIVO
FIN EDUCATIVO Todos somos números en las Matemáticas de la vida, con valores: absolutos, relativos, positivos y negativos. Los primeros representan a nuestras cualidades y virtudes ; los segundos a los
Aritmética para 6.º grado (con QuickTables)
Aritmética para 6.º grado (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales
*Número natural, el que sirve para designar la cantidad de. *El cero, a veces, se excluye del conjunto de los números
*Número natural, el que sirve para designar la cantidad de elementos que tiene un cierto conjunto, y se llama cardinal de dicho conjunto. *Los números naturales son infinitos. El conjunto de todos ellos
TEMA 4: EXPRESIONES ALGEBRAICAS.
TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso
MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural.
MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Múltiplos de un número Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural. Por ejemplo, si multiplicamos 9x2
Ámbito Científico y Tecnológico. Repaso de números enteros y racionales
Ámbito Científico y Tecnológico. Repaso de números enteros y racionales 1 Prioridad de las operaciones Si en una operación aparecen sumas, o restas y multiplicaciones o divisiones, el resultado varía según
Los números naturales
Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos
UNIDAD 1: NÚMEROS NATURALES
UNIDAD 1: NÚMEROS NATURALES 1. Calcula: Ya conoces las cuatro operaciones básicas, la suma, la resta, multiplicación y división. Cuando te aparezcan varias operaciones para realizar debes saber la siguiente
El Conjunto de los Números Naturales
Objetivos El Conjunto de los Carlos A. Rivera-Morales Álgebra Objetivos Tabla de Contenido Objetivos 1 Propiedades de los Objetivos Objetivos: Discutiremos: el conjunto de los números naturales Objetivos
Un número natural a es múltiplo de otro número b si la división a : b es una división exacta.
Divisibilidad en MÚLTIPLOS DE UN NÚMERO Un número natural a es múltiplo de otro número b si la división a : b es una división exacta Ejemplo: 60 es múltiplo de 4 porque la división 60 : 4 = 5 es exacta
I.E.S. VICTORIA KENT DEPARTAMENTO DE MATEMÁTICAS Pág. 1 de 9 ACTIVIDADES DE REFUERZO DE MATEMÁTICAS DE 1º DE E.S.O. UNIDAD 3: DIVISIBILIDAD
DEPARTAMENTO DE MATEMÁTICAS Pág. de 9 Ejercicio nº.- ACTIVIDADES DE REFUERZO DE MATEMÁTICAS DE º DE E.S.O. UNIDAD : DIVISIBILIDAD Responde a las preguntas y justifica tus respuestas: a) El número 8 es
Los Conjuntos de Números
Héctor W. Pagán Profesor de Matemática Mate 40 Debemos recordar.. Los conjuntos de números 2. Opuesto. Valor absoluto 4. Operaciones de números con signo Los Conjuntos de Números Conjuntos importantes
PLAN DE RECUPERACIÓN DE MATEMÁTICAS 1º ESO (Para alumnos de 2º de ESO)
PLAN DE RECUPERACIÓN DE MATEMÁTICAS 1º ESO (Para alumnos de 2º de ESO) 1 NOMBRE: Para aprobar las matemáticas pendientes de cursos anteriores es obligatorio realizar el plan de recuperación correspondiente
ESCUELA PREPARATORIA OFICIAL NO.16 GUIA DE ESTUDIO PARA EL EXAMEN ORAL DE PENSAMIENTO NUMÉRICO Y ALGEBRAICO I EJERCICIOS DE NUMEROS NATURALES
TEMA: EJERCICIOS DE NUMEROS NATURALES 1.- Ordena de menor a mayores estos números 597-746 - 265-246 - 384-665 - 915 318 2.- Ordena de mayor a menor estos números: 341-516 - 448-718 - 400-814 - 375 719
El Conjunto de los Números Naturales
Objetivos El Conjunto de los Carlos A. Rivera-Morales Álgebra Objetivos Tabla de Contenido Objetivos 1 Propiedades de los Objetivos Objetivos: Discutiremos: el conjunto de los números naturales Objetivos
TEMA 2 FRACCIONES MATEMÁTICAS 2º ESO
TEMA 2 FRACCIONES Criterios De Evaluación de la Unidad 1 Utilizar de forma adecuada las fracciones para recibir y producir información en actividades relacionadas con la vida cotidiana. 2 Leer, escribir,
TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.
TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de
