FÍSICA I CAPÍTULO 6: CINEMÁTICA III
|
|
|
- María Mercedes Pinto Montoya
- hace 9 años
- Vistas:
Transcripción
1 FÍSICA I CAPÍTULO 6: CINEMÁTICA III ROTACIÓN DE CUERPOS RÍGIDOS
2 Retomndo el moimiento cicul de un punto: L Figu epeent l dieccione de lo ectoe elocidd y celeción en io punto p un ptícul que e muee en un cículo con elocidd de módulo contnte (MCU). O
3 Recodndo l definición de dine: 1 din = θ =θ Ejemplo de equilenci de unidde: Expe 48,6 eolucione en dine 48,6e. 1 e 1 d=57,3º. totl 305,36?
4 305,36? , , 84 P expe un poición ngul en l cicunfeenci, e puede d el lo en gdo, peo ente 0 y 360 1uelt , ,6 uelt E deci que el punto dio 48 uelt y un poco m: 0,6 uelt que coeponden un ángulo de: 360 ' 0,6 uelt 16 1uelt El punto etá en el 3 cudnte y fomndo un ángulo de 16 con el eje x, poitio
5 t 1 θ t 0 Si θ 0 =0 θ e l poición ngul de lo punto ede y celete en t 1
6 ω med Velocidd ngul medi e intntáne ω θ t θ t 1 1 Δθ Δt y P Δθ t P t 1 lim t 0 t d dt O θ 1 θ x Cundo no efeimo implemente elocidd ngul hblmo de l elocidd ngul intntáne no de l elocidd ngul medi. En unidde: d 1
7 Ejemplo de equilenci de unidde: ) Expe 450pm en el item intencionl w w 450 eolucione minuto e 1min min 60 1e 1 47,14 Ejemplo de equilenci de unidde: b) Expe 35uelt/ en el item intencionl w uelt 35. 1uelt 1 19,911
8 Aceleción ngul medi e intntáne Si ω cmbi tiene celeción ngul. 1 y on l elocidde ngule intntáne en lo intnte t 1 y t. Definimo: med t t1 1 Δ Δt lim t 0 t d dt Cundo no efeimo implemente celeción ngul hblmo de l celeción ngul intntáne. d 1 En unidde: Ejemplo: 1,8 d 1 1,8 Repeent cunto dine po egundo cmbi l elocidd ngul en cd egundo
9 Rotción con celeción ngul contnte L ecucione deduci on idéntic l y it en Cinemátic I i utituimo x po, po ω y po. El moimiento e llm cicul unifomemente ido (MCUV ; = cte ). Moimiento ectilíneo = contnte = 0 + t Moimiento cicul α = contnte = 0 + t x - x 0 = 0 t + ½ t θ - θ 0 = ω 0 t + ½ α t = 0 + (x x 0 ) ω = ω 0 + α (θ θ 0 ) x - x 0 = ( + 0 ) t / θ - θ 0 = ( + 0 ) t /
10 Relción ente cinemátic linel y ngul e álid ólo i e mide en dine. Deindo: Sentido de gio O p θ p d dt d dt
11 El moimiento Cicul Unifomemete ido (MCUV) e un moimiento de tyectoi cicul. 1 // θ // celeción noml o centípet R d // celeción plelel o tngencil dt // c tg //
12 d d Sentido de gio O p // p θ // dt dt (. ). Ecucione álid ólo i e mide en dine.
13 Rotción con celeción ngul contnte Moimiento ectilíneo Moimiento cicul = contnte α = contnte = 0 + t = 0 + t x - x 0 = 0 t + ½ t θ - θ 0 = ω 0 t + ½ α t = 0 + (x x 0 ) ω = ω 0 + α (θ θ 0 ) x - x 0 = ( + 0 ) t / θ - θ 0 = ( + 0 ) t / // // c tg Anliz p punto de difeente dio //
14 Anliz p punto de difeente dio α = contnte Sentido de gio O p // θ p //
15 Rotción con elocidd ngul contnte Moimiento ectilíneo Moimiento cicul = 0 α = 0 = contnte x - x 0 = 0 t ω = contnte θ - θ 0 = ω 0 t 0 // Anliz p punto de difeente dio
16 7- Repond V (eddeo) o F (flo) en lo péntei de l deech ) Si un cuepo ígido ot epecto un eje fijo con celeción ngul contnte, entonce todo lo punto del cuepo poeen olmente celeción centípet... ( ) b) En todo moimiento cicul l celeción e noml l tyectoi ( ) c) L celeción tngencil e nul en culquie moimiento cicul ( ) d) En un MCUV el módulo de l celeción noml e contnte ( ) e) Si l elocidd ngul de un cuepo ígido e contnte entonce l celeción de todo u punto tiene el mimo lo ( ) f) Si un cuepo ígido etá otndo epecto de un eje fijo con elocidd ngul contnte u celeción e nul ( )
17 11- En l figu e ilut do ued ígid gindo en contcto in ptinmiento, en l cul un de ell t l ot. Lo dio de et ued de ficción on: = 15cm y = 30cm epectimente; y lo egmento uo mo Anlizndo et itución, epond con V (eddeo) o con F (flo) en lo péntei de l deech: ) El módulo de l elocidd en el punto de contcto P e myo o igul que en todo lo demá punto de l do ued , b) Si l ued gnde gi zón de 1.p.m. l chic lo há 1 º/....., c) L celeción noml en el punto n e igul que en el punto u d) L celeción en el punto n tiene diección hoizontl e) L celeción noml e de igul lo en mb ued en el punto de contcto ( ) ( ) ( ) ( ) ( )
Practico 7 Fuerza y Leyes de Newton
008 Pctico 7 uez y Leyes de Newton ) Un bloque de 5.5 Kg. está inicilmente en eposo sobe un supeficie hoizontl sin ficción. Es empujdo con un fuez hoizontl constnte de 3.8 N. ) Cuál es su celeción? b)
8. Movimiento Circular Uniforme
8. Movimiento Cicula Unifome En la vida cotidiana e peentan ituacione donde un objeto gia alededo de oto cuepo con una tayectoia cicula. Un ejemplo de ello on lo planeta que gian alededo del ol en obita
x y Si el vector está en tres dimensiones: x y coordenadas se les llama cosenos directores
Sum de ectoes Si tienen el mismo punto de plicción se tzn plels cd ecto po el extemo del oto. Si están uno continución de oto, se une el oigen del pimeo con el extemo del último. S c S - L est es un cso
Capítulo. Cinemática del Sólido Rígido
Cpítulo 1 Cinemátic del Sólido Rígido Contenido Intoducción Tslción Rotción lededo de un Eje Fijo. elocidd Rotción lededo de un Eje Fijo: celeción Rotción lededo de un Eje Fijo: Sección epesentti Ecución
GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL
8 0 GRVICIÓ I: LEY DE L GRVICIÓ UIVERSL j Sigue pcticndo Indic sobe l tyectoi de un plnet con óbit elíptic lededo del Sol, que ocup uno de los focos, los puntos de áxi y íni elocidd Rzon l espuest b t
TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES
TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o
FUNDAMENTOS DE FÍSICA GENERAL
Agustín E. González Moles FUNDAMENTOS DE FÍSICA GENEAL (soluciones) Y X t y(x, t) A sen t T x Agustín E. González Moles TEMA I CÁLCULO VECTOIAL Mgnitudes escles y ectoiles Sum o composición de ectoes Sistems
+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m
m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6
CAMPO MAGNÉTICO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRIENTE y. sin
CAMPO MAGNÉTCO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRENTE dl - P X d φ φ sin sin φ φ 3/ sin d d φ Cundo l longitud del conducto es mu gnde en compción con, l ecución se conviete en: >> 8. Un lmbe ecto
TEMA 5: CÁLCULO VECTORIAL
IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil - 1-5.1 VECTORES TEMA 5: CÁLCULO VECTORIAL 5.1 Vectoes 5. Sistems de efeenci. Coodends. Componentes de un vecto. 5.3 Opeciones
EJERCICIOS DE CINEMÁTICA PARA REPASAR
EJERCICIOS DE CINEMÁTICA PARA REPASAR 1. L poición de un óvil, que igue un tryectori rectilíne, qued deterind por l ecución x = 5 + t, en l que tod l gnitude etán expred en el S.I. ) Arrnc el óvil dede
Elementos de geometría en el espacio
Elemento de geometía en el epacio 1 Elemento de geometía en el epacio Elemento báico del epacio Lo elemento báico del epacio on: punto, denominado con leta mayúcula, po ejemplo P. ecta, denominado con
la integral de línea de B alrededor de un trayecto cerrado
LEY DE AMPERE L ley de Guss de los cmpos elécticos implic el flujo de E tvés de un supeficie ced; estlece que este flujo es igul l cociente de l cg totl enced dento de l supeficie ente l constnte ε. En
TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL
EMA 3 MOIMIENO CICULA Y GAIACIÓN UNIESAL El movimiento cicula unifome (MCU) Movimiento cicula unifome es el movimiento de un cuepo que tiene po tayectoia una cicunfeencia y descibe acos iguales en tiempos
Dinámica del movimiento circular uniforme
Dinámica del moimiento cicula unifome 1 5.1 Moimiento cicula unifome Definición: el moimiento cicula unifome es el moimiento de un objeto desplazándose con apidez constante en una tayectoia cicula. 5.1
EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS
EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto
q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb
Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los
9 Ángulos y rectas OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Recta, semirrecta y segmento. Rectas paralelas, perpendiculares y secantes.
826464 _ 0341-0354.qxd 12/2/07 10:04 Página 341 Ángulo y ecta INTRODUCCIÓN RESUMEN DE LA UNIDAD A nueto alededo encontamo ecta y ángulo que influyen en nueto movimiento: calle, avenida, plano, etc. El
Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras)
Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS EN EL PLANO Y EN EL ESPACIO 1.- Polígono de 3 ldos: Tiángulo. B Los ángulos inteioes de culquie tiángulo sumn siempe 180º. El áe de culquie tiángulo se puede
Análisis Vectorial. Escalares y campos escalares. Algebra vectorial. Vectores y campos vectoriales. v v v v. A v
Escles cmpos escles nálisis Vectoil Teoí Electomgnétic 1 Dipl.-Ing. noldo Rojs oto Escl: ntidd cuo lo puede se epesentdo po un simple númeo el positio o negtio mpos escles: Función mtemátic del ecto que
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A
Examen de Evaluación. Geometía. Matemática II. Cuo 009-00 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA Cuo 009-00 -V-00 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES
EJERCICIOS TEMA 9: ELEMENTOS MECÁNICOS TRANSMISORES DEL MOVIMIENTO
EJECICIOS TEMA 9: ELEMENTOS MECÁNICOS TANSMISOES DEL MOVIMIENTO 1. Dos uedas de ficción gian ente sí sin deslizamiento. Sabiendo que la elación de tansmisión vale 1/5 y que la distancia ente ejes es de
Tema 0 Conocimientos previos al curso de Física
Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional
CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS
CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad
PROBLEMAS DE GENERADORES SINCRÓNICOS. Asignatura : Conversión Electromecánica de la Energía. Fecha : Agosto Autor : Ricardo Leal Reyes.
ROBLMA D GNRADOR NCRÓNCO. Aigntur : Converión lectromecánic de l nergí. ech : Agoto200. Autor : Ricrdo Lel Reye. 1. Un generdor incrónico de 6 polo conectdo en etrell, de 480 (), 60 (Hz), 1 (Ω/fe), 60
GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO
GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones
Tema 5B. Geometría analítica del plano
Tem 5B. Geometí nlític del plno L geometí nlític estudi ls elciones ente puntos, ects, ángulos, distncis, de un modo lgebico, medinte fómuls lgebics y ecuciones. P ello es impescindible utiliz un sistem
Física: Torque y Momento de Torsión
Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto
Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante
Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:
Soluciones unidad 9: Elementos del movimiento 1º Bachillerato 2007 1
Solucione unidd 9: Eleeno del oiieno º Bcilleo 007 SOLUCIONES UNIDAD 9. ELEMENTOS DEL MOVIMIENTO QUÉ SABES DE ESTO?. Qué dinci y dede el puno de coodend cein (, 6 ) el puno de coodend (5, 0 )? Aplicndo
TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO
Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,
CUERPOS REDONDOS. LA ESFERA TERRESTRE
IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes
Cantidad de movimiento en la máquina de Atwood.
Cntidd de movimiento en l máquin de Atwood. esumen Joge Sved y Pblo Adián Nuñez. [email protected]. [email protected]. ed pticiptiv de Cienci UNSAM - 2005 En el pesente tbjo se puso pueb l pedicción
UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FISICA I/11. PRACTICA Nro. 8 MASA INERCIAL Y GRAVITATORIA.
Págin 1 de 5 NÚCLEO UNIVERSITARIO RAFAEL RANGEL UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A ÁREA DE FÍSICA LABORATORIO DE FÍSICA LABORATORIO DE FISICA I/11 PRACTICA Nro. 8 MASA INERCIAL
Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono.
Cinemática de Mecanimo Análii de elocidade de Mecanimo por el Método del Polígono. DEFINICION DE ELOCIDAD La velocidad e define como la razón de cambio de la poición con repecto al tiempo. La poición (R)
Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO
Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,
RODAMIENTOS DE BOLAS DE CONTACTO ANGULAR
B 46 RODAMIENTOS DE BOLAS DE CONTACTO ANGULAR RODAMIENTOS DE BOLAS DE CONTACTO ANGULAR DE UNA SOLA HILERA Y EMPAREJADOS RODAMIENTOS DE BOLAS DE CONTACTO ANGULAR DE DOBLE HILERA Diámeto Inteio 10~ 50mm...
3 La teoría de la gravitación universal: una revolución científica
teoí de l gitción uniesl: un eolución científic EECICIS UESS Solucionio. Copueb en l siguiente págin web cóo, en un óbit elíptic, en l pie itd del peíodo, el plnet h ecoido l itd de l tyectoi, ients que
De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz.
Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los polos
MAGNITUDES VECTORIALES:
Mgnitudes vectoiles 1 de 8 MAGNITUDES VECTORIALES: Índice 1 Mgnitudes escles vectoiles Sum de vectoes lies Poducto de un escl po un vecto 3 Sistem de coodends vectoiles. Vectoes unitios 3 Módulo de un
PROBLEMAS DE ELECTROESTÁTICA
PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín
c) La energía total (suma de energía cinética y energía potencial elástica) está dada por
ROBLM Septiembe 0 n el lbotoio de ísic tenemos un cito de ms m = 00 gmos unido un muelle hoizontl según se muest en l igu. Un estudinte desplz el cito hci l deech de modo ue el muelle se k m esti 0 cm,
22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1
.6 Ls 3 esfes peueñs ue se muestn en l figu tienen cgs 4 n, -7.8 n y 3.4 n. Hlle el flujo eléctico neto tvés de cd un de ls supeficies ceds S, S, S3, S4 y S5. S S S3 S5 3 S4 4 m S 9 3 Φ.45 m 8.85 9 7.8
avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el
/5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado
Curvas en el plano y en el espacio
Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que
2 o Bachillerato. Conceptos básicos
Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos
Respecto del eje de giro de la rueda, cuál de las siguientes cantidades permanece constante mientras esta desciende por el plano inclinado?
CIENCIAS (BIOLOGÍA, FÍSICA, QUÍMICA) MÓDULO 3 Eje temático: Mecánica - Fluido 1. Una rueda deciende rodando por un plano inclinado que forma un ángulo α con la horizontal del modo que e ilutra en la figura
EL CUERPO DE LAS FRACCIONES DE UN DOMINIO DE INTEGRIDAD
EL CUERPO DE L FRCCIONE DE UN DOMINIO DE INTEGRIDD CRLO CHINE EL CUERPO DE L FRCCIONE DE UN DOMINIO DE INTEGRIDD Ddo un nillo intero ; L L donde e un conunto L e l ley ditiv y e L l ley ultiplictiv no
PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS
POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere
DISEÑO MECÁNICO RODAMIENTOS NORMALIZACIÓN DE LOS RODAMIENTOS CINEMÁTICA DISTRIBUCIÓN DE CARGA EN EL RODAMIENTO
DISEÑO MECÁNICO RODAMIENTOS NORMALIZACIÓN DE LOS RODAMIENTOS CINEMÁTICA DISTRIBUCIÓN DE CARGA EN EL RODAMIENTO REPRESENTACIÓN SIMPLIFICADA DE LOS RODAMIENTOS 2 q q q q q q q q q 3 q q q q q q q q q q q
A r. 1.5 Tipos de magnitudes
1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante
RODAMIENTOS DE RODILLOS CÓNICOS
B 106 RODAMIENTOS DE RODILLOS CÓNICOS RODAMIENTOS DE RODILLOS CÓNICOS DE DISEÑO MÉTRICO Diámeto Inteio 15~100mm...................... Págins B116~B123 Diámeto Inteio 105~240mm.................... Págins
Tema 4: Potencial eléctrico
1/38 Tem 4: Potencil Eléctico Fátim Msot Conde Ing. Industil 2007/08 Tem 4: Potencil Eléctico 2/38 Índice: 1. Intoducción 2. Enegí potencil eléctic 1. de dos cgs puntules 2. de un sistem de cgs 3. Intepetción
UNIDAD 4: CIRCUNFERENCIA CIRCULO:
UNIDD 4: CIRCUNFERENCI CIRCULO: CONTENIDO: I. CONCEPTO DE CIRCUNFERENCI: Es una cuva ceada y plana cuyos puntos equidistan de un punto llamado cento. Una cicunfeencia se denota con la expesión: O C, y
MATRICES DE NÚMEROS REALES
MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m
Tema II Potencial eléctrico - Capacidad
UNN Fcultd de Ingenieí Tem II Potencil eléctico - Cpcidd Integl cuvilíne del cmpo eléctico. Ciculción. Difeenci de potencil, potencil y función potencil. Supeficies y Línes euipotenciles. Uniddes. Gdiente
TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.
IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene
Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa.
Qué es el movimiento rectilíneo uniformemente vrido? Es un movimiento mecánico que experiment un móvil donde l tryectori es rectilíne y l celerción es constnte. Qué es l celerción? Es un mgnitud vectoril
2 Cinemática y dinámica
Cineátic y dináic EJECICIOS POPUESTOS. Un poyectil se uee de fo que su ecto de posición en cd instnte es: 375t cos 5º i + (375t sen 5º 4,9 t ) j Clcul l elocidd en cd instnte, el lcnce y el tiepo de uelo.
Leyes de Kepler. Ley de Gravitación Universal
Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER
Sistemas de ecuaciones lineales
Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en
Deflexión de rayos luminosos causada por un cuerpo en rotación
14 Defleión de ayos luminosos causada po un cuepo en otación 114 Intoducción Cuando un ayo luminoso pasa po la cecanía de un cuepo se ve obligado a abandona su tayectoia ectilínea y cuvase más o menos
Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida
Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de
Las leyes del movimiento
Unidd emátic Nº 1 Ls leyes del movimiento Los objetivos de est Unidd emátic son los siguientes: Comende l noción de fuez como esultdo de un intección. Reconoce ls fuezs que ctún en un sistem físico. Alic
Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical.
TNNI. onceptos, popieddes y noms. Po un punto psn infinits cicunfeencis tngentes. L ect tngente ells po dicho punto es su eje dicl. Po dos puntos psn infinits cicunfeencis secntes fomndo un hz. L ect que
La Hoja de Cálculo en la resolución de problemas de Física.
a Hoja de Cálculo en la resolución de problemas de Física. Jesús Ruiz Felipe. Profesor de Física y Química del ES Cristóbal Pérez Pastor de Tobarra (Albacete) CEP de [email protected]
MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV
FISICA PREUNIERSITARIA MOIMIENTO CIRCULAR - MCU - MCU MOIMIENTO CIRCULAR - MCU - MCU CONCEPTO Es el movimiento de trayectoria circular en donde el valor de la velocidad del móvil se mantiene constante
BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas
LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes
CURSO CERO DE FÍSICA APLICACIÓN DE VECTORES A LA FÍSICA
CURSO CERO DE FÍSIC PLICCIÓN DE VECTORES L FÍSIC Vness de Csto Susn i Deptmento de Físic CURSO CERO DE FÍSIC.UC3M PLICCIÓN DE VECTORES L FÍSIC CONTENIDO Mgnitudes escles vectoiles. Repesentción gáfic de
www.fisicaeingenieria.es Vectores y campos
www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que
Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:
Deptmento de Físic, UTFSM Físic Genel II / of: A. Bunel. FIS10: FÍSICA GENERAL II GUÍA #3: otencil Eléctico. Objetivos de pendizje Est guí es un hemient que usted debe us p log los siguientes objetivos:
Ángulos en la circunferencia
MT-22 Clase Ángulos en la cicunfeencia pendizajes espeados Identifica los elementos de un cículo y una cicunfeencia. Calcula áeas y peímetos del secto y segmento cicula. Reconoce tipos de ángulos en la
1. Realiza las siguientes operaciones con segmentos. 1º a+2b-c. 2º a+c-b. 3º 3a+c-b NOMBRE: Nº 1ºESO 1.3. OPERACIONES CON SEGMENTOS
1.3. OPERCIONES CON SEGMENTOS 1. Realiza las siguientes opeaciones con segmentos a b c 1º a+2b-c 1º 2º a+c-b 2º 3º 3a+c-b 3º TEM 1 - Opeaciones con segmentos página 3 1.3.2. TEOREM DE TLES 1. Divide el
ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS COMPROBACIÓN DE ACELERACIÓN ANGULAR
ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS COMPROBACIÓN DE ACELERACIÓN ANGULAR DAVID CUEVA ERAZO [email protected] ANTHONY ENCALADA CAIZAPANTA [email protected] PROFESOR: ING.
SELECCIÓN ADVERSA Y RACIONAMIENTO DE CREDITO
SCCIÓN ADVRSA Y RACIONAMINTO D CRDITO Biliofí Básic: Wlsh (003 º d.) Monety Theoy nd Policy. MIT ess. Citulo 7. SCCIÓN ADVRSA Cundo hy ieso de insolvenci l fijción del tio de inteés dee conteml tl osiilidd
GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia
Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones
Tema 5. Trigonometría y geometría del plano
1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene
PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN
PRUEBA DE ACCESO A LA UNIVERSIDAD.6 ENUNCIADO Y RESOLUCIÓN Instucciones: )Dución: 1 ho y minutos. b) Tienes que elegi ente eliz únicmente los cuto ejecicios de l Opción A o eliz únicmente los cuto ejecicios
Física: Momento de Inercia y Aceleración Angular
Física: Momento de Inercia y Aceleración Angular Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Momento de Torsión (Torque) La capacidad de un fuerza de hacer girar un objeto se define como torque.
Problema Cinemático Directo
Problema Cinemático Directo Parámetros Denavit-Hartenberg Denavit-Hartenberg notación Craig Denavit-Hartenberg notación Craig Denavit-Hartenberg notación Craig Denavit-Hartenberg notación Craig Denavit-Hartenberg
Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r
IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4
Errores y Tipo de Sistema
rrore y Tipo de Sitema rror dinámico: e la diferencia entre la eñale de entrada y alida durante el período tranitorio, e decir el tiempo que tarda la eñal de repueta en etablecere. La repueta de un itema
FLUJO POTENCIAL BIDIMENSIONAL (continuación)
Pof. ALDO TAMBURRINO TAVANTZIS Pof. ALDO TAMBURRINO TAVANTZIS FLUJO POTENCIAL BIDIMENSIONAL (continuación) RESUMEN DE LA CLASE ANTERIOR Si un flujo es iotacional, V 0, entonces eiste una función escala
de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r
Actividad SISTEMA IÉRICO II TEMA 9 Paa eolve eta actividad, emo de tene en cuenta lo iguiente: o ecta on paalela en el epacio, i u poyeccione obe lo do plano de poyección también lo on.. Sea el punto P(-P
DEPARTAMENTO DE ELECTROMECANICA INGENIERIA ELECTROMECANICA 1 TRABAJO PRACTICO Nº 2 SISTEMA DE FUERZAS EQUIVALENTES
DEPRTMENTO DE ELECTROMECNIC INGENIERI ELECTROMECNIC 1 EJERCICIO Nº1 TRJO PRCTICO Nº 2 SISTEM DE FUERZS EQUIVLENTES Si el peso ubicado en el punto tiene un valor de 20 KN, determine el valor de la carga
O(0, 0) verifican que. Por tanto,
Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O
INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor
TERACCÓ ELECTROMAGÉTCA ELECTROMAGETSMO ES La Magdalena. Avilés. Astuias La unión electicidad-magnetismo tiene una fecha: 180. Ese año Oested ealizó su famoso expeimento (ve figua) en el cual hacía cicula
UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA
UNIVERSIDD NIONL DE SN RISTÓL DE HUMNG FULTD DE INGENIERÍ DE MINS, GEOLOGÍ Y IVIL ESUEL DE FORMIÓN PROFESIONL DE INGENIERÍ IVIL DINÁMI (I-44) PRIMER PRÁTI INEMÁTI DE PRTÍUL Y INEMÁTI DE UERPO RÍGIDO GRUPO
Capítulo III AGUA EN EL SUELO
Cpítulo III AGUA EN EL SUELO Curso de Hidrologí e Hidráulic Aplicds Agu en el Suelo III. AGUA EN EL SUELO III.1 AGUA SUBSUPERFICIAL (Cp. 4 V.T.Chow) Entre l superficie del terreno y el nivel freático (del
Método de las Imágenes.
Electici Mgnetismo 9/ Electostátic efinición Los conuctoes en electostátic. Cmpo e un cg puntul. plicciones e l Le e Guss Integles e supeposición. Potencil electostático efinición e Intepetción. Integles
2.4 La circunferencia y el círculo
UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula
Solución a los ejercicios de vectores:
Tema 0: Solución ejecicios de intoducción vectoes Solución a los ejecicios de vectoes: Nota : Estas soluciones pueden tene eoes eatas (es un ollo escibios las soluciones bonitas con el odenado), así que
