Esfuerzo de Corte en Elementos Uniaxiales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Esfuerzo de Corte en Elementos Uniaxiales"

Transcripción

1 Esfuerzo de Corte en Elementos Uniaxiales. Introducción Este capítulo está dedicado al estudio de las tensiones tangenciales en la sección transversal de una viga debido a la acción de fuerzas cortantes transversales. Se considera además, el problema relacionado con vigas de secciones armadas con partes longitudinales unidas entre si por tornillos, pegamento, o soldadura. El estudio que se realiza en este capítulo, sólo se limita al análisis elástico de la sección transversal.. Observaciones Preliminares Es importante puntualizar que la fuerza de corte está inseparablemente ligada a una variación del momento de flexión en secciones adacentes de una viga. Entonces, si una fuerza de corte un momento de flexión están presentes en una sección de una viga, un momento de flexión diferente existirá en una sección adacente, aunque la fuerza de corte permanezca constante. Esto conduce al establecimiento de las tensiones de corte sobre los planos longitudinales imaginarios que son paralelos al eje del miembro. Por lo tanto, como en un punto del sólido existen tensiones de corte iguales sobre planos mutuamente perpendiculares, quedarán determinadas las tensiones de corte cua dirección coincide con la de la fuerza de corte en una sección. Considerar la viga simplemente apoada mostrada en la Fig., en conjunto con sus respectivos diagramas de momento de flexión fuerza (esfuerzo) de corte. Del equilibrio de momento se obtiene la relación entre la variación del momento de flexión esfuerzo de corte para una longitud diferencial dx de la viga. Esta relación tiene la forma siguiente dm Vdx o dm V () dx

2 P P Diagrama de momento de flexión dx a + P a + Pa - P Diagrama de esfuerzo de corte Fig.. Diagramas de fuerza de corte momento flexión para la carga mostrada Antes de proceder con un análisis detallado, puede resultar conveniente analizar la secuencia de fotografías mostrada en la Fig., en que el modelo representa un segmento de una viga I. En la Fig. a, pueden verse bloques que simulan la distribución de tensiones normales causados por momentos de flexión. Se supone que el momento de flexión a la derecha de la sección en maor que el de la izquierda. Este sistema de fuerzas está en equilibrio siempre que las fuerzas de corte verticales V (no mostradas) actúen también sobre el segmento de viga. Separando el modelo a lo largo de la línea neutra se obtienen dos partes separadas del segmento de viga, tal como se muestra en la Fig. b. Cada segmento de viga debe estar en equilibrio. Si estos segmentos de viga estuviesen conectados por un perno, las fuerzas axiales en la parte superior o inferior causadas por los momentos de flexión deben estar en equilibrio por una fuerza en dicho perno. La fuerza horizontal transmitida por el perno, es la necesaria para equilibrar la fuerza axial neta causada por las tensiones de flexión actuando sobre las dos secciones adacentes. La fuerza axial neta se muestra esquemáticamente en la Fig. c, donde suponiendo un momento de flexión cero en la izquierda, sólo las tensiones normales debido al incremento del momento de flexión en el segmento de la viga, tienen que mostrarse actuando sobre la derecha. Si inicialmente esta viga de sección I es considerada de una pieza no requiere de un perno para su fabricación, puede usarse un plano longitudinal imaginario para separar el segmento de viga en dos partes, tal como lo muestra la Fig. d.

3 Fig.. Modelo del flujo de corte en una sección de una viga I. Aplicando equilibrio en la dirección longitudinal, puede encontrarse el valor de la fuerza neta que debe desarrollarse en el plano de corte imaginario para mantener el equilibrio. Dividiendo esta fuerza entre el área del corte horizontal imaginario, se obtiene la tensión de corte promedio que actúa en este plano. Después de encontradas las tensiones de corte sobre uno de los planos longitudinales, las tensiones de corte en el plano perpendicular a éste de un elemento infinitesimal, también resultan conocidas a que deben ser numéricamente iguales. 3

4 El proceso descrito es bastante general, dos ilustraciones adicionales de la determinación de las tensiones tangenciales se muestran en las Figs. e f. En la Fig. e se muestra el cálculo de las tensiones de corte en un plano longitudinal ubicado en la conexión del ala con el alma de la viga I. En cambio, en la Fig. e el plano de corte es vertical, lo que permite el cálculo de las tensiones tangenciales en dicho plano. 3. Flujo de Corte Considerar una viga (lineal) elástica formada por varios elementos longitudinales continuos cuas secciones transversales se muestran en la Fig. 3a. El análisis presentado a continuación es válido para una viga de sección transversal arbitraria. Para que esta viga trabaje como un miembro integral, se supone que los elementos longitudinales están sujetos entre sí por medio de pernos verticales. Un elemento de esta viga, aislado por dos secciones paralelas perpendiculares al eje de la viga, se muestra en la Fig. 3b. Si el elemento mostrado en la Fig. 3b está sometido a un momento de flexión +M A en el extremo A a +M B en el extremo B, se desarrollan tensiones de flexión que actúan normales a la secciones. Estas tensiones varían linealmente desde los respectivos ejes neutros, en cualquier punto (fibra) a una distancia de eje neutro son - M B /I sobre el extremo B M A /I sobre el extremo A. Se aísla el elemento superior de la sección de la viga, tal como lo muestra la Fig. 3c. Se pueden calcular las fuerzas resultantes longitudinales F A F B en los extremos A B respectivamente, a partir de la distribución de tensiones normales de las áreas sobre cuales éstas actúan. En el extremo B se tiene que M B M BQ F B M B da da (a) I I I A fghj A fghj Q da Afghj (b) A fghj La integral que define a Q (Ec. (b)) es el primer momento o momento estático del área fghj respecto al eje neutro. Por definición, es la distancia del eje neutro al centroide o centro de gravedad del área fghj (A fghj ). 4

5 Fig. 3. Análisis sobre elementos longitudinales para obtener el flujo de corte en una viga. En forma análoga, basándose en la Fig. 3c, se obtiene el valor de la fuerza normal resultante en el extremo A. Por lo tanto, F A M AQ M A da (3) I I Aabde donde el significado de Q es el mismo que en la Ec. () a que para vigas prismáticas un área fghj es igual al área abde. Para una mejor compresión del significado del valor de Q, la Fig. 4 ilustra la manera de calcular su valor. Si los momentos de flexión en los extremos A B fuesen iguales, se tendría que F A F B los pernos mostrados en la Fig. 3a sólo mantendrían los elementos longitudinales unidos sin resistir ninguna fuerza longitudinal conocida. 5

6 Fig. 4. Procedimiento para determinar Q Por otra parte, si M A es diferente a M B, lo que ocurre cuando existe la presencia de esfuerzo de corte entre dos secciones adacentes, F A es distinto de F B generando una maor fuerza resultante axial en uno de los extremos de la viga (A o B) considerados. Entonces, si M A M B, el equilibrio axial en la Fig 3c sólo puede alcanzarse si se desarrolla una fuerza resistente R en el perno (Fig. 3d). Si M A < M B, se cumple la relación F A + R F B. La fuerza R tiende a cortar el perno en el plano del elemento edfg. Es importante señalar que las fuerzas ( F B - F A ) R no son colineales, pero el elemento mostrado en la Fig. 3c está en equilibrio. Para evitar confusiones, las tensiones de corte que actúan en los planos verticales se omiten en el diagrama. Considerando equilibro de momento en el elemento de viga de longitud dx (Fig. 3b), se tiene que M B M A + dm. De igual manera, el equilibrio de las fuerzas longitudinales se satisface si F B - F A df. Sustituendo estas relaciones en las expresiones de F B F A, con las áreas fghj abde tomadas iguales, se obtiene una expresión para el empuje o tirón longitudinal df, dada por df M A + dm M A dm FB FA Q Q Q (4) I I I 6

7 En vez de trabajar con una fuerza resultante df que se desarrolla en una longitud dx, resulta más conveniente obtener una fuerza similar por unidad de longitud de la viga. Esta cantidad se obtiene dividiendo la fuerza df por la distancia dx. La cantidad df/dx se designará por q se le llama flujo de corte. Luego, recordando que dm/dx V, se obtiene la siguiente expresión para el flujo de corte en elementos sometidos a flexión df dm q da VA dx dx I A fghj I fghj VQ I (5) En la Ec. (5), I es el momento de inercia de toda la sección transversal respecto al eje neutro; V representa el esfuerzo de corte en la sección investigada; para determinar Q el área a considerar se extiende a un lado del nivel donde q se investiga. 4. Determinación de la Tensión de Corte. La fórmula para determinar las tensiones de corte para vigas puede obtenerse modificando la fórmula del flujo de corte. En forma análoga al procedimiento anterior, un elemento de viga sometido a flexión puede aislarse entre dos secciones adacentes tomadas perpendicularmente al eje de la viga. Considerar la Fig. 5 en que se muestra el equilibrio de un elemento de viga de longitud dx sometido a flexión. Para tal elemento, existe una variación del diagrama de momento en su longitud lo que induce a la existencia del esfuerzo de corte (Fig. 5a). Del equilibrio longitudinal se obtiene df dm dmq da dma I fghj (6a) I I A fghj Suponiendo que la tensión de corte τ está uniformemente distribuida sobre la sección de ancho t (Fig. 5c), la tensión de corte en el plano longitudinal puede obtenerse dividiendo df entre el área tdx. Sin embargo para un elemento infinitesimal, tensiones de corte numéricamente iguales actúan sobre planos mutuamente perpendiculares (Fig. 5b). 7

8 Fig. 5. Obtención de las tensiones de corte en una viga. Por lo tanto, la misma relación da simultáneamente la tensión de corte longitudinal la tensión de corte en el plano de la sección vertical en el corte longitudinal. Entonces, df dm Afghj τ (6b) dxt dx It resultando Esta relación puede simplificarse considerando que dm/dx V por la Ec. (5), A VQ q τ V fghj (7) It It t Para desarrollar la fórmula que permite obtener la tensión de corte τ en vigas, Ec. (7) que se conoce como fórmula de Jourask, se utilizaron los tres conceptos básicos de la mecánica de sólidos:. Condiciones de equilibrio a. determinar fuerza de corte en una sección b. relación entre la fuerza de corte variación del momento de flexión 8

9 c. determinar fuerza en sección longitudinal que permite obtener la tensión de corte promedio.. Geometría de deformación a. secciones planas permanecen planas después de ocurrida la deformación (variación lineal de las deformaciones unitarias normales) b. se asume que el efecto de alabeo debido al esfuerzo de corte es despreciable 3. Le constitutiva a. Le de Hooke es válida Estas condiciones hacen que el problema sea tratado como unidimensional la geometría de deformación supuesta es insensible a los efectos de las fuerzas concentradas /o cambios en las secciones transversales de vigas. Nuevamente se aplica en principio de Saint-Venant: sólo a distancias maores que la altura del miembro desde tales perturbaciones, son exactas las soluciones. 5. Alabeo de Secciones Planas debido a las Tensiones de Corte Una solución basada en la teoría matemática de la elasticidad para una viga rectangular sometida simultáneamente a flexión corte, muestra que las secciones perpendiculares al eje de la viga se alabean, es decir, no permanecen planas. De acuerdo a la le de Hooke, las deformaciones unitarias de corte deben estar asociadas a tensiones de corte. La variación parabólica de las tensiones de corte en la sección transversal de una viga de sección rectangular, indica que la tensión deformación unitaria máximas de corte se producen en 0 (eje neutro). Este comportamiento alabea las secciones inicialmente planas de una viga, como se muestra en la Fig. 6a, contradice la hipótesis fundamental de la teoría de flexión pura. Sin embargo, con base en análisis rigurosos, se sabe que el alabeo de las secciones es importante en elementos mu cortos que es tan pequeño para miembros esbeltos que puede ser ignorado. Esto puede ser justificado por los estudios de elementos finitos bidimensionales en los voladizos rectangulares mostrados en la s Figs. 6b 6c. 9

10 (a) (b) (c) Fig. 6. (a) Distorsiones por corte en una viga; configuración deformada de un modelo de elementos finitos: (b) de un voladizo corto (c) voladizo esbelto. En la Fig. 6b, se observa un alabeo considerable de las secciones inicialmente planas del voladizo corto. En contraste, para el miembro esbelto de la Fig. 6c, el alabeo de las secciones es imperceptible. Este estudio, junto con un examen de los resultados de estudios analíticos experimentales, sugiere que la hipótesis de secciones planas es razonable. 6. Limitaciones de la Fórmula de la Tensión de Corte La fórmula de la tensión de corte para vigas se basa en la fórmula de la flexión. Por consiguiente, todas las limitaciones impuestas a la fórmula de flexión le son aplicables. El material se supone de comportamiento lineal-elástico con el mismo módulo elástico en tracción en compresión. La teoría desarrollada sólo se aplica a vigas rectas, existiendo además otras limitaciones que no están presentes en la fórmula de la flexión. Considerar una sección a través de una viga I, tal como se consideró en algún ejemplo anterior mostrado en la Fig. 7a. Las tensiones de corte que se calculan para el 0

11 nivel - son aplicables al elemento infinitesimal a. La tensión de corte vertical es cero para este elemento, igualmente que para un elemento infinitesimal ubicado en un plano perpendicular. Además este último plano es la superficie superior de la viga, por condición de borde o frontera, es superficie libre (sin tensiones). Una condición diferente se encuentra cuando se estudian las tensiones de corte en el nivel - de la viga I. Las tensiones de corte son no nulas para los elementos infinitesimales b c, lo que induciría tensiones de corte no nulas en los planos perpendiculares respectivos. En estos últimos planos deben satisfacerse las condiciones de borde o frontera de la viga, que indican que son superficies libres de tensiones. Por lo tanto, las condiciones de frontera no son satisfechas en los elementos infinitesimales b c. Procedimientos más avanzados de la teoría matemática de la elasticidad o del análisis tridimensional de elementos finitos deben usarse para obtener una solución exacta del problema. Sin embargo, la limitación antes mencionada de la fórmula de la tensión de corte para vigas, no es seria. Las tensiones de corte verticales en las alas de la viga I son pequeñas, comparadas con las tensiones desarrolladas en el alma. Por lo tanto, ningún error apreciable se comete al usar la formula de tensión de corte (Ec. (7)) para miembros de pared delgada la maoría de las vigas pertenecen a este grupo. (a) (b) Fig. 7. Limitaciones de la fórmula de tensión de corte.

12 Una situación similar a la anteriormente descrita se tiene en el caso de vigas de sección circular maciza (Fig. 7b). Un análisis de las condiciones de borde de miembros circulares, lleva a la conclusión que cuando las tensiones de corte están presentes deben actuar en forma paralela a la frontera. Como no pueden existir tensiones de corte concordantes sobre la superficie libre de la viga, ninguna componente de la tensión de corte puede actuar de manera normal a la frontera. Sin embargo, de acuerdo a la Ec. (7), tensiones de corte verticales de igual intensidad actúan en todo nivel, como el ac de la Fig. (7b). Esto es incompatible con las condiciones de frontera para los elementos a c por lo que la solución entregada por la Ec. (7) es inconsistente. Afortunadamente, las tensiones de corte máximas que ocurren al nivel del eje neutro satisfacen las condiciones de frontera (para maor detalle ver, A.H.E. Love, Mathematical Theor of Elasticit, 4ª ed. Nueva York, Dover, 944, pp. 348). Para este caso, las tensiones son paralélelas al eje - (Fig. 7b) es razonable suponer que su distribución es uniforme a lo largo de la línea neutra. Para el caso de una sección circular hueca con radios interno externo iguales a r r respectivamente, las tensiones tangenciales en puntos ubicados sobre la línea neutra son paralelas al eje -, es razonable suponer que se distribuen en forma uniforme a lo ancho del espesor de la sección. Además es importante señalar que la fórmula de Jourask, Ec. (7), no es válida aplicarla en vigas no prismáticas. 7. Tensiones de Corte en Elementos de Pared Delgada En las Secciones 3 4 se determinó que para calcular el flujo de corte la tensión de corte promedio en una sección de forma arbitraria se utilizan las Ecs. (5) (7), respectivamente. Estas ecuaciones se utilizarán en esta sección para determinar tanto el flujo cortante q como la tensión de corte τ en elementos de secciones de pared delgada como lo son, entre otras, las alas de una viga T doble T, sección cajón, paredes de tubos estructurales. Considerar la viga de sección doble T mostrada en la Fig. 8a. Si, por ejemplo, los momentos de flexión positivos aumentan de izquierda a derecha (Fig. 8b), maores fuerzas normales actúan en extremo derecho. Para los elementos de longitudes dx mostrados, τtdx o qdx deben audar a la menor fuerza normal que actúa sobre el área en

13 estudio. Este análisis determina el sentido de las tensiones de corte longitudinales. Sin embargo, tensiones de corte numéricamente iguales actúan sobre planos mutuamente perpendiculares de un elemento infinitesimal, convergiendo o divergiendo de los vértices del elemento. (d) Fig. 8. Tensiones de corte en elementos de pared delgada. La magnitud de las tensiones de corte varía para los diferentes cortes verticales. Por ejemplo, si e corte c-c en la Fig. 8a está en el borde de la viga, el área achurada sería cero. Sin embargo, si el espesor del ala es constante el corte c-c se hace cada vez más cerca del alma, el área achurada crece desde cero a razón constante. Además, como es el mismo para cualquiera de estas áreas, Q también crece linealmente desde cero hacia el alma. Por lo tanto como V e I son constantes en cualquier sección a través de la viga, el flujo de corte q (VQ/I) sigue la misma variación lineal. Si el espesor del ala t es constante, 3

14 la tensión de corte τ (q/t) también variará linealmente. La misma variación de q τ se aplica sobre ambos lados del eje de simetría vertical de la sección transversal. Sin embargo, como se muestra en la Fig. 8c, estas cantidades actúan en sentidos opuestos sobre el plano de la sección de la viga. Al integrar las tensiones de corte mostradas en la Fig. 8c, se puede determinar las fuerzas equivalentes que actúan en los elementos de la sección producto del esfuerzo de corte V. La magnitud de la fuerza F mostrada en la Fig. 8d, es igual a F q b τ c max c max bt (8) Para determinar el flujo de corte en la unión del ala alma, como en el corte a-a de la Fig. 8ª, debe usarse toda el área del ala multiplicada por para obtener el valor de Q. Este procedimiento implica que para determinar el flujo de corte vertical en la sección a-a, deben sumarse los flujos horizontales que actúan en el ala en la intersección con el alma. Este análisis demuestra que para una sección I de pared delgada sometida a un esfuerzo de corte V, la resistencia al corte se desarrolla principalmente en el alma (Fig. 8d). El sentido da las tensiones flujos de corte en el alma de la viga, coincide con el sentido de la fuerza de corte V. Notar que el flujo de corte vertical (alma), se divide al llegar al ala inferior. Esto se representa en la Fig. 8d por las dos fuerzas F, que son el resultado de los flujos de corte horizontales en el ala. Las fuerzas de corte que actúan en una viga de sección I se muestran en la Fig. 8d. Por condiciones de equilibrio, las fuerzas verticales deben actuar a través del centro de gravedad de la sección transversal para que coincidan con V. En este caso, el miembro no presentará torsión. Esto se cumple para las secciones con un eje de simetría. Para evitar la torsión de tales miembros, las fuerzas aplicadas deben pasar por la intersección del plano de simetría el eje de la viga. 4

15 8. Carga Asimétrica de Elementos de Pared Delgada. Centro de Corte El análisis de los efectos de cargas transversales vistos en el capítulo de flexión en las secciones precedentes se limitó principalmente a elementos con un plano vertical de simetría a cargas aplicadas en ese plano. Se observó que los elementos se flexionan en el plano de carga, en cualquier sección trasversal el momento de flexión M esfuerzo de corte V generan tensiones normales tangenciales, respectivamente. En esta sección se analizan los efectos de cargas transversales en elementos de pared delgada sin plano vertical de simetría. Para ello, considerar la sección canal mostrada en la Fig. 9a, en que la carga vertical P pasa por su centro de gravedad. El análisis de la sección se concentra en la distribución del flujo de corte de las tensiones tangenciales producto de la carga vertical P, utilizando las Ecs. (5) (7) respectivamente. Considerar el corte vertical c-c mostrado en la Fig. 9a. En el elemento horizontal de la sección canal (ala) la distribución del flujo de corte q tensión de corte τ es lineal con un máximo en el vértice a, tal como se muestra en la Fig. 9b. Para el caso del elemento vertical de la sección canal (alma), tanto el flujo de corte como la tensión de corte varían en forma parabólica, con un máximo a la altura del centro de gravedad de la sección (eje de simetría horizontal eje neutro). La fuerza resultante F sobre el ala de la sección canal está dada por (Fig. 9c) τ F a bt (9a) la fuerza vertical sobre el alma de la sección canal está dada por (Fig. 9c) h / V τ dt (9b) h / De la Fig. 9c de las Ec. (9), se observa que en la sección canal se desarrollan una fuerza vertical V un par (momento) igual a hf. Por lo tanto, debido a que existe un momento neto distinto de cero actuando en la sección, ésta tiende a girar en torno a su eje 5

16 longitudinal (efecto del momento de torsión). Para impedir que la sección gire en torno a un eje longitudinal, las fuerzas externas deben equilibrar el par interno hf. Considerar la Figs. 9c d, en que la carga P se aplica con una excentricidad e a la línea centra del alma de la sección canal. La carga P es equilibrada por la fuerza de corte V, de igual magnitud sentido opuesto actuando en el alma de la sección. Para que la sección no gire, el par Pe debe ser igual al par hf (no existe torsión). Por lo tanto, Pe hf hf e P / τ abth / bthvq P PIt a a b h t 4I (0) De la Ec. (0) se deduce que el valor de e es independiente de la carga P, así como de su posición a lo largo de la viga. Un análisis similar puede realizarse considerando una carga externa P aplicada en forma horizontal a la sección de la viga, de manera de no causar una torsión neta. Para este caso, sección canal, el plano de carga coincide con el plano del eje neutro, que además es un eje de simetría de la sección. La intersección de estos dos planos mutuamente perpendiculares, planos de carga que no producen torsión neta, localiza un punto que se llama centro de corte o centro de torsión. Este punto se localiza, para cualquier sección transversal, sobre una línea longitudinal paralela al eje de la viga (cetro de gravedad). Si la fuerza transversal es aplicada a través del centro de cortante, no se induce torsión en la viga. En caso contrario, la sección girará en torno a un eje longitudinal que contiene al centro de torsión. Fig. 9. Posición del centro de cortante de una sección canal. 6

17 9. Energía de Deformación: Efecto Tensión de Corte Considerar un sólido tridimensional de material lineal-elástico en estado de equilibrio ante la acción de cargas externas F i. El sólido puede considerarse como un conjunto de elementos (cubos) infinitesimales sometidos a un estado particular de tensión, tal como se muestra en la Fig. 0. F 3 F σ τ z τ x τ z τ zx σ z τ xz τ x σ x F Fig. 0. Sólido deformable en equilibrio El incremento de la energía de deformación du para un elemento infinitesimal de volumen dv, puede escribirse de la siguiente forma du [ σ ε + σ ε + σ ε + τ γ + τ γ + τ γ ]dv x x z z x x z z xz xz () Integrando el incremento de la energía de deformación du, sobre el volumen del sólido V, se obtiene la energía total de de formación U del sistema. La expresión final de la energía de deformación U del sistema es de la forma U [ σ xε x+ σ ε + σ zε z+ τ xγ x+ τ zγ z+ τ xzγ xz]dv V () 7

18 8 Para el caso particular de un elemento sometido sólo a tensión de corte, considerar τ x τ x, τ xz τ z 0 de manera que la Ec () se reduce a [ ]dv U V x x γ τ (3) Considerando la fórmula de Jourask (Ec. (7)) para la determinación de τ x la le de Hooke para relacionar τ x γ x, se obtiene la siguiente expresión para la energía de deformación debido a ala tensión de corte τ x A l V V x dadl t Q G I V dv G t I Q V dv G U ) ( ) ( τ ( ) dl A G V dl GA V dadl t Q AG I A V U l l A l α α / ) ( ) ( (4) donde el término (A/α) de denomina área efectiva de corte da t Q I A A ) ( ) ( α.

Elementos Uniaxiales Sometidos a Carga Axial Pura

Elementos Uniaxiales Sometidos a Carga Axial Pura Elementos Uniaiales Sometidos a Carga ial ura Definición: La Tensión representa la intensidad de las fuerzas internas por unidad de área en diferentes puntos de una sección del sólido aislada (Fig. 1a).

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m. Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más

Más detalles

CURSO: MECÁNICA DE SÓLIDOS II UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

CURSO: MECÁNICA DE SÓLIDOS II UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA CURSO: MECÁNICA DE SÓLIDOS II PROFESOR: ING. JORGE A. MONTAÑO PISFIL CURSO DE

Más detalles

Escuela Superior Tepeji del Río

Escuela Superior Tepeji del Río Escuela Superior Tepeji del Río Área Académica: Ingenieria Industrial Asignatura: Resistencia de los Materiales Profesor(a):Miguel Ángel Hernández Garduño Periodo: Julio- Diciembre 2011 Asignatura: Resistencia

Más detalles

CAPÍTULO IV: ANÁLISIS ESTRUCTURAL 4.1. Introducción al comportamiento de las estructuras Generalidades Concepto estructural Compo

CAPÍTULO IV: ANÁLISIS ESTRUCTURAL 4.1. Introducción al comportamiento de las estructuras Generalidades Concepto estructural Compo CAPITULO 0: ACCIONES EN LA EDIFICACIÓN 0.1. El contexto normativo Europeo. Programa de Eurocódigos. 0.2. Introducción al Eurocódigo 1. Acciones en estructuras. 0.3. Eurocódigo 1. Parte 1-1. Densidades

Más detalles

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS TUTORIAL BÁSICO DE MECÁNICA FLUIDOS El tutorial es básico pues como habréis visto en muchos de ellos es haceros entender no sólo la aplicación práctica de cada teoría sino su propia existencia y justificación.

Más detalles

**********************************************************************

********************************************************************** 13.1.- Representar las leyes de variación del momento flector, el esfuerzo cortante y el esfuerzo normal en la viga de la figura, acotando los valores más característicos. Hallar además la epresión analítica

Más detalles

Fig. 18. Flexión asimétrica o inclinada de una viga con sección transversal doblemente simétrica

Fig. 18. Flexión asimétrica o inclinada de una viga con sección transversal doblemente simétrica 8. Flexión Asimétrica (Biaxial) de Vigas 8.1 Introducción En esta sección, el análisis de la flexión en elementos-vigas, estudiado en las secciones precedentes, es ampliado a casos más generales. Primero,

Más detalles

CURVATURA EN COLUMNAS

CURVATURA EN COLUMNAS UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLIVAR UNIDAD DE ESTUDIOS BASICOS DEPARTAMENTO DE CIENCIAS AREA DE MATEMATICA CURVATURA EN COLUMNAS Prof. Cristian Castillo Sección 02 Presentado por: Olivera Ricardo

Más detalles

CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES

CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES 15.0. SIMBOLOGÍA A g A s d pilote f ce β γ s área total o bruta de la sección de hormigón, en mm 2. En una sección hueca A g es el área de hormigón solamente

Más detalles

Pontificia Universidad Católica de Chile Facultad de Física. Estática

Pontificia Universidad Católica de Chile Facultad de Física. Estática Pontificia Universidad Católica de Chile Facultad de Física Estática La estática es una rama de la Mecánica Clásica que estudia los sistemas mecánicos que están en equilibrio debido a la acción de distintas

Más detalles

La transformada de Laplace como aplicación en la resistencia de materiales

La transformada de Laplace como aplicación en la resistencia de materiales Docencia La transformada de Laplace como aplicación en la resistencia de materiales Agustín Pacheco Cárdenas y Javier Alejandro Gómez Sánchez Facultad de Ingeniería, UAQ; Depto. Ciencias Básicas, ITQ Facultad

Más detalles

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011

Más detalles

C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE

C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE COMENTARIOS AL CAPÍTULO 6. BARRAS EN FLEXIÓN SIMPLE Para tener una respuesta simétrica de la sección en flexión simple y evitar efectos torsionales, se exige que cuando sean más de una las arras de los

Más detalles

Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE

Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE 3.1 BARRA PRISMÁTICA SOMETIDA A UN ESFUERZO NORMAL CONSTANTE Consideremos

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos

Más detalles

Examen de TEORIA DE MAQUINAS Junio 07 Nombre...

Examen de TEORIA DE MAQUINAS Junio 07 Nombre... Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real Cátedra de ngeniería Rural Escuela Universitaria de ngeniería Técnica grícola de Ciudad Real Tema : FORMUL DE L FLEXON Fórmula general de la fleión: Momento de inercia módulo resistente. Efecto de la forma

Más detalles

Estudio de fallas asimétricas

Estudio de fallas asimétricas Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Estudio de fallas asimétricas Autor: Ingeniero Gustavo L. Ferro Prof. Adjunto Electrotecnia EDICION 2012 1.

Más detalles

Anexo A: Modelación de vigas en PERFORM 3D. Figura A.1: Geometría de la viga VT-06-A.

Anexo A: Modelación de vigas en PERFORM 3D. Figura A.1: Geometría de la viga VT-06-A. Anexo A: Modelación de vigas en PERFORM 3D Se muestra un modelamiento de una viga asimétrica VT-06-A con un f c= 21 Mpa (210 kg-f/cm 2 ), módulo de Poisson ν=0.15 y modulo elástico E= 2.13 E+08 Mpa (2.1737E+09

Más detalles

1 er Problema. 2 Problema

1 er Problema. 2 Problema Facultad de Contaduría Administración. UNAM Lugares geométricos Autor: Dr. José Manuel Becerra Espinosa MATEMÁTICAS BÁSICAS LUGARES GEOMÉTRICOS Eisten dos problemas fundamentales en la Geometría Analítica:.

Más detalles

Estática. Fuerzas Internas

Estática. Fuerzas Internas Estática 7 Fuerzas Internas Objectivos Método de las secciones para determinar las cargas internas o solicitaciones en un miembro. Describir la tensión interna de corte o cizalla y el momento interno de

Más detalles

TRABAJO PRACTICO N 6 COLUMNAS ARMADAS

TRABAJO PRACTICO N 6 COLUMNAS ARMADAS TRABAJO PRACTICO N 6 COLUMNAS ARMADAS Ejercicio Nº 1: Definir los siguientes conceptos, indicando cuando sea posible, valores y simbología utilizada: 1. Eje fuerte. Eje débil. Eje libre. Eje material.

Más detalles

Resistencia de los Materiales

Resistencia de los Materiales Resistencia de los Materiales Clase 4: Torsión y Transmisión de Potencia Dr.Ing. Luis Pérez Pozo luis.perez@usm.cl Pontificia Universidad Católica de Valparaíso Escuela de Ingeniería Industrial Primer

Más detalles

CONSIDERACIONES GENERALES SOBRE ESTÁTICA

CONSIDERACIONES GENERALES SOBRE ESTÁTICA CONSIDERACIONES GENERALES SOBRE ESTÁTICA Índice 1. CONCEPTOS ÚTILES 2 1.1. Configuración geométrica de un sistema....................... 2 1.2. Ligaduras....................................... 2 1.3. Coordenadas

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Fuerza y movimiento. Definiciones. Carrocería no resistente a la torsión PGRT

Fuerza y movimiento. Definiciones. Carrocería no resistente a la torsión PGRT Definiciones Definiciones Es importe realizar correctamente la fijación de la carrocería, puesto que una fijación incorrecta puede producir daños en la carrocería, la fijación y el bastidor del chasis.

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

CAPÍTULO V ESFUERZOS DEBIDO A FLEXIÓN Y CORTANTE. El objetivo de este capítulo es ilustrar el procedimiento seguido para obtener los esfuerzos

CAPÍTULO V ESFUERZOS DEBIDO A FLEXIÓN Y CORTANTE. El objetivo de este capítulo es ilustrar el procedimiento seguido para obtener los esfuerzos CAPÍTULO V ESFUERZOS DEBDO A FLEXÓN Y CORTANTE El objetivo de este capítulo es ilustrar el procedimiento seguido para obtener los esfuerzos que son producidos por el momento flexionante y la fuerza cortante

Más detalles

INGENIERIA CIVIL EN MECANICA VESPERTINO GUÍA DE LABORATORIO ASIGNATURA PROCESOS DE FABRICACIÓN II NIVEL 03 EXPERIENCIA C911

INGENIERIA CIVIL EN MECANICA VESPERTINO GUÍA DE LABORATORIO ASIGNATURA PROCESOS DE FABRICACIÓN II NIVEL 03 EXPERIENCIA C911 INGENIERIA CIVIL EN MECANICA VESPERTINO GUÍA DE LABORATORIO ASIGNATURA PROCESOS DE FABRICACIÓN II NIVEL 03 EXPERIENCIA C911 FUERZA DE CORTE EN EL TORNEADO HORARIO: VIERNES 19:00 A 21:30 HORAS 1 1.- OBJETIVOS

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

MECANICA DE MEDIOS CONTINUOS 2º INGENIERO GEOLOGO

MECANICA DE MEDIOS CONTINUOS 2º INGENIERO GEOLOGO 1.- La chapa rectangular ABCD de la Figura 1 está anclada en el punto A y colgada de la cuerda SC. Determinar la tensión de la cuerda y la fuerza en el punto de anclaje A cuando la chapa soporta una carga

Más detalles

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras. Ingeniería Estructural. Introducción

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras. Ingeniería Estructural. Introducción Departamento de Mecánica de Medios Continuos y Teoría de Estructuras Ingeniería Estructural Introducción Puede definirse, en general, una estructura como:...conjunto de elementos resistentes capaz de mantener

Más detalles

III. Análisis de marcos

III. Análisis de marcos Objetivo: 1. Efectuar el análisis de estructuras de marcos. 1. Introducción. Aquellas estructuras constituidas de vigas unidimensionales conectadas en sus extremos de forma pivotada o rígida son conocidas

Más detalles

Estática. Equilibrio de un cuerpo rígido

Estática. Equilibrio de un cuerpo rígido Estática 5 Equilibrio de un cuerpo rígido Objectivos Escribir las ecuaciones de equilibrio de un cuerpo rígido. Concepto de diagrama de cuerpo libre para un cuerpo rígido. Resolver problemas de equilibrio

Más detalles

Módulo 2. Deflexiones en vigas

Módulo 2. Deflexiones en vigas Módulo 2 Deflexiones en vigas Introducción Todos los cuerpos reales se deforman bajo la aplicación de una carga, elástica o plásticamente. Un cuerpo puede ser tan insensible a la deformación que el supuesto

Más detalles

La Distancia de un Punto a una Recta y de un Punto a un Plano, y un Teorema de Pitágoras en Tres Dimensiones

La Distancia de un Punto a una Recta y de un Punto a un Plano, y un Teorema de Pitágoras en Tres Dimensiones 58 Sociedad de Matemática de Chile La Distancia de un Punto a una Recta y de un Punto a un Plano, y un Teorema de Pitágoras en Tres Dimensiones Miguel Bustamantes 1 - Alejandro Necochea 2 El propósito

Más detalles

Centro de gravedad de un cuerpo bidimensional

Centro de gravedad de un cuerpo bidimensional Centro de gravedad de un cuerpo bidimensional Al sumar las fuerzas en la dirección z vertical y los momentos alrededor de los ejes horizontales y y x, Aumentando el número de elementos en que está dividida

Más detalles

Campo de velocidades se puede representar mediante una función potencial φ, escalar

Campo de velocidades se puede representar mediante una función potencial φ, escalar Flujo Potencial Campo de velocidades se puede representar mediante una función potencial φ, escalar Condición necesaria flujo irrotacional, V=0. Hipótesis: Flujo irrotacional, incompresible y permanente

Más detalles

Estática Profesor Herbert Yépez Castillo

Estática Profesor Herbert Yépez Castillo Estática 2015-1 Profesor Herbert Yépez Castillo Introducción 8.1 Tipos de Estructuras Armaduras Marcos Máquinas 8.2 Armadura Estabilidad y determinación estática externas Estabilidad y determinación estática

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

Mecánica. Cecilia Pardo Sanjurjo. Tema 04. Cables. DPTO. DE INGENIERÍA ESTRUCTURAL Y MECÁNICA

Mecánica. Cecilia Pardo Sanjurjo. Tema 04. Cables. DPTO. DE INGENIERÍA ESTRUCTURAL Y MECÁNICA Mecánica Tema 04. Cables. Cecilia Pardo Sanjurjo DPTO. DE INGENIERÍA ESTRUCTURAL Y MECÁNICA Este tema se publica bajo Licencia: CreaHve Commons BY NC SA 3.0 Cables Los hilos o cables son elementos ampliamente

Más detalles

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES No 3 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Dibujar líneas de campo a través del mapeo de líneas equipotenciales.

Más detalles

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f 1) Se utiliza una barra de acero de sección rectangular para transmitir cuatro cargas axiales, según se indica en la figura.

Más detalles

20 Dinámica + elementos finitos (caso lineal) Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales

20 Dinámica + elementos finitos (caso lineal) Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 20 Dinámica + elementos finitos (caso lineal) Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Nota Una deducción teóricamente rigurosa de las ecuaciones

Más detalles

GEOMETRÍA ANALÍTICA EJERCITARIO DE FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) UNIVERSIDAD NACIONAL DE ASUNCIÓN

GEOMETRÍA ANALÍTICA EJERCITARIO DE FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) UNIVERSIDAD NACIONAL DE ASUNCIÓN UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO DE GEOMETRÍA ANALÍTICA (ÁLGEBRA VECTORIAL - PRÁCTICA) AÑO 2014 ÁLGEBRA VECTORIAL - EJERCICIOS

Más detalles

Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE

Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE 4.1 GENERALIDADES Se dice que una pieza está sometida a flexión pura

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

PROGRAMA INSTRUCCIONAL

PROGRAMA INSTRUCCIONAL UNIVERSIDAD FERMIN TORO VICE-RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE COMPUTACION ESCUELA DE ELÉCTRICA ESCUELA DE TELECOMUNICACIONES PROGRAMA AL FUNDAMENTOS DE RESISTENCIA DE LOS MATERIALES

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento.

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. ELECTROSTATICA Carga Eléctrica Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. Aparecen fuerzas de atracción n o repulsión

Más detalles

MECANICA I Carácter: Obligatoria

MECANICA I Carácter: Obligatoria UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL MECANICA I Carácter: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE DE CREDITO HT

Más detalles

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV Profesor: Cristian Castillo Bachilleres: Yessica Flores María Palma Roselvis Flores Ciudad Bolívar; Marzo de 2010 Movimiento

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo Guía 3 Fuerza y Momentum Nombre: Fecha: Concepto de Fuerza Por nuestra experiencia diaria sabemos que el movimiento de un cuerpo

Más detalles

APUNTES DE GEOMETRÍA ANALÍTICA

APUNTES DE GEOMETRÍA ANALÍTICA CAPÍTULO 1: LA RECTA EN EL PLANO Conceptos Primitivos: Punto, recta, plano. APUNTES DE GEOMETRÍA ANALÍTICA Definición 1 (Segmento) Llamaremos segmento a la porción de una línea recta comprendida entre

Más detalles

EQUILIBRIO. 1. La suma algebraica de fuerzas en el eje X que se denominan Fx, o fuerzas con dirección horizontal, es cero.

EQUILIBRIO. 1. La suma algebraica de fuerzas en el eje X que se denominan Fx, o fuerzas con dirección horizontal, es cero. EQUILIBRIO. Un cuerpo está en equilibrio cuando se encuentra en reposo o tiene un movimiento uniforme. Analíticamente se expresa cuando la resultante de las fuerzas que actúan sobre un cuerpo es nula,

Más detalles

ICNC: Diseño de sistemas de arriostramiento transversal y fuera de plano para estructuras aporticadas

ICNC: Diseño de sistemas de arriostramiento transversal y fuera de plano para estructuras aporticadas ICC: Diseño de sistemas de arriostramiento transversal y fuera de plano para Esta ICC ofrece orientaciones sobre el diseño de sistemas de arriostramientos transversal y fuera de plano para. Índice 1. Generalidades

Más detalles

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO OLIMPIADA DE FÍSICA 011 PRIMER EJERCICIO Con ayuda de una cuerda se hace girar un cuerpo de 1 kg en una circunferencia de 1 m de radio, situada en un plano vertical, cuyo centro está situado a 10,8 m del

Más detalles

Problemas métricos. 1. Problemas afines y problemas métricos

Problemas métricos. 1. Problemas afines y problemas métricos . Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas

Más detalles

MECANICA DE LOS FLUIDOS

MECANICA DE LOS FLUIDOS MECANICA DE LOS FLUIDOS 7 FUNDAMENTOS DEL FLUJO DE FLUIDOS Ing. Alejandro Mayori Flujo de Fluidos o Hidrodinámica es el estudio de los Fluidos en Movimiento Principios Fundamentales: 1. Conservación de

Más detalles

Primer examen parcial del curso Física II, M

Primer examen parcial del curso Física II, M Primer examen parcial del curso Física II, 106015M Prof. Beatriz Londoño 11 de octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre! Hojas sin nombre no serán corregidas El

Más detalles

TRAZADO DE LÍNEAS EQUIPOTENCIALES

TRAZADO DE LÍNEAS EQUIPOTENCIALES TRAZADO DE LÍNEAS EQUIPOTENCIALES Nota: Traer, por comisión, dos hojas de papel carbónico de x 30 cm c/u, una hoja A3 o similar de 5 x 30 cm un pendrive o cualquier otro tipo de dispositivo estándar de

Más detalles

Caja Castilla La Mancha CCM

Caja Castilla La Mancha CCM CCM Caja Castilla La Mancha .INTRODUCCION El hormigón armado es un material compuesto que surge de la unión de hormigón en masa con armadura de acero, con el fin de resolver el problema de la casi nula

Más detalles

8. Ensayos con materiales

8. Ensayos con materiales 8. Ensayos con materiales Los materiales de interés tecnológico se someten a una variedad de ensayos para conocer sus propiedades. Se simulan las condiciones de trabajo real y su estudia su aplicación.

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 10.1.- Qué longitud debe tener un redondo de hierro (G = 80.000 MPa), de 1 cm de diámetro para que pueda sufrir un ángulo de

Más detalles

Teoría Tema 6 Ecuaciones de la recta

Teoría Tema 6 Ecuaciones de la recta página 1/14 Teoría Tema 6 Ecuaciones de la recta Índice de contenido Base canónica en dos dimensiones como sistema referencial...2 Ecuación vectorial de la recta...4 Ecuación paramétrica de la recta...6

Más detalles

RESISTENCIA DE MATERIALES II.

RESISTENCIA DE MATERIALES II. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN DIVISIÓN DE MATEMÁTICAS E INGENIERÍA LICENCIATURA EN INGENIERÍA CIVIL ACATLÁN PROGRAMA DE ASIGNATURA CLAVE: 1515 SEMESTRE:

Más detalles

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática. Álgebra Geometría Analítica Prof. Gisela Saslavsk Vectores en R en R 3. Rectas planos en el espacio Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..

Más detalles

M309: Construyendo bloques

M309: Construyendo bloques M309: Construyendo bloques A) PRESENTACIÓN DEL PROBLEMA A Susana le gusta construir bloques utilizando bloques pequeños como el que se muestra en el siguiente diagrama: Cubo pequeño Susana tiene muchos

Más detalles

NOMBRE DE LA ASIGNATURA: Diseño de elementos mecánicos

NOMBRE DE LA ASIGNATURA: Diseño de elementos mecánicos NOMBRE DE LA ASIGNATURA: Diseño de elementos mecánicos APORTACIÓN AL PERFIL Diseñar elementos mecánicos aplicados en sistemas mecatrónicos, analizando condiciones de falla bajo diversas solicitaciones

Más detalles

MATERIALES DIELÉCTRICOS

MATERIALES DIELÉCTRICOS MATERIALES DIELÉCTRICOS PREGUNTAS 1. Qué le ocurre a una placa sólida, dieléctrica, cuando se coloca en un campo eléctrico uniforme?. Qué es un material dieléctrico?, argumente. 3. Hay dieléctricos polar

Más detalles

Héctor Soto Rodríguez Centro Regional de Desarrollo en Ingeniería Civil

Héctor Soto Rodríguez Centro Regional de Desarrollo en Ingeniería Civil Héctor Soto Rodríguez Centro Regional de Desarrollo en Ingeniería Civil INTRODUCCIÓN El acero estructural se encuentra disponible en una amplia gama de perfiles laminados en caliente, placa, perfiles formados

Más detalles

FUERZAS DE UN FLUIDO EN REPOSO SOBRE SUPERFICIES PLANAS

FUERZAS DE UN FLUIDO EN REPOSO SOBRE SUPERFICIES PLANAS FUERZAS DE UN FLUIDO EN REPOSO SOBRE SUPERFICIES PLANAS En esta sección consideramos los efectos de la presión de un fluido, que actúa sobre superficies planas (lisas), en aplicaciones como las ilustradas.

Más detalles

ESCUELA TECNICA SUPERIOR DE ING. DE CAMINOS, CANALES Y PUERTOS ASIGNATURA: PROCEDIMIENTOS ESPECIALES DE CIMENTACION PLAN 83/84/ 6ºCURSO / AÑO 10/11

ESCUELA TECNICA SUPERIOR DE ING. DE CAMINOS, CANALES Y PUERTOS ASIGNATURA: PROCEDIMIENTOS ESPECIALES DE CIMENTACION PLAN 83/84/ 6ºCURSO / AÑO 10/11 ESCUELA TECNICA SUPERIOR DE ING. DE CAMINOS, CANALES Y PUERTOS ASIGNATURA: PROCEDIMIENTOS ESPECIALES DE CIMENTACION PLAN 83/84/ 6ºCURSO / AÑO 10/11 EJERCICIO Nº 1 ZAPATAS: CARGAS DE HUNDIMIENTO Una zapata

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

Figura 3.1. Grafo orientado.

Figura 3.1. Grafo orientado. Leyes de Kirchhoff 46. ECUACIONES DE INTERCONEXION. Leyes de Kirchhoff..1. Definiciones. Una red está formada por la interconexión de componentes en sus terminales; y deben cumplirse simultáneamente las

Más detalles

IX. Análisis dinámico de fuerzas

IX. Análisis dinámico de fuerzas Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.

Más detalles

ALCANCE DIGITAL Nº 94 PODER EJECUTIVO DECRETOS Nº 37070-MIVAH-MICIT-MOPT CÓDIGO SÍSMICO DE COSTA RICA 2010 (CONSTA DE VEINTE TOMOS) TOMO VIII

ALCANCE DIGITAL Nº 94 PODER EJECUTIVO DECRETOS Nº 37070-MIVAH-MICIT-MOPT CÓDIGO SÍSMICO DE COSTA RICA 2010 (CONSTA DE VEINTE TOMOS) TOMO VIII ALCANCE DIGITAL Nº 94 Año CXXXIV San José, Costa Rica, viernes 13 de julio del 2012 Nº 136 PODER EJECUTIVO DECRETOS Nº 37070-MIVAH-MICIT-MOPT CÓDIGO SÍSMICO DE COSTA RICA 2010 (CONSTA DE VEINTE TOMOS)

Más detalles

Curvas esfuerzo-deformación para concreto confinado. Introducción

Curvas esfuerzo-deformación para concreto confinado. Introducción Curvas esfuerzo-deformación para concreto confinado PF-3921 Concreto Estructural Avanzado 3 setiembre 12 Posgrado en Ingeniería Civil 1 Introducción En el diseño sísmico de columnas de concreto reforzado

Más detalles

Corriente continua : Condensadores y circuitos RC

Corriente continua : Condensadores y circuitos RC Corriente continua : Condensadores y circuitos RC Marcos Flores Carrasco Departamento de Física mflorescarra@ing.uchile.cl Tópicos introducción Condensadores Energia electroestática Capacidad Asociación

Más detalles

PRINCIPIOS DE LA DINÁMICA

PRINCIPIOS DE LA DINÁMICA Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento

Más detalles

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A CENTRO DE ESTUDIOS DE BACHILLERATO LIC. JESÚS REYES HEROLES ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE GEOMETRÍA G E O M É T R Í A GUÍA ANALÍTICA A N A L Í T I C A G U

Más detalles

Vertedores y compuertas

Vertedores y compuertas Vertedores y compuertas Material para el curso de Hidráulica I Se recomienda consultar la fuente de estas notas: Sotelo Ávila Gilberto. 2002. Hidráulica General. Vol. 1. Fundamentos. LIMUSA Editores. México.

Más detalles

PROBLEMAS DE CORTE EUCLIDIANO

PROBLEMAS DE CORTE EUCLIDIANO PROBLEMAS DE CORTE EUCLIDIANO Sugerencias para quien imparte el curso El alumno debe comprender las definiciones de las rectas notables de un triangulo, de tal forma que pueda aplicar lo aprendido en esta

Más detalles

CURSO DE ESTRUCTURAS METALICAS Y CONEXIONES.

CURSO DE ESTRUCTURAS METALICAS Y CONEXIONES. TEMARIO: 1.- ESFUERZOS ACTUANTES. 1.1 DETERMINACIÓN DE INERCIAS TOTALES. 1.2 DETERMINACIÓN DE CENTROIDES. 1.3 DETERMINACIÓN DEL MODULO DE SECCIÓN ELÁSTICO Y PLÁSTICO DE SECCIONES CUADRADAS Y SECCIONES

Más detalles

EQUILIBRIO DE UN CUERPO RÍGIDO

EQUILIBRIO DE UN CUERPO RÍGIDO EQUILIIO DE UN CUEPO ÍGIDO Capítulo III 3.1 CONCEPOS PEVIOS 1. omento de una fuerza respecto a un punto ( O ).- Cantidad vectorial que mide la rotación (giro) o tendencia a la rotación producida por una

Más detalles

y d dos vectores de igual módulo, dirección y sentido contrario.

y d dos vectores de igual módulo, dirección y sentido contrario. MINI ENSAYO DE FÍSICA Nº 1 1. Sean c r r y d dos vectores de igual módulo, dirección y sentido contrario. r El vector resultante c - d r tiene A) dirección y sentido igual a c r y el cuádruplo del módulo

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

NOCIONES PRELIMINARES (*) 1

NOCIONES PRELIMINARES (*) 1 CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras

Más detalles

Fabio Prieto Ingreso 2003

Fabio Prieto Ingreso 2003 Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien

Más detalles

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA Este documento enuncia de forma más detallada la formulación matemática que permite el estudio de campos eléctricos debido a distribuciones

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado

Más detalles