DISEÑO, REALIZACION Y SENSITIVIDAD DE FILTROS ELIPTICOS MODIFICADOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DISEÑO, REALIZACION Y SENSITIVIDAD DE FILTROS ELIPTICOS MODIFICADOS"

Transcripción

1 DISEÑO, REALIZACION Y SENSITIVIDAD DE FILTROS ELIPTICOS MODIFICADOS David Báez-Villegas 1 David Báez-López 1 Department of Classical and Modern Languages Texas Tech University Lubbock, Texas U.S.A. Departamento de Ingeniería Electrónica Universidad de las Américas Puebla Cholula, Puebla, México dbaeziec@mail.udlap.mx RESUMEN Presentamos una transformación que se puede aplicar a las funciones de transferencia de filtros elípticos con el propósito de mejorar su retardo de grupo mediante la reducción de la cantidad de máximos en la banda de paso. La sensitividad en la realización escalera también se reduce. ABSTRACT We present a transformation than can be applied to elliptic filter transfer functions. The purpose of this transformation is to improve group delay by reducing the amount of maxima in the filter passband. Sensitivity in the passive ladder realization is rduced in the new filter realization. 1. INTRODUCCIÓN Los filtros elípticos se conocen desde la década de 1930 cuando fueron desarrollados por Wilhelm Cauer [1,] en Alemania. En esta época la principal aplicación de los filtros era en telefonía y telecomunicaciones para separar canales contiguos de información, una tarea que los filtros elípticos realizan mejor que cualquier otro tipo de filtro. Una de las razones por la que los filtros elípticos son mejores que otros filtros es la existencia de rizo tanto en la banda de paso como de rechazo, como se muestra en la Fig Este comportamiento se describe exactamente mediante el uso de funciones elípticas de Jacobi [], y estas funciones son las que le dan el nombre a este tipo de filtros, aunque también se les conoce como filtros Cauer (por su inventor), y como filtros de funciones elípticas. Aunque el nombre de filtro elíptico podría llevar a pensar que tienen forma elíptica, dicho nombre es el más común para describir a este tipo de filtros. De los tipos de funciones de filtros existentes, las funciones elípticas proporcionan la mejor aproximación debido al rizo presente en la banda de paso y en la banda de rechazo, el cual hace que la magnitud se haga cero en la banda de rechazo logrando una mayor pendiente de la magnitud en esta banda y por lo tanto aproximándose mejor a la característica pasabajas ideal. Esta mejor aproximación en magnitud provoca que la aproximación en fase no sea la mejor de todas, desafortunadamente. El objetivo de este trabajo es presentar una transformación que nos lleve a reducir el número de rizos en la banda de paso de la magnitud de un filtro elíptico pasabajos para de esta manera mejorar el retardo de dichos filtros. Adicionalmente, realizaremos la síntesis pasiva escalera de las nuevas funciones, para finalmente realizar un análisis de sensitividad sobre estos circuitos.

2 . TRANSFORMACIONES PARA FILTROS ELÍPTICOS Usando el método clásico de aproximación de filtros elípticos de la sección 1 se conoce la ubicación de los máximos en la banda de paso llamados polos de reflexión y de los mínimos en la banda de paso llamados ceros de transmisión. Para una función elíptica, los polos de reflexión son P i y los ceros de transmisión son 1/P i. Para este tipo de filtro la función característica está dada por K( = s n / + P i= 1 s Pi n / 1 s s i + P + 1 i n n par impar (.1) i= 1 s Pi + 1 donde n es el orden del filtro elíptico. Esta función característica está relacionada con la función de transferencia H( mediante la ecuación de Feldtkeller [1] 1 1 H ( H ( = 1+ K( K( (.). Mapeo en Frecuencia El propósito de aplicar un mapeo a una función elíptica es el de reducir la cantidad de máximos que existen en el rizo de la banda de paso. Nótese que para órdenes pares no existe máximo en ω= 0 rads/seg mientras que sí existe para órdenes impares. Una manera de reducir el número de máximos en la banda de paso es aplicar una transformación de tal manera que el máximo más cercano al origen se una a la frecuencia ω= 0 rads/seg. Esto reducirá el número de máximos y por lo tanto mejorará el retardo de grupo del filtro elíptico. La transformación o mapeo finalmente debe preservar la frecuencia de corte de tal manera que si el filtro está normalizado, entonces para ω c =1 rad/seg deseamos que v c =1 r/s. Por lo tanto la transformación es v ω ω m 1 ω m = (.3) Nótese que cuando ω= ω m,, v = 0 y cuando ω= 1, v = 1. La transformación (.3) sólo vale para frecuencias sobre el eje jω en el plano original y sobre el eje jv sobre el plano transformado. Para generalizar esta transformación para todo el plano, podemos sustituir s p ω = y v = (.4) j j donde s es la variable compleja original y p es la variable compleja en el plano transformado. Realizando la sustitución indicada, la transformación (.3) se convierte en p s + ωm = (.5) 1 ω m

3 Esta transformación se puede aplicar a los polos y a los ceros de la función de transferencia de un filtro elíptico. Los polos y ceros transformados formarán un nuevo filtro elíptico modificado. Este proceso se puede repetir cuantas veces se desee mientras existan máximos en la banda de paso..3 Ejemplo Consideremos el filtro elíptico normalizado de orden 9 con A max = 1dB ω s = rad/seg, cuyos polos y ceros son y cuya función de transferencia H( es polos ceros p 1, = j z 1, = + j.066 p 3,4 = j z 3,4 = + j.7007 p 5,6 = j z 5,6 = + j.97 p 7,8 = j z 7,8 = + j p 9 = s s s s H0( = s s s s s s s s s cuya magnitud está graficada en la Fig..1. Los máximos están dados por Fig..1 a) Gráfica de la magnitud de la función elíptica de orden 9. b) Detalle del rizo de la banda de paso. Para esta función ω m = La transformación es entonces = s con lo que los nuevos polos y ceros y máximos son p

4 polos SOMI XV ceros p 1, = j z 1, = + j.1405 p 3,4 = j z 3,4 = + j p 5,6 = j z 5,6 = + j p 7,8 = j z 7,8 = + j p 9 = De los polos se puede obtener la nueva función de transferencia que se grafica en la Fig... Este proceso se puede repetir tantas veces como existan máximos en la banda de paso. Es de notarse que la frecuencia de la banda de rechazo también se modifica y su nuevo valor es Fig.. Magnitud de la función de transferencia después de realizar una transformación. Podemos ver en esta gráfica que, aunque sigue siendo de noveno orden, parece de séptimo orden ya que sólo tiene, en la banda de paso, tres máximos finitos más el máximo en el origen. En la Fig..3 se comparan los retardos de grupo de la función de transferencia H 4 ( y del filtro elíptico original de orden 9. Como se puede observar existe una mejoría del retardo de grupo del filtro elíptico modificado sobre el filtro elíptico original. Esto se debe a que se ha ido reduciendo la cantidad de máximos en la banda de paso mediante la transformación usada. Original Modificado Fig..3 Retraso de grupo para los filtros de noveno orden original y con dos corrimientos de máximos..4 Notación Los filtros elípticos reciben también el nombre de filtros Cauer por su inventor Wilhelm Cauer. La notación tradicional es C nn A max ω s donde C indica filtro eliptico o Cauer, nn es el orden de la función, A max es el tamaño de la variación o rizo en la banda de paso en db y ω s es la frecuencia donde principia la banda de paso. De tal manera que para nuestro ejemplo tendríamos

5 C como ahora los filtros elípticos pueden modificarse corriendo uno o más máximos al origen, añadimos las letras m r en seguida del número de máximos que se hayan corrido. De esta manera, los filtros elípticos modificados tendrán la notación C nn A max ω s m r donde m indica modificado y r indica el número de máximos removidos o corridos al origen de la función de transferencia original. 3. SINTESIS PASIVA ESCALERA La síntesis de circuitos pasivos escalera que están terminados con resistencias constituye un tópico importante en teoría de circuitos. Esto se debe a que en la práctica la mayoría de los circuitos de dos puertos están excitados por una combinación de fuente y resistencia y entregan la señal procesada a una carga con impedancia finita. Además, se pueden seleccionar valores adecuados de resistencias para acoplar fuente y carga. Por simplicidad supondremos que la impedancia de la fuente está normalizada a la unidad. Otra característica importante de los circuitos pasivos es su inherente baja sensitividad lo que los hace útiles como prototipos de filtros activos los cuales pueden ser realizados como parte de un circuito integrado más complejo conservando las bajas sensitividades de los filtros pasivos. La topología a buscar es la de la Fig Fig. 3.1 Topología a realizar. 3.1 CASO DE RESISTENCIAS TERMINALES IGUALES. El caso de circuitos pasivos escalera con resistencia terminales iguales es un caso muy común y que además es el que mejores sensitividades presenta. Este caso sólo es posible cuando la magnitud de la función de transferencia tiene un valor máximo para ω = 0. Este caso no se presenta en funciones que poseen un rizo en la banda de paso y donde en ω = 0 la magnitud no tiene un máximo como es el caso de las funciones Chebyshev y elípticas de orden par. Sin embargo, es posible realizar una transformación tal que el máximo de menor magnitud en la banda de paso se corra hacia el origen, es decir, hacia ω = 0, tal y como lo realizamos en la sección [1]. 3. FUNCIONES DE PUNTO DE EXCITACIÓN La obtención de las funciones de punto de excitación necesarias para el desarrollo de la función de transferencia en un circuito pasivo escalado principia con la obtención de la función característica K( de la ecuación (.1) y de la función de transferencia H( H 1 V ( = V en sal ( ( = CP( (3.1)

6 donde: F( tiene información de los polos de reflexión, P( tiene información de los ceros de transmisión, tiene información de los polos de sistema y C es una constante cuya función es fijar el máximo valor de H ( jω),en la banda de paso. El valor de C depende del valor de cada una de las resistencias terminales Por ejemplo, si R 1 =R, el valor máximo de H ( jω) en corriente directa debe ser tal que R 1 H ( jω ) = = (3.) R + R con lo que C debe escogerse tal que la ec. (3.1) satisfaga el valor dado de la ec. (3.), es decir, sedebe cumplir que 1 CP( j0 j0) 1 ) = (3.3) Los polinomios P(, F( y están relacionados pòr la ecuación de Feldtkeller por = C P( P( + F( F( (3.4a) o como nosotros la usaremos C = P( P( + C F( F( (3.4b) De la función de transferencia H( conocemos P( y y por la ec. (3.6b) obtenemos F(. De esta manera las funciones de punto de excitación necesarias para la síntesis están dadas en la referencia 1 El proceso de síntesis nos da el circuito de la Fig SENSITIVIDADES Fig. 3.4 Circuito final modificado. Una de las aplicaciones más importantes de los circuitos pasivos escalera elípticos es su aplicación como prototipo para la realización de filtros activos. Básicamente existen dos enfoques para ésto. La realización directa donde existe una sustitución de elementos difíciles de intregrar como son los inductores.el otro enfoque consiste en realizar con integradores y sumadores las ecuaciones que resultan de la interconexión de los componentes del filtro pasivo, mejor conocida como realización salto de rana o escalera activa. Estas dos técnicas de realización activa de filtros activos son muy populares debido a que los filtros pasivos escalera doblemente terminados tienen muy bajas sensitividades dando como resultado un filtro activo con sensitividades muy bajas también.

7 4.1 SENSITIVIDADES DE LOS FILTROS ACTIVOS Es bien conocido que las sensitividades de los filtros pasivos escalera con doble terminación resistiva es baja. Ningún otro tipo de filtro tiene sensitividades mas bajas que las de este tipo de filtros [1]. Por esta razón lo único que realizamos en este análisis de sensitividad es una comparación entre un circuito original y uno transformado. Esta comparación será hecha perturbando una de las resistencias terminales y el elemento central que para nuestro ejemplo es C5. La perturbación será del +10% en los tres elementos. El circuito que analizamos es el siguiente: C m. Las Figs. 4.1 y 4. muestran el rizo de la banda de paso del filtro modificado y original y las respuestas a la variación de +10% a los tres componentes a variar. Como se observa, las variaciones del rizo son pequeñas, del menos de 0.5 db para el caso de R 1, pero para el caso de C5 las variaciones en el filtro eliptico modificado son ligeramente menores. Nótese que para el filtro modificado las variaciones son de aproximadamente 0.5 db pero para el filtro original su variacón es cercana a un db. Por lo tanto vemos que adicionalmente al caso de mejorar el retraso de grupo ahora se ve que las sensitividades también se mejoran. Esto permite garantizar su uso como prototipo de filtros activos. (a) (b) Fig. 4.1a Variación del rizo cuando R 1 varia +10% en el filtro elíptico modificado. b) Variación del rizo en el filtro elíptico original cuando R 1 cambia +10%. (a) (b) Fig. 4.a Variación del rizo cuando C 5 varia +10% en el filtro elíptico modificado.b) Variación del rizo cuando C 5 varia +10% en el filtro elíptico original. 5. CONCLUSIONES El diseño de filtros elípticos para mejorar el retardo de grupo se puede realizar reduciendo el rizo en la banda de rechazo. Esto lo hicimos mediante transformaciones consecutivas cuyo propósito es correr el máximo más cercano al origen hacia éste. También obtuvimos la realización pasiva escalera con el propósito de obtener un prototipo pasivo para un filtro activo. Finalmente, observamos como las sensitividades de este nuevo tipo de filtro elíptico modificado se mantienen

8 bajas y se mejoran en algunos casos. Un trabajo futuro puede considerar la realización de un corrimiento pero sobre los ceros de transmisión que reduciría el número de tanques LC en la realización del filtro pasivo escalera. La herramienta que se uso en este trabajo fue Mathematica 4.0 de Wolfram Research. Inc. REFERENCIAS [1] L.P. Huelsman, Active and passive analog filter design, McGraw-Hill Book Co., New York, [] W. Cauer, Synthesis of Linear Communication Networks, McGraw-Hill Book Co., New York, 1958.

CAPÍTULO 5. Pruebas y resultados. En este capítulo se presentan algunos ejemplos para la comprobación de los

CAPÍTULO 5. Pruebas y resultados. En este capítulo se presentan algunos ejemplos para la comprobación de los CAPÍTULO 5 Pruebas y resultados. 5.1 Introducción En este capítulo se presentan algunos ejemplos para la comprobación de los conceptos antes expuestos y se analiza cada uno de los ejemplos con sus gráficas

Más detalles

PROBLEMAS TEMA 2 TEORÍA DE LA APROXIMACIÓN

PROBLEMAS TEMA 2 TEORÍA DE LA APROXIMACIÓN PROBLEMAS TEMA TEORÍA DE LA APROXIMACIÓN PROBLEMA : Determinar la función de transferencia de un filtro paso bajo máximamente plano que cumplan las especificaciones de la figura: a) Determinar el orden

Más detalles

PROBLEMAS TEMA 1 INTRODUCCIÓN. DEFINICIONES BÁSICAS

PROBLEMAS TEMA 1 INTRODUCCIÓN. DEFINICIONES BÁSICAS INTRODUCCIÓN. DEFINICIONES BÁSICAS PROBLEMA 1 Se desea obtener un filtro paso banda que cumpla las especificaciones indicadas en la plantilla de atenuación de la figura a partir de un filtro paso bajo

Más detalles

Problemas de diseño de filtros y sus soluciones

Problemas de diseño de filtros y sus soluciones Problemas de diseño de filtros y sus soluciones 1. Diseñe un filtro paso-bajo de Butterworth con una frecuencia de corte fc=10khz y una atenuación mínima de A t =36 db a f r =100Khz. a. Cuánto vale el

Más detalles

TEMA 5 AMPLIFICADORES OPERACIONALES

TEMA 5 AMPLIFICADORES OPERACIONALES TEMA 5 AMPLIFICADORES OPERACIONALES 1 F.V.Fernández-S.Espejo-R.Carmona Área de Electrónica, ESI 5.1 El amplificador operacional de tensiones ideal La operación de un amplificador operacional se describe

Más detalles

REPRESENTACION DE SEÑALES Y SISTEMAS

REPRESENTACION DE SEÑALES Y SISTEMAS REPRESENTACION DE SEÑALES Y SISTEMAS TRANSFORMADA DE FOURIER La serie de Fourier nos permite obtener una representación en el dominio de la frecuencia de funciones periódicas f(t). La transformada de Fourier

Más detalles

TRANSFORMACIONES EN FRECUENCIA

TRANSFORMACIONES EN FRECUENCIA TEMA 5 Labels E: 5ge Labels F: 5 5 Labels L: 5 Labels T: 5 TRANSFORMACIONES EN FRECUENCIA 5. Introducción Hasta ahora sólo hemos considerado la aproximación de funciones de transferencia con especificaciones

Más detalles

PROBLEMAS SOBRE FILTROS ACTIVOS

PROBLEMAS SOBRE FILTROS ACTIVOS ELECTRÓNICA III PRÁCTICA FILTROS ACTIVOS UNIVERSIDAD NACIONAL DE ROSARIO FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA III PROBLEMAS SOBRE FILTROS ACTIVOS

Más detalles

Filtros Activos. Departamento de Electrónica y Telecomunicaciones. eman ta zabal zazu. universidad del país vasco. euskal herriko unibersitatea

Filtros Activos. Departamento de Electrónica y Telecomunicaciones. eman ta zabal zazu. universidad del país vasco. euskal herriko unibersitatea Filtros Activos Filtros-2 Filtros Activos Sistema que modifica señales de acuerdo con su frecuencia. Utilizan componentes pasivos y activos. Normalmente no utilizan inductancias. Pueden tener además ganancia.

Más detalles

Respuesta en frecuencia

Respuesta en frecuencia Respuesta en frecuencia La respuesta en frecuencia de un circuito es el analisis de una respuesta determinada de un circuito electrico ante la variacion de la frecuencia de la señal, siendo la frecuencia

Más detalles

Filtros Activos. Teoría. Autor: José Cabrera Peña

Filtros Activos. Teoría. Autor: José Cabrera Peña Filtros Activos Teoría Autor: José Cabrera Peña Definición y clasificaciones Un filtro es un sistema que permite el paso de señales eléctricas a un rango de frecuencias determinadas e impide el paso del

Más detalles

Tema 4. Filtros Activos.

Tema 4. Filtros Activos. Tema 4. Filtros Activos. Introducción Parámetros de los filtros Tipos de filtros; comparación Diseño de filtros VCVS Filtros de variables de estado Filtros de frecuencia eliminada y otros Introducción

Más detalles

= = Amplificador inversor. Considere el amplificador operacional de la figura Obtengamos el voltaje de salida

= = Amplificador inversor. Considere el amplificador operacional de la figura Obtengamos el voltaje de salida Amplificadores operacionales. Los amplificadores operacionales, también conocidos como amp ops, se usan con frecuencia para amplificar las señales de los circuitos Los amp ops también se usan con frecuencia

Más detalles

UNIVERSIDAD DE VIGO. Escuela de Ingeniería de Telecomunicación

UNIVERSIDAD DE VIGO. Escuela de Ingeniería de Telecomunicación UNIVESIDAD DE VIGO Escuela de Ingeniería de Telecomunicación Grado en Ingeniería de Tecnologías de Telecomunicación Primer curso Análisis de circuitos lineales Examen de 8 mayo 0 Departamento de Teoría

Más detalles

Marco Antonio Andrade Barrera 1 Diciembre de 2015

Marco Antonio Andrade Barrera 1 Diciembre de 2015 Diseño, simulación, construcción, medición y ajuste de un filtro pasa-bajas activo de segundo orden con coeficientes de Bessel, configuración Sallen-Key, ganancia unitaria y una frecuencia de corte f c

Más detalles

1n mr. C 1n. Figura 1. Filtro paso-bajo de 2º orden Sallen-Key. Recordemos primero la expresión general de un filtro paso-bajo de 2º orden: A V.

1n mr. C 1n. Figura 1. Filtro paso-bajo de 2º orden Sallen-Key. Recordemos primero la expresión general de un filtro paso-bajo de 2º orden: A V. 1 Apéndice 1.1 Diseño de un filtro paso-bajo de º orden Sallen-Key El filtro de º orden representado en la Figura 4 del enunciado puede también dibujarse como en la siguiente Figura 1, donde se etiquetan

Más detalles

Código: CIE-343. Horas Semanales: 4

Código: CIE-343. Horas Semanales: 4 INSTITUTO UNIVERSITARIO JESÚS OBRERO PROGRAMA DE ESTUDIO Unidad Curricular: Circuitos Eléctricos II Carrera: Electrónica Semestre: Tercero Código: CIE-343 Horas Semanales: 4 Horas Teóricas: 2 Horas Prácticas:

Más detalles

CUESTIONES DEL TEMA - V

CUESTIONES DEL TEMA - V Presentación El tema 5 está dedicado al análisis y diseño de filtros activos. Inicialmente se realiza una clasificación de los filtros. Posteriormente se propone el uso de filtros prototipos y el escalado

Más detalles

Teoría de Circuitos. Práctico 8 Amplificadores Operacionales 2012

Teoría de Circuitos. Práctico 8 Amplificadores Operacionales 2012 Teoría de Circuitos Práctico 8 Amplificadores Operacionales 2012 Cada ejercicio comienza con un símbolo el cual indica su dificultad de acuerdo a la siguiente escala: básica, media, avanzada, y difícil.

Más detalles

Cualquier elemento llamado filtro es el que está encargado de separar. componentes que se encuentran mezclados; si nos remontamos al griego antiguo

Cualquier elemento llamado filtro es el que está encargado de separar. componentes que se encuentran mezclados; si nos remontamos al griego antiguo 2.1 Introducción Cualquier elemento llamado filtro es el que está encargado de separar componentes que se encuentran mezclados; si nos remontamos al griego antiguo encontramos que filtro proviene de la

Más detalles

Capítulo 8: Filtros en microondas

Capítulo 8: Filtros en microondas Capítulo 8: Filtros en microondas Objetivo: Un filtro de microondas es un dispositivo con una respuesta selectiva en frecuencia, de modo que discrimina señales de microondas en función de su frecuencia.

Más detalles

Capítulo 7: Filtros en microondas

Capítulo 7: Filtros en microondas Capítulo 7: Filtros en microondas Objetivo: Un filtro de microondas es un dispositivo con una respuesta selectiva en frecuencia, de modo que discrimina señales de microondas en función de su frecuencia.

Más detalles

COMPENSACIÓN EN ADELANTO

COMPENSACIÓN EN ADELANTO COMPENSACIÓN EN ADELANTO Produce un mejoramiento razonable en la respuesta transitoria y un cambio pequeño en la precisión en estado estable. Puede acentuar los efectos del ruido de alta frecuencia. Aumenta

Más detalles

TOTAL DE HORAS: Semanas de clase: 6 Teóricas: 4 Prácticas: 2. SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna

TOTAL DE HORAS: Semanas de clase: 6 Teóricas: 4 Prácticas: 2. SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Electrónica Analógica

Más detalles

Microondas. Tema 5: Diseño de filtros de microondas. Pablo Luis López Espí

Microondas. Tema 5: Diseño de filtros de microondas. Pablo Luis López Espí Microondas Tema 5: Diseño de filtros de microondas Pablo Luis López Espí Índice Método de las pérdidas de inserción Respuestas y prototipos paso bajo Transformaciones en frecuencia Inversores de inmitancia

Más detalles

Circuitos de RF y las Comunicaciones Analógicas. Capítulo II: Circuitos resonantes y Redes de acople

Circuitos de RF y las Comunicaciones Analógicas. Capítulo II: Circuitos resonantes y Redes de acople Capítulo II: Circuitos resonantes y Redes de acople 21 22 2. Circuitos Resonantes y Redes de Acople En este capítulo se estudiaran los circuitos resonantes desde el punto de vista del factor de calidad

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DEPARTAMENTO DE CONTROL

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DEPARTAMENTO DE CONTROL 1 0 0 1 2 3 4 5 6 7-1 2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8-2 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DEPARTAMENTO DE CONTROL OBJETIVO Práctica N

Más detalles

Procesamiento Analógico de Señales

Procesamiento Analógico de Señales Procesamiento Analógico de Señales Departamento de Electrónica y Automática Facultad de Ingeniería Diseño de Filtros en Cascada Andrés Lage Angel Veca Mario Ruiz Edición 2014 Filtro Pasa Bajo en Cascada

Más detalles

PLANIFICACIÓN SEMANAL DE LA ASIGNATURA

PLANIFICACIÓN SEMANAL DE LA ASIGNATURA DENOMINACIÓN ASIGNATURA: Análisis y Diseño de Circuitos GRADO: Grado de Ingeniería en Tecnologías de Telecomunicación CURSO: 2 CUATRIMESTRE: 2 PLANIFICACIÓN SEMANAL DE LA ASIGNATURA SEMANA SESIÓN DESCRIPCIÓN

Más detalles

Funciones de aproximación

Funciones de aproximación DEPARTAMENTO DE TEORÍA DE LA SEÑAL Y COMUNICACIONES ANÁLISIS Y SÍNTESIS DE CIRCUITOS TEMA 2 Funciones de aproximación ÍNDICE 1.-Introducción...1 2.-Etapas en la realización de un filtro: aproximación y

Más detalles

Obtener la Función de Transferencia de un filtro paso de banda con las siguientes especificaciones:

Obtener la Función de Transferencia de un filtro paso de banda con las siguientes especificaciones: Obtener la Función de Transferencia de un filtro paso de banda con las siguientes especificaciones: Banda pasante máximamente plana, comprendida entre khz y.44khz con A p 3dB. Un cero de transmisión, al

Más detalles

Transformada Z y sus Aplicaciones en Sistemas LTI

Transformada Z y sus Aplicaciones en Sistemas LTI Transformada Z y sus Aplicaciones en Sistemas LTI Qué es la transformada Z? Es una representación para señales en tiempo discreto mediante una serie infinita de números complejos. Es una herramienta muy

Más detalles

UNIVERSIDAD DE VIGO. Escuela de Ingeniería de Telecomunicación

UNIVERSIDAD DE VIGO. Escuela de Ingeniería de Telecomunicación UNIVESIDAD DE VIGO Escuela de Ingeniería de Telecomunicación Grado en Ingeniería de Tecnologías de Telecomunicación Primer curso Análisis de circuitos lineales Examen de 11 julio 2012 Departamento de Teoría

Más detalles

10. Diseño avanzado de controladores SISO

10. Diseño avanzado de controladores SISO 10. Diseño avanzado de controladores SISO Parte 2 Panorama de la Clase: Repaso: Parametrización Afín (PA) Consideraciones de diseño: grado relativo rechazo de perturbaciones esfuerzo de control robustez

Más detalles

Análisis de un filtro IIR Butterworth mediante Sptool de Matlab. TEORÍA DE SISTEMAS. ANÁLISIS DE FILTRO IIR BUTTERWORTH (PASABAJOS) 1.

Análisis de un filtro IIR Butterworth mediante Sptool de Matlab. TEORÍA DE SISTEMAS. ANÁLISIS DE FILTRO IIR BUTTERWORTH (PASABAJOS) 1. Análisis de un filtro IIR Butterworth mediante Sptool de Matlab. TEORÍA DE SISTEMAS. ANÁLISIS DE FILTRO IIR BUTTERWORTH (PASABAJOS) 1. Filtro ideal: La definición del filtro ideal pasabajos, es un concepto

Más detalles

Escalamiento en Impedancia y en Frecuencia

Escalamiento en Impedancia y en Frecuencia Objetivo Aplicar los conceptos de escalamiento en impedancia y en frecuencia a un circuito filtro de segundo orden. El escalamiento en impedancia y en frecuencia es una técnica de circuitos eléctricos

Más detalles

CONTROL DIGITAL Catedrático: Dr. Manuel Adam Medina Alumno: Ing. Jaimes Maldonado José Luis

CONTROL DIGITAL Catedrático: Dr. Manuel Adam Medina Alumno: Ing. Jaimes Maldonado José Luis Diseño de controladores por el método de respuesta en frecuencia de sistemas discretos. (método gráfico) CONTROL DIGITAL 07--0 Catedrático: Dr. Manuel Adam Medina Alumno: Ing. Jaimes Maldonado José Luis

Más detalles

Formulario Procesamiento Digital de Señales

Formulario Procesamiento Digital de Señales Formulario Procesamiento Digital de Señales M n=0 n=0 α n = αm+ α ( α n =, a < ( α sen(a ± B = sen(a cos(b ± cos(a sen(b (3 cos(a ± B = cos(a cos(b sen(a sen(b (4 cos (A = ( + cos(a (5 sen (A = ( cos(a

Más detalles

1 Problemas Resueltos

1 Problemas Resueltos 1) Para un sistema de control de retroaliementación unitaria se conoce el diagrama de bode de la función de transferencia a lazo abierto, la cual se muestra en la Fig. 1.1. A partir esta información se

Más detalles

Elementos de control en lazo cerrado 14 de diciembre de 2011

Elementos de control en lazo cerrado 14 de diciembre de 2011 . Introducción Elementos de control en lazo cerrado 4 de diciembre de 2 d i d o r C u G o y d m Figura : Lazo de control estándar. La Figura muestra un lazo de control elemental. En dicha figura, G o corresponde

Más detalles

Análisis de Circuitos Eléctricos 2010/2011

Análisis de Circuitos Eléctricos 2010/2011 2º Ingeniería de Telecomunicación - Escuela Politécnica Superior Universidad Autónoma de Madrid ACE Análisis de Circuitos Eléctricos Práctica 1 (2ª Parte) La Transformada de Laplace y su aplicación al

Más detalles

Introducción al Diseño de Filtros Digitales

Introducción al Diseño de Filtros Digitales Introducción al Diseño de Filtros Digitales Diego Milone Procesamiento Digital de Señales Ingeniería Informática FICH-UNL 3 de mayo de 2012 Organización de la clase Introducción Concepto y clasificación

Más detalles

Laboratorio 4 Diseño de filtros analógicos en Matlab

Laboratorio 4 Diseño de filtros analógicos en Matlab 10 Laboratorio 4 Diseño de filtros analógicos en Matlab Como ya se ha señalado, existen varios métodos de diseño de filtros analógicos. En esta práctica se revisan estos métodos empleando las funciones

Más detalles

Ing. Pedro Darío DOÑATE Por semana Por Cuatrimestre Por semana Por Cuatrimestre

Ing. Pedro Darío DOÑATE Por semana Por Cuatrimestre Por semana Por Cuatrimestre UNIVERSIDAD NACIONAL DEL SUR 1 / 5 DEPARTAMENTO DE: Ingeniería Eléctrica H O R A S D E C L A S E P R O F E S O R R E S P O N S A B L E T E Ó R I C A S P R Á C T I C A S Ing. Pedro Darío DOÑATE Por semana

Más detalles

TEMA4: Implementación de Filtros Discretos

TEMA4: Implementación de Filtros Discretos TEMA4: Implementación de Filtros Discretos Contenidos del tema: El muestreo y sus consecuencias Relaciones entre señales y sus transformadas: Especificaciones de filtros continuos y discretos Aproximaciones

Más detalles

Celdas de Filtrado con Entrada Inductiva

Celdas de Filtrado con Entrada Inductiva Celdas de Filtrado con Entrada Inductiva Un circuito rectificador con carga capacitiva está limitado por el hecho que, para elevadas corrientes de carga, se requiere un capacitor de filtro de capacidad

Más detalles

Métodos de elemento finito Formulación n de elemento finito en 2 dimensiones

Métodos de elemento finito Formulación n de elemento finito en 2 dimensiones Métodos de elemento finito 7.4.. Método de Galerkin 7.4.. Formulación n de elemento finito en dimensiones Los métodos m de elemento finito (MEF) son una estrategia numérica alternativa muy popular para

Más detalles

Planificaciones Análisis de Circuitos. Docente responsable: BARREIRO FERNANDO DANIEL. 1 de 7

Planificaciones Análisis de Circuitos. Docente responsable: BARREIRO FERNANDO DANIEL. 1 de 7 Planificaciones 6606 - Análisis de Circuitos Docente responsable: BARREIRO FERNANDO DANIEL 1 de 7 OBJETIVOS Se pretende que los estudiantes logren: 1. Aplicar los conocimientos de los conceptos asociados

Más detalles

Pontificia Universidad Católica Argentina Santa María de los Buenos Aires

Pontificia Universidad Católica Argentina Santa María de los Buenos Aires Carrera: Ingeniería Electrónica Pontificia Universidad Católica Argentina PROGRAMA DE TEORIA DE CIRCUITOS 328 PLAN DE ESTUDIOS 2006 - AÑO 2010 Ubicación en el Plan de Estudios: 3 Año 1 Cuatrimestre Carga

Más detalles

INDICE Capitulo 1. Variables del Circuito Eléctrico Capitulo 2. Elementos del Circuito Capitulo 3. Circuitos Resistivos

INDICE Capitulo 1. Variables del Circuito Eléctrico Capitulo 2. Elementos del Circuito Capitulo 3. Circuitos Resistivos INDICE Capitulo 1. Variables del Circuito Eléctrico 1 1.1. Albores de la ciencia eléctrica 2 1.2. Circuitos eléctricos y flujo de corriente 10 1.3. Sistemas de unidades 16 1.4. Voltaje 18 1.5. Potencia

Más detalles

INDICE Capitulo 1. Variables y Leyes de Circuitos 1.1. Corriente, Voltaje y Potencia 1.2. Fuentes y Cargas (1.1) 1.3. Ley de Ohm y Resistores (1.

INDICE Capitulo 1. Variables y Leyes de Circuitos 1.1. Corriente, Voltaje y Potencia 1.2. Fuentes y Cargas (1.1) 1.3. Ley de Ohm y Resistores (1. INDICE Capitulo 1. Variables y Leyes de Circuitos 1 1.1. Corriente, Voltaje y Potencia 3 Carga y corriente * Energía y voltaje * Potencia eléctrica * Prefijos de magnitud 1.2. Fuentes y Cargas (1.1) 11

Más detalles

APROXIMACIÓN DE FILTROS

APROXIMACIÓN DE FILTROS Análisis y Síntesis de Circuitos TEMA 3 Labels E: 3 Labels F: 3 Labels L: 3 Labels T: 3 APROXIMACIÓN DE FILTROS 3. Teoría de la aproximación Tal como se ha visto anteriormente normalmente se imponen especificaciones

Más detalles

Tema 2 El Amplificador Operacional

Tema 2 El Amplificador Operacional CICUITOS ANALÓGICOS (SEGUNDO CUSO) Tema El Amplificador Operacional Sebastián López y José Fco. López Instituto de Microelectrónica Aplicada (IUMA) Universidad de Las Palmas de Gran Canaria 3507 - Las

Más detalles

Análisis y Diseño de Circuitos Eléctricos Nombre en Inglés Analysis and Design of Electrical Circuits SCT

Análisis y Diseño de Circuitos Eléctricos Nombre en Inglés Analysis and Design of Electrical Circuits SCT PROGRAMA DE CURSO Código Nombre EL 3001 Análisis y Diseño de Circuitos Eléctricos Nombre en Inglés Analysis and Design of Electrical Circuits SCT Unidades Horas de Horas Docencia Horas de Trabajo Docentes

Más detalles

INDICE Prefacio 1. Introducción 2. Conceptos de circuitos 3. Leyes de los circuitos 4. Métodos de análisis

INDICE Prefacio 1. Introducción 2. Conceptos de circuitos 3. Leyes de los circuitos 4. Métodos de análisis INDICE Prefacio XIII 1. Introducción 1.1. magnitudes eléctricas y unidades del S.I. 1 1.2. fuerza, trabajo y potencia 2 1.3. carga y corriente eléctrica 3 1.4. potencial eléctrico 1.5. energía y potencia

Más detalles

En general, el diseño de cualquier filtro digital es llevado a cabo en 3 pasos:

En general, el diseño de cualquier filtro digital es llevado a cabo en 3 pasos: En general, el diseño de cualquier filtro digital es llevado a cabo en 3 pasos: 1. Especificaciones: Antes de poder diseñar un filtro debemos tener algunas especificaciones, las cuales son determinadas

Más detalles

Filtros pasivos. Practica 1 de diseño con electrónica integrada:

Filtros pasivos. Practica 1 de diseño con electrónica integrada: Filtros pasivos Practica 1 de diseño con electrónica integrada: Cualquier combinación de elementos pasivos (R, L y C) diseñados para dejar pasar una serie de frecuencias se denominan un filtro. En los

Más detalles

Tipos de Compensación

Tipos de Compensación - CONTROL DE PROCESOS (segundo cuatrimestre) - CONTROL AVANZADO y AUTOMATISMO Facultad de Ingeniería UNER Carrera: Bioingeniería Planes de estudios: 993 y 2008 Tipos de Compensación + Gc( Gp( + G ( + -

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 20: Respuesta en Frecuencia de Circuitos Amplificadores (1) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 20 de

Más detalles

Sistemas Lineales e Invariantes PRÁCTICA 2

Sistemas Lineales e Invariantes PRÁCTICA 2 Sistemas Lineales e Invariantes PRÁCTICA 2 (1 sesión) Laboratorio de Señales y Comunicaciones PRÁCTICA 2 Sistemas Lineales e Invariantes 1. Objetivo Los objetivos de esta práctica son: Revisar los sistemas

Más detalles

Una vez conseguida, tenemos que implementar un circuito electrónico cuya función de transferencia sea precisamente ésta.

Una vez conseguida, tenemos que implementar un circuito electrónico cuya función de transferencia sea precisamente ésta. Teoría de ircuitos II 3.3 El proceso de diseño de filtros consiste en encontrar una función de transferencia que cumpla las especificaciones dadas. Una vez conseguida, tenemos que implementar un circuito

Más detalles

Circuitos de corriente alterna

Circuitos de corriente alterna Circuitos de corriente alterna Área Física Resultados de aprendizaje Calcular la corriente, frecuencia y otras magnitudes en circuitos de corriente alterna, como el RLC. Contenidos. Introducción teórica.

Más detalles

Método aproximado para conocer la localización de las raíces de la ecuación característica con respecto a los semiplanos izquierdo y derecho. (12.

Método aproximado para conocer la localización de las raíces de la ecuación característica con respecto a los semiplanos izquierdo y derecho. (12. 1. Criterio de estabilidad de Nyquist 1.1 Gráfica de Nyquist Gráfica de L(jω) G(jω)H(jω) en coordenadas polares de Im[L(jω)], Re[L(jω)] con ω variando desde hasta 0. Características: provee información

Más detalles

ELECTRONICA II BIOINGENIERIA 1ra. Parte FILTROS ANALOGICOS

ELECTRONICA II BIOINGENIERIA 1ra. Parte FILTROS ANALOGICOS ELECTRONICA II BIOINGENIERIA 1ra. Parte FILTROS ANALOGICOS Los filtros analógicos son indispensables en muchas situaciones, por ejemplo los filtros anti-aliasing que se utilizan antes del procesamiento

Más detalles

10 Puentes de medida Introducción

10 Puentes de medida Introducción 10 Puentes de medida 10.1 Introducción En este capítulo veremos una forma habitual de acondicionamiento de señal, que es el uso de puentes de medida. Qué ventajas tiene el uso de un puente? Hay dos configuraciones

Más detalles

Práctica 3: Carta de Smith

Práctica 3: Carta de Smith Radiación y ondas guiadas Práctica 3: Carta de Smith Objetivo Familiarización con el manejo de la Carta de Smith. Contenidos Representación de impedancias y admitancias. Obtención de parámetros de las

Más detalles

Filtros: concepto y especificaciones

Filtros: concepto y especificaciones Filtros: concepto y especificaciones Definición de filtro (eléctrico: Circuito cuya función es modificar el espectro en frecuencia de una señal de entrada (excitación conforme a determinados requerimientos

Más detalles

Sintonización de controladores por ubicación de polos y ceros

Sintonización de controladores por ubicación de polos y ceros Sintonización de controladores por ubicación de polos y ceros Leonardo J. Marín, Víctor M. Alfaro Departamento de Automática, Escuela de Ingeniería Eléctrica, Universidad de Costa Rica Apartado postal

Más detalles

Electrónica 1. Práctico 1 Amplificadores Operacionales 1

Electrónica 1. Práctico 1 Amplificadores Operacionales 1 Electrónica 1 Práctico 1 Amplificadores Operacionales 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos ELA - Circuitos Electrónicos Clase No. 24: Amplificadores Operacionales (1) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 3 de Noviembre de 2009 ELA -

Más detalles

2.1 Descripción en espacio de estado de sistemas dinámicos

2.1 Descripción en espacio de estado de sistemas dinámicos 2 Análisis de sistemas lineales 2.1 Descripción en espacio de estado de sistemas dinámicos El objetivo de este capítulo es formular una teoría general de describir los sistemas dinámicos en funcion de

Más detalles

Aplicación de uso de diodos: Filtro. Fig. 1

Aplicación de uso de diodos: Filtro. Fig. 1 Aplicación de uso de diodos: Filtro Repaso de filtros R-C: Pasabajos Tenemos a continuación un circuito RC típico: Fig. 1 Si utilizamos La salida v(t) tendrá también una forma senoidal con la misma frecuencia

Más detalles

Integral de Fourier y espectros continuos

Integral de Fourier y espectros continuos 9 2 2 2 Esta expresión se denomina forma de Angulo fase (o forma armónica) de la serie de Fourier. Integral de Fourier y espectros continuos Las series de Fourier son una herramienta útil para representar

Más detalles

APROXIMACIÓN DE FILTROS

APROXIMACIÓN DE FILTROS TEMA 4 Labels E: 4ge Labels F: 4 Labels L: 4 Labels T: 4 4 APROXIMACIÓN DE FILTROS 4. Introducción Tal como se ha visto anteriormente normalmente se imponen especificaciones de la banda pasante, de rechazo

Más detalles

Teoría de circuitos Segundo Parcial

Teoría de circuitos Segundo Parcial Teoría de circuitos Segundo Parcial CUE 13 de julio de 2015 Indicaciones: La prueba tiene una duración total de 3 horas. Cada hoja entregada debe indicar nombre, número de C.I., y número de hoja. La hoja

Más detalles

REPRESENTACIONES GRÁFICAS

REPRESENTACIONES GRÁFICAS REPRESENTACIONES GRÁFICAS 1. Qué son? Son gráficos que permiten mostrar la respuesta en frecuencia de un sistema lineal. Son herramientas útiles para el análisis, síntesis y diseño. 2. Diagrama de Bode

Más detalles

Cartilla de problemas de ELECTRONICA I 1º cuatrimestre 2017 Tema 1

Cartilla de problemas de ELECTRONICA I 1º cuatrimestre 2017 Tema 1 1 Cartilla de problemas de ELECTONICA I 1º cuatrimestre 2017 Tema 1 1 En el circuito de la figura, calcule: a) La ganancia de tensión /. b) La máxima tensión de entrada que no produzca distorsión a la

Más detalles

2. Resonancia de amplitud

2. Resonancia de amplitud 0. esonancia de amplitud. Propiedades de las funciones de redes. Definición: Toda relación entre dos tensiones y/o corrientes complejas, tal como lo son la ganancia en tensión, la impedancia de salida,

Más detalles

2.3 Filtros. 2 Electrónica Analógica TEMA II. Electrónica Analógica. Transformada de Laplace. Transformada de Laplace. Transformada inversa

2.3 Filtros. 2 Electrónica Analógica TEMA II. Electrónica Analógica. Transformada de Laplace. Transformada de Laplace. Transformada inversa TEMA II Electrónica Analógica 2.3 Filtros -Transformada de Laplace. -Teoremas valor inicial y valor final. -Resistencia, condensador, inductor. -Función de transferencia -Diagramas de Bode -Filtros pasivos.

Más detalles

OSCILADORES POR ROTACIÓN DE FASE

OSCILADORES POR ROTACIÓN DE FASE OSILADOES PO OTAIÓN DE FASE Un ejemplo de un circuito oscilador que sigue el desarrollo básico de un circuito retroalimentado es el oscilador de rotación de fase. En la figura 05 se muestra una versión

Más detalles

Circuitos SC (Switched Capacitors)

Circuitos SC (Switched Capacitors) ircuitos S (Switched apacitors) V I V I O V O V I V I O V O Q T S φ 1 : se carga hasta V = V I φ 2 : se descarga hasta V = V O ; Q = (V I V O ) orriente promedio: Î = Q T s = (V I V O ) T s = (V I V O

Más detalles

Respuesta en fase Filtros Chebyshev. clase 13

Respuesta en fase Filtros Chebyshev. clase 13 Respuesta en fase Filtros Chebyshev clase 13 Temas Introducción a los filtros digitales Clasificación, Caracterización, Parámetros Filtros FIR (Respuesta al impulso finita) Filtros de media móvil, filtros

Más detalles

CARACTERÍSTICAS DEL AMPLIFICADOR OPERACIONAL IDEAL. Ganancia infinita A = Impedancia de entrada infinita Ri = Impedancia de salida cero Ro = 0

CARACTERÍSTICAS DEL AMPLIFICADOR OPERACIONAL IDEAL. Ganancia infinita A = Impedancia de entrada infinita Ri = Impedancia de salida cero Ro = 0 CARACTERÍSTICAS DEL AMPLIFICADOR OPERACIONAL IDEAL Ganancia infinita A = Impedancia de entrada infinita Ri = Impedancia de salida cero Ro = 0 Vo = A (Vi + - Vi - ) AMPLIFICADOR INVERSOR BÁSICO CON EL AMPLIFICADOR

Más detalles

3. Resonancia de amplitud

3. Resonancia de amplitud 3. esonancia de amplitud 7 3. Propiedades de las funciones de redes. Definición: Toda relación entre dos tensiones y/o corrientes complejas, tal como lo son la ganancia en tensión, la impedancia de salida,

Más detalles

ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS

ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS 1. INTRODUCCIÓN. 2. SISTEMAS REALIMENTADOS EN RÉGIMEN PERMANENTE 2.1 Error de posición 2.2 Error de velocidad 2.3 Conclusiones y Aplicación al Diseño

Más detalles

1. Método del Lugar de las Raíces

1. Método del Lugar de las Raíces . Método del Lugar de las Raíces. MÉTODO DEL LUGAR DE LAS RAÍCES..... IDEA BÁSICA... 3.. LUGAR DE LAS RAÍCES DE SISTEMAS SIMPLES... 0.3. LUGAR DE GANANCIA CONSTANTE....4. REGLAS PARA LA CONSTRUCCIÓN DEL

Más detalles

TEMA: Sistemas Lineales Invariantes en el Tiempo (LTI)

TEMA: Sistemas Lineales Invariantes en el Tiempo (LTI) TEMA: Sistemas Lineales Invariantes en el Tiempo (LTI). Introducción. Sistemas LTI....2 Función de Transferencia y Respuesta Impulsional....2. Respuesta ideal de un sistema sin distorsión (retraso puro)....

Más detalles

3. Modelos, señales y sistemas. Panorama Obtención experimental de modelos Respuesta en frecuencia Diagramas de Bode

3. Modelos, señales y sistemas. Panorama Obtención experimental de modelos Respuesta en frecuencia Diagramas de Bode 3. Modelos, señales y sistemas Panorama Obtención experimental de modelos Respuesta en frecuencia Diagramas de Bode CAUT1 Clase 4 1 Obtención experimental de modelos Muchos sistemas en la práctica pueden

Más detalles

TRABAJO PRÁCTICO Nº 3 FILTROS

TRABAJO PRÁCTICO Nº 3 FILTROS TRABAJO PRÁCTICO Nº 3 FILTROS El objetivo de esta práctica es que vuelva a estudiar algunos circuitos sencillos que seguramente vio en Física 3 y en Laboratorio 3, pero desde otro punto de vista. La idea

Más detalles

PROBLEMAS DE OSCILADORES DE MICROONDAS

PROBLEMAS DE OSCILADORES DE MICROONDAS PROBLEMAS DE OSCILADORES DE MICROONDAS Curso 10-11 PROBLEMA 1 (febrero 02) Se pretende diseñar un oscilador a 5 GHz haciendo uso de un diodo Impatt del que sabemos que presenta, alrededor de esta frecuencia,

Más detalles

FUNDAMENTOS TEÓRICOS

FUNDAMENTOS TEÓRICOS FUNDAMENTOS TEÓRICOS 7 FUNDAMENTOS TEÓRICOS 1.1. FUNDAMENTOS TEÓRICOS: FILTROS La primera pregunta que debemos de hacernos es, qué es un filtro?, pues bien, un filtro es un dispositivo (bien realizado

Más detalles

Caso Resuelto 4 Análisis en el Dominio de la Frecuencia realizado con Excel

Caso Resuelto 4 Análisis en el Dominio de la Frecuencia realizado con Excel Caso Resuelto 4 Para realizar un análisis completo en el dominio de la frecuencia se necesita construir las gráficas: Polar de Nyquist, Diagramas de Bode de Lazo Abierto, Diagramas de Bode de Lazo Cerrado,

Más detalles

Dr. ALEJANDRO OLIVA Análisis y diseño de circuitos analógicos I

Dr. ALEJANDRO OLIVA Análisis y diseño de circuitos analógicos I UNIVERSIDAD NACIONAL DEL SUR 1 /8 DEPARTAMENTO Ingeniería Eléctrica y de Computadoras T E Ó R I C A S H O R A S D E C L A S E P R O F E S O R R E S P O N S A B L E P R Á C T I C A S Por semana Por cuatrimestre

Más detalles

0.1. Error en Estado Estacionario

0.1. Error en Estado Estacionario 0. Error en Estado Estacionario 0.. Error en Estado Estacionario La respuesta permanente es aquella que se alcanza cuando el sistema se establece y es muy importante su estudio pues informa lo que sucede

Más detalles

DISPOSITIVOS ELECTRÓNICOS II

DISPOSITIVOS ELECTRÓNICOS II CURSO 2010- II Profesores: Miguel Ángel Domínguez Gómez Despacho 222, ETSI Industriales Camilo Quintáns Graña Despacho 222, ETSI Industriales Fernando Machado Domínguez Despacho 229, ETSI Industriales

Más detalles

TEMA VII RED DE DOS PUERTOS - CUADRIPOLOS

TEMA VII RED DE DOS PUERTOS - CUADRIPOLOS 7.1. INTRODUCCIÓN. TEMA VII RED DE DOS PUERTOS - CUADRIPOLOS En Temas precedentes se ha puesto el énfasis en el análisis del funcionamiento interno de redes, es decir, el aspecto fundamental del análisis

Más detalles

CIRCUITOS II. Presentación del Curso

CIRCUITOS II. Presentación del Curso CIRCUITOS II Presentación del Curso Introducción Repaso de semestres anteriores: Fuentes que varían con el tiempo V(t) Fuente senoidal Circuitos con interruptores El curso es base para asignaturas en las

Más detalles

Autómatas y Sistemas de Control

Autómatas y Sistemas de Control Autómatas y Sistemas de Control 3 o Ingeniería Industrial Soluciones problemas propuestos sobre diseño en el dominio de la frecuencia. PROBLEMA (Problema, apartado a), del examen de Junio de 2004) Dado

Más detalles

Fecha de Elaboración Fecha de Revisión. Circuitos III HTD HTC HTA Asignatura. Básica de Ingeniería

Fecha de Elaboración Fecha de Revisión. Circuitos III HTD HTC HTA Asignatura. Básica de Ingeniería UNIVERSIDAD DISTRITAL Francisco José de Caldas Facultad de Ingeniería Ingeniería Eléctrica Elaboró Revisó Diana S. García M. con el Material de la Coordinación [Escriba aquí el nombre] Fecha de Elaboración

Más detalles

Introducción a la Física Experimental. Experimento guiado. Abril M. López Quelle

Introducción a la Física Experimental. Experimento guiado. Abril M. López Quelle Introducción a la Física Experimental. Experimento guiado. Abril 2009. M. López Quelle Circuito RC en corriente alterna. Comportamiento de un filtro RC. 1.- Breve introducción teóricateoría previa Utilizamos

Más detalles