TEMA 8. ENZIMAS II. 1. Cinética enzimática 2. Inhibición enzimática 3. Reacciones multisustrato 4. Regulación enzimática. 1. Cinética enzimática.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 8. ENZIMAS II. 1. Cinética enzimática 2. Inhibición enzimática 3. Reacciones multisustrato 4. Regulación enzimática. 1. Cinética enzimática."

Transcripción

1 TEMA 8. ENZIMAS II 1. Cinética enzimática 2. Inhibición enzimática 3. Reacciones multisustrato 4. Regulación enzimática 1. Cinética enzimática. Los principios generales de la cinética de las reacciones químicas son aplicables a las reacciones catalizadas por las enzimas, en los seres vivos. No obstante, estas muestran (además del fenómeno de la especificidad, antes comentado) un rasgo característico que no se observa en los catalizadores no enzimáticos, se trata de la saturación por el sustrato, entendida en términos de ocupación de los centros activos de todas las moléculas de enzima. Estudiar el efecto de la concentración de sustrato sobre la actividad de una enzima no es sencillo si pensamos que lógicamente la concentración del sustrato disminuye según avanza la reacción. Una simplificación en los experimentos cinéticos consiste en medir la velocidad inicial (Vo). Si el tiempo es suficientemente corto la disminución de sustrato será mínima y ésta podrá considerarse, por tanto, casi constante. La Figura 5 muestra el efecto de distintas concentraciones de sustrato sobre la velocidad inicial de la reacción catalizada por un enzima. Figura 6. Cinética enzimática. Modelo de Michaelis-Menten. 72

2 En la cinética enzimática de la Figura 6 se distinguen tres fases: Para una concentración baja de sustrato, la velocidad de la reacción es directamente proporcional a la concentración del sustrato (relación lineal), la cinética es de primer orden. Para una concentración alta de sustrato, la velocidad de la reacción se hace prácticamente constante e independiente de la concentración de sustrato, la cinética se considera de orden cero. Para concentraciones de sustrato intermedias la velocidad del proceso deja de ser lineal, y a esta zona se la denomina de cinética mixta. Este comportamiento es característico de la mayoría de las enzimas y fue estudiado por Michaelis y Menten en La velocidad de una reacción catalizada nos indica la cantidad de sustrato consumido, o producto formado, por unidad de tiempo. En el Sistema Internacional se designa por U (unidad de actividad enzimática) y corresponde a los µmoles de sustrato consumidos en 1 min, o bien a los µmoles de producto formado en 1 min. 1 U µmol S/min µmol P/min La curva que expresa la relación entre la concentración de sustrato y la velocidad inicial tiene la misma forma para la mayoría de las enzimas; se trata de una hipérbola rectangular, cuya expresión algebraica viene dada por la Ec. Michaelis- Menten. Los términos V max (velocidad máxima) y Km (constante de Michaelis) son dos parámetros cinéticos característicos de cada enzima, que pueden determinarse 73

3 experimentalmente. La velocidad máxima se obtiene cuando la velocidad de reacción se hace independiente de la concentración de sustrato. Este valor depende de la cantidad de enzima que tengamos. La Km nos indica la concentración de sustrato a la cuál la velocidad de reacción es la mitad de la velocidad máxima, este parámetro es independiente de la concentración de enzima, y es característico de cada enzima según el sustrato utilizado (si tiene varios). La Km también indica la afinidad que posee la enzima por el sustrato, siendo ésta mayor, cuanto menor es la K m. Cuanto menor sea la K m menor será la cantidad de sustrato necesaria para alcanzar la mitad de la velocidad máxima, por lo que mayor será la afinidad del enzima hacia ese sustrato. La ecuación de Michaelis-Menten puede deducirse matemáticamente haciendo la aproximación del estado estacionario, según esta aproximación la concentración del complejo ES es constante en el estado estacionario y por lo tanto las velocidades de formación y destrucción del complejo ES son iguales. Además, asumimos que el paso limitante de la reacción es el segundo y por lo tanto la velocidad de la reacción es: V o =K 2 [ES]. Velocidad formación del complejo ES = Velocidad destrucción del complejo ES K 1 [E][S]= K -1 [ES] + K 2 [ES] K 1 [E][S]= (K -1 + K 2 ) [ES] La concentración de enzima libre será igual a la concentración total de enzima menos lo que está unido al sustrato. [E]=[ E t ]-[ES], así que: K 1 [ E t ][S]- K 1 [ ES ][S] = (K -1 + K 2 ) [ES] K 1 [ E t ][S]= (K -1 + K 2 + K 1 [S]) [ES] Despejando [ES] se obtiene un término constante formado por las tres constantes e igual a la constante de Michaelis (Km). El término K 1 [ E t ] será precisamente la V (velocidad máxima) cuando todo el enzima esté unido al sustrato formado un complejo ES, o sea, cuando la enzima esté saturada por el sustrato, es decir: K 1 [ E t ]=Vmax. 74

4 De modo que la forma final de la ecuación de Michaelis-Menten es: A partir de esta ecuación podemos explicar matemáticamente las tres fases de la curva de Michaelis. A baja [S] (es decir, si Km >>> [S]) el término Km+[S] podemos aproximarlo a la Km, quedando un expresión del tipo: V = k [S] Esta es una cinética de primer orden, que se caracteriza por una variación lineal de la V respecto al tiempo. A altas [S] (es decir, Km<<<<[S]) despreciaríamos Km frente a [S], con lo que V = Vmax (que sería constante); la cinética es de orden cero y se habría alcanzado la saturación por sustrato. El tramo intermedio, en el que la [S] Km correspondiente a una cinética de orden mixto y se ajusta a la ecuación de Michaelis. En muchos casos es de vital importancia conocer estos parámetros cinéticos. En principio, podrían obtenerse de forma poco rigurosa a partir de la curva de Michaelis Menten, pero existen métodos gráficos más fiables que facilitan el cálculo preciso de la Km y la Vmax. Los cálculos se hacen en base a transformaciones matemáticas de la ecuación de Michaelis; una de las expresiones más utilizadas es la representación de Lineweaver-Burk, también conocida como de dobles inversos (Figura 7). En esta forma de cálculo se representa 1/V frente a 1/S, obteniéndose una recta cuya intersección con el eje X es 1/Km y con el eje Y es 1/Vmax, siendo la pendiente Km/Vmax. Figura 7. Cinética enzimática. Representación de Lineweaver-Burk. 75

5 2. Inhibición enzimática Existen sustancias que pueden impedir que la enzima desarrolle su actividad catalítica, ralentizando o paralizando la reacción enzimática. A estas sustancias se las denomina inhibidores enzimáticos. Teniendo en cuenta que las reacciones químicas en la célula están catalizadas por enzimas, es fácil intuir el papel de muchos inhibidores enzimáticos que actúan como fármacos, antibióticos o conservantes; otros pueden ser tóxicos, potentes venenos. Por ejemplo, la aspirina (acetilsalicilato) inhibe la enzima que cataliza el primer paso en la síntesis de prostaglandinas, implicadas en la producción del dolor. Se conocen dos tipos principales de inhibición: la reversible y a la irreversible. La primera implica una unión no covalente del inhibidor y, por lo tanto, siempre puede revertirse. En la inhibición irreversible, el inhibidor se une al enzima de forma covalente y permanente. En la inhibición irreversible, el inhibidor se une covalentemente a la enzima y la inactiva de manera irreversible. Casi todos los inhibidores irreversibles son sustancias tóxicas naturales o sintéticas. Se trata de sustancias que reaccionan con algún grupo funcional importante para la catálisis, bloqueándolo e impidiendo que la enzima desarrolle su actividad. En muchos casos la interacción se produce a través del sitio activo, impidiendo de manera irreversible que el sustrato ocupe su lugar; tal es el caso del gas Sarín, que inhibe irreversiblemente enzimas implicadas en la transmisión del impulso nervioso y su inhalación causa parálisis rápida de las funciones vitales. E+S K 1 ES K 2 E+P K -1 E+I EI En la inhibición irreversible se observaría una disminución de la Vmax es como si hubiera menos enzima. Si bien el proceso sería completamente irreversible por sustrato, incapaz éste de desplazar al inhibidor del sitio activo. La inhibición enzimática por modificación covalente constituye además una importante forma de regulación metabólica, como veremos en próximos apartados. 76

6 Inhibición reversible: los distintos modelos de inhibición reversible implican todos la unión no covalente del inhibidor con la enzima, pero difieren en los mecanismos por medio de los cuales reducen la actividad enzimática y en la forma en que afectan a la cinética de la reacción. Entre ellos están la inhibición competitiva, la acompetitiva y la no competitiva. El inhibidor competitivo, es una sustancia similar en estructura al sustrato, con quien compite por el sitio activo de la enzima. E+S K 1 ES K 2 E+P K -1 ES+I K i EIS Como consecuencia, aunque la velocidad máxima no se altera, para alcanzarla sería necesario poner más cantidad de sustrato en el medio de reacción, lo que se refleja en la correspondiente curva de Michaelis como un aparente aumento de la Km (la enzima en presencia del inhibidor perdería afinidad por el sustrato). La representación de dobles inversos (Figura 7) permite observar la variación de la Km. Figura 7. Inhibición competitiva. Cálculo de parámetros cinéticos mediante la representación de dobles inversos. La eficacia de un inhibidor competitivo depende de su concentración respecto a la del sustrato. Si hay un exceso de inhibidor éste bloqueará los centros activos de las moléculas de enzima, resultando una inhibición total. No obstante, el proceso es reversible si se procura exceso de sustrato, que desplazaría totalmente al inhibidor. 77

7 El inhibidor acompetitivo reacciona con la enzima en un punto distinto al centro activo, pero sólo en el caso de que ésta esté unida al sustrato formando el complejo ES; de esta forma impide que la enzima desarrolle su actividad catalítica. E+S K 1 ES K 2 E+P K -1 ES+I K i EIS Tanto la Vmax como la Km se alteran en la misma proporción, lo que se manifiesta en la representación de dobles inversos como rectas paralelas y por lo tanto con la misma pendiente (Figura 8). Se observa cómo se produce, aparentemente, una disminución tanto de la Vmax como de la Km. Figura 8. Inhibición acompetitiva. Cálculo de parámetros cinéticos mediante la representación de dobles inversos. El inhibidor mixto puede combinarse tanto con la enzima libre como con el complejo enzima-sustrato, sin afectar al sitio activo de la enzima. E+S K 1 ES K 2 E+P K -1 E+I ES+I K i K i2 EI EIS La ecuación de Michaelis-Menten en el caso de un inhibidor mixto 78

8 Vmax i [ S] = + i V = α = o α 1 α 1 + α i K + [ ] Ki m S K α. [] I [] I Si Ki 1 es distinto de Ki 2, es una inhibición mixta simple en que tanto Vmax como Km se alteran. i Si Ki1 y Ki2 tienen el mismo valor, ambas reacciones de inhibición están igual de favorecidos, en este caso particular decimos que se trata de una inhibición no competitiva. En este caso la Km no se altera y la Vmax disminuye, como puede observarse en la representación de dobles inversos (Figura 9). Inhibición no competitiva 1/V Con I Figura 9. Inhibición no competitiva. Cálculo de parámetros cinéticos mediante la representación de dobles inversos. 1/V max -1/Km 0 1/V max Sin I 1/[S] 3. Reacciones multisustrato En este capítulo hemos estudiado reacciones del tipo S-P, un mecanismo relativamente simple con un solo sustrato que podría ajustarse a reacciones catalizadas por algunas enzimas (isomerasas, hidrolasas, algunas liasas) pero es importante tener en cuenta que la gran mayoría de las reacciones son multisustrato y suelen dar varios productos. Cuando una enzima une dos o más sustratos y libera múltiples productos, el orden de los pasos para a ser una característica importante del mecanismo de reacción. Hay distintos mecanismos que explican este tipo de reacciones. Las reacciones mutlisubstrato puden denominarse según el número de substratos y productos como Uni-Uni, Uni-Bi, Bi-Bi 79

9 Centrándonos en el estudio de las reacciones bisustrato (Bi-Bi), podemos clasificarlas en dos tipos principales de mecanismos: - Mecanismos secuenciales o de desplazamiento simple. En las que los dos sustratos se unen al centro activo antes de que se libere cualquiera de los productos. A menudo, resulta indiferente qué sustrato se una primero al centro activo (reacciones secuenciales al azar), aunque también se dan casos en los que la formación del complejo ternario EAB debe producirse en un orden determinado para que el complejo sea productivo desde el punto de vista catalítico (reacciones secuenciales ordenadas). - Mecanismo ping-pong o de doble desplazamiento: tras la unión del primer sustrato se libera uno de los productos, en una reacción parcial en la que se genera una forma modificada de la enzima. Esta forma une al siguiente sustrato, catalizando la formación del segundo producto con regeneración de la forma nativa de la enzima. Este tipo de mecanismo, es muy común en las reacciones en las que un grupo químico se transfiere desde el sustrato A al B. Muchas deshidrogenasas, como la alcohol deshidrogenasa, siguen un mecanismso Bi-BI secuencial ordenado en el que el cofactor NAD+ o NADP+ actúa como substrato inicial. Otras deshidorogenasas y muchas kinasas siguen un mecanismo secuencial al azar. Muchas enzimas reaccionan mediante mecanismos tipo Ping-Pong, incluyendo la quimiotripsina, que cataliza la hidrólisis de peptidos. En este caso el grupo peptido entra, es fragmentado (gracias a la Ser de la enzima) y se libera el extremo carboxilo del peptido. Luego entra el H2O y se libera el resto del peptido. 4. Regulación enzimática En el metabolismo celular hay grupos de enzimas que funcionan conjuntamente en rutas secuenciales para realizar un proceso metabólico denterminado. En estos sistemas el producto de reacción de la primera enzima se convierte en el substrato del segundo, además muchos intermediarios participan en varias rutas metablicas diferentes (encrucijadas metabólicas). Evidentemente y al igual que ocurre en una 80

10 cadena de montaje industrial es fundamental que haya una coordinación y regulación para que no se acumulen intermediarios innecesarios o falte materia prima para alguna ruta importante. Una característica que diferencia a las enzimas de los catalizadores convencionales es su capacidad para regular su actividad. Una enzima puede ser más o menos activa gracias a la existencia de distintos niveles de regulación: Nivel de síntesis: que haya más o menos moléculas de la enzima (ya lo veremos). Nivel de actividad: que las moléculas de enzima existentes estén más o menos activas. Puede llevarse a cabo por factores extrínsecos a la enzima, ph, Tª, [S], [I], o por factores intrínsecos a la propia enzima; en este caso hablamos de enzimas reguladoras, enzimas que por su propia naturaleza tienen mecanismos especiales de regulación. Están especializadas en regularse respondiendo de forma muy sensible a señales externas. En la célula las enzimas operan en grupo, en rutas constituidas por varios pasos enzimáticos. En cada ruta hay al menos una enzima reguladora que determina la velocidad de toda la ruta. La modulación de las enzimas reguladoras ocurre mediante diferentes mecanismos: Enzimas alostéricas. Funcionan mediante la unión reversible no covalente de compuestos regulatorios llamados moduladores. El modulador puede ser una activador (modulación positiva) o un inhibidor (modulador negativo) y ser el propio sustrato de la reacción (alosterismo homotrópico) o ser otra sustancia (alsoterismos heterotrópico). Normalmente se trata de enzimas multiméricas y normalmente el sito activo y el regulatorio se encuentran en distintas subunidades. Enzimas interconvertibles Por modificación covalente reversible, como por ejemplo por fosforilación/defosforilación o modificación redox. Mediante proteínas reguladoras que se unen a la enzima. Mediante la eliminación proteolítica de pequeños segmentos peptídicos (esto es irreversible). 81

Cinética enzimática. La velocidad enzimática sigue una curva denominada hipérbola descripta por la Ecuación de Michaelis y Menten:

Cinética enzimática. La velocidad enzimática sigue una curva denominada hipérbola descripta por la Ecuación de Michaelis y Menten: Cinética enzimática Hemos visto que la concentración de sustrato es uno de los factores más importantes que determinan la velocidad de una reacción enzimática. La velocidad enzimática sigue una curva denominada

Más detalles

TEMA 11.- CINÉTICA ENZIMÁTICA

TEMA 11.- CINÉTICA ENZIMÁTICA TEMA 11.- CINÉTICA ENZIMÁTICA Introducción: Cinética enzimática. Ecuación de Michaelis-Menten. Ecuación de Lineweaver-Burk. Reacciones con múltiples substratos. Inhibición enzimática: - Reversible Competitiva.

Más detalles

CINETICA ENZIMATICA ESTUDIA LA VELOCIDAD DE LAS REACCIONES BIOQUÍMICAS

CINETICA ENZIMATICA ESTUDIA LA VELOCIDAD DE LAS REACCIONES BIOQUÍMICAS CINETICA ENZIMATICA ESTUDIA LA VELOCIDAD DE LAS REACCIONES BIOQUÍMICAS Es la medida de la formación de producto o la desapariciónde sustrato por unidad de tiempo. E S P Velocidad de una reacción se muestra

Más detalles

CINÉTICA ENZIMÁTICA. Ecuación de Michaelis-Menten Efecto de inhibidores

CINÉTICA ENZIMÁTICA. Ecuación de Michaelis-Menten Efecto de inhibidores CINÉTICA ENZIMÁTICA Ecuación de Michaelis-Menten Efecto de inhibidores Producto [P] CINÉTICA ENZIMÁTICA La cinética enzimática estudia la velocidad de las reacciones catalizadas por enzimas. Proporciona

Más detalles

Tema 6. Cinética Enzimática TEMA 7 CINÉTICA ENZIMÁTICA 3. INHIBICIONES EN REACCIONES ENZIMÁTICAS INHIBICIÓN COMPETITIVA Y NO COMPETITIVA

Tema 6. Cinética Enzimática TEMA 7 CINÉTICA ENZIMÁTICA 3. INHIBICIONES EN REACCIONES ENZIMÁTICAS INHIBICIÓN COMPETITIVA Y NO COMPETITIVA Tema 6 Cinética Enzimática 1 TEMA 7 CINÉTICA ENZIMÁTICA 1. DEFINICIONES CÓMO ACTÚAN LOS ENZIMAS? 2. CINÉTICA ENZIMÁTICA MODELO DE MICHAELIS-MENTEN REPRESENTACIONES 3. INHIBICIONES EN REACCIONES ENZIMÁTICAS

Más detalles

Energía y enzimas: bioenergética. n Los organismos obtienen su energía de la luz o de compuestos químicos y la conservan en forma de ATP.

Energía y enzimas: bioenergética. n Los organismos obtienen su energía de la luz o de compuestos químicos y la conservan en forma de ATP. Enzimas y catálisis Patricio Muñoz Torres patricio.munozt@gmail.com Energía y enzimas: bioenergética n Los organismos obtienen su energía de la luz o de compuestos químicos y la conservan en forma de ATP.

Más detalles

PRINCIPIOS DE CINÉTICA ENZIMÁTICA. Dra. Lilian González Segura Departamento de Bioquímica Facultad de Química

PRINCIPIOS DE CINÉTICA ENZIMÁTICA. Dra. Lilian González Segura Departamento de Bioquímica Facultad de Química PRINCIPIOS DE CINÉTICA ENZIMÁTICA Dra. Lilian González Segura Departamento de Bioquímica Facultad de Química CINÉTICA Es el estudio de las velocidades de las reacciones, aporta las bases para el entendimiento

Más detalles

ANEXO II. MODELO DE MICHAELIS-MENTEN. Ecuación de Michaelis-Menten. k 2 [E] o [S] k -1 + k 2 V = K M = K M + [S] k 1

ANEXO II. MODELO DE MICHAELIS-MENTEN. Ecuación de Michaelis-Menten. k 2 [E] o [S] k -1 + k 2 V = K M = K M + [S] k 1 ANEXO II. MODELO DE MICHAELIS-MENTEN. Ecuación de Michaelis-Menten. k 2 [E] o [S] k -1 + k 2 V = K M = K M + [S] k 1 Inhibición en las reacciones enzimáticas. La inhibición enzimática es importante por

Más detalles

Enzimas Departamento de Bioquímica Noviembre de 2005

Enzimas Departamento de Bioquímica Noviembre de 2005 U.T.I. Biología Celular Enzimas Departamento de Bioquímica Noviembre de 2005 Enzimas A. Propiedades generales de las enzimas B. Principios fundamentales de su acción catalítica C. Introducción a la cinética

Más detalles

DEPARTAMENTO DE BIOQUÍMICA ESFUNO EUTM E N Z I M A S

DEPARTAMENTO DE BIOQUÍMICA ESFUNO EUTM E N Z I M A S DEPARTAMENTO DE BIOQUÍMICA ESFUNO EUTM E N Z I M A S Enzimas A. Propiedades generales B. Principios fundamentales de su acción catalítica C. Introducción a la cinética enzimática D. Regulación de la actividad

Más detalles

Catálisis Enzimática MODELO DE MICHAELIS- MENTEN

Catálisis Enzimática MODELO DE MICHAELIS- MENTEN Catálisis Enzimática MODELO DE MICHAELIS- MENTEN Enzima - Sustrato La enzima dihidrofolato reductasa de E. coli con sus dos sustratos, dihidrofolato (derecha) y NADPH (izquierda), unidos al sitio activo.

Más detalles

Enzimas. Determinación de su actividad catalítica en distintos materiales biológicos

Enzimas. Determinación de su actividad catalítica en distintos materiales biológicos Enzimas Determinación de su actividad catalítica en distintos materiales biológicos Qué son? La mayoría son proteínas ( existe ARN catalítico ). que función cumplen? Catalizadores biológicos Sus propiedades

Más detalles

Concepto de velocidad inicial [ ] d[ ] v =, t -> 0 dt

Concepto de velocidad inicial [ ] d[ ] v =, t -> 0 dt VARIABLES QUE INFLUYEN EN LA VELOCIDAD DE UNA REACIÓN ENZIMÁTICA Concepto de velocidad inicial [ ] d[ ] v =, t -> 0 dt p s t VARIABLES QUE INFLUYEN EN LA VELOCIDAD DE UNA REACIÓN ENZIMÁTICA Concentración

Más detalles

Nomenclatura de las reacciones catalizadas (Cleland)

Nomenclatura de las reacciones catalizadas (Cleland) Nomenclatura de las reacciones catalizadas (Cleland) Número de sustratos o productos: Uni, Bi, Ter, Quad Ejemplos Uni Uni, Bi Bi, Ter Bi, etc Sustratos: A, B, C, D Productos: P, Q, R, S Enzima libre: E,

Más detalles

Factores que afectan la velocidad de una reacción catalizada por enzimas

Factores que afectan la velocidad de una reacción catalizada por enzimas Factores que afectan la velocidad de una reacción catalizada por enzimas Concentración de sustrato o sustratos (cofactores) Concentración de enzima Inhibidores Activadores ph Temperatura Regulación de

Más detalles

CURSO BIOQUÍMICA Y FITOQUÍMICA. FACULTAD DE CIENCIAS AGRARIAS Y FORESTALES UNLP. Primer cuatrimestre 2011 UNIDAD Nº 3

CURSO BIOQUÍMICA Y FITOQUÍMICA. FACULTAD DE CIENCIAS AGRARIAS Y FORESTALES UNLP. Primer cuatrimestre 2011 UNIDAD Nº 3 CURSO BIOQUÍMICA Y FITOQUÍMICA. FACULTAD DE CIENCIAS AGRARIAS Y FORESTALES UNLP. Primer cuatrimestre 2011 UNIDAD Nº 3 FACTORES QUE INCIDEN EN LA ACTIVIDAD ENZIMÁTICA: PRESENCIA DE INHIBIDORES. Dentro de

Más detalles

ESTUDIOS CINÉTICOS SE MIDE LA VELOCIDAD DE LA REACCIÓN CATALIZADA. La velocidad de reacciones químicas: Para una reacción:

ESTUDIOS CINÉTICOS SE MIDE LA VELOCIDAD DE LA REACCIÓN CATALIZADA. La velocidad de reacciones químicas: Para una reacción: ESTUDIOS CINÉTICOS SE MIDE LA VELOCIDAD DE LA REACCIÓN CATALIZADA La velocidad de reacciones químicas: Para una reacción: A B La velocidad depende de la concentración del reactante: v = k[a] k = constante

Más detalles

Factores que afectan la velocidad de una reacción catalizada por enzimas

Factores que afectan la velocidad de una reacción catalizada por enzimas Factores que afectan la velocidad de una reacción catalizada por enzimas Concentración de sustrato o sustratos (cofactores) Concentración de enzima Inhibidores Activadores ph Temperatura Regulación de

Más detalles

Reacciones enzimáticas Sergio Huerta Ochoa UAM-Iztapalapa

Reacciones enzimáticas Sergio Huerta Ochoa UAM-Iztapalapa Reacciones enzimáticas Sergio Huerta Ochoa UAM-Iztapalapa aturaleza Planta Piloto de Fermentaciones Síntesis de compuestos orgánicos Industria química La naturaleza de las enzimas 1) La reacción química

Más detalles

ENZIMAS-2005 CINÉTICA ENZIMÁTICA

ENZIMAS-2005 CINÉTICA ENZIMÁTICA ENZIMAS-00 Las enzimas son catalizadores biológicos en su mayoría de naturaleza proteica (99,99%) y las ribosimas (fragmentos de RNA) (0,%). Las enzimas tienen tres propiedades bien definidas e inigualables

Más detalles

ENZIMAS. Las enzimas son proteínas con función catalítica

ENZIMAS. Las enzimas son proteínas con función catalítica ENZIMAS Las enzimas son proteínas con función catalítica Las enzimas son catalizadores biológicos que permiten que las reacciones metabólicas ocurran a gran velocidad en condiciones compatibles con la

Más detalles

ENZIMAS II TEMA 8. 1. Cinética enzimática 2. Inhibición enzimática 3. Reacciones multisustrato 4. Regulación enzimática. 1. Cinética enzimática.

ENZIMAS II TEMA 8. 1. Cinética enzimática 2. Inhibición enzimática 3. Reacciones multisustrato 4. Regulación enzimática. 1. Cinética enzimática. TEMA 8 ENZIMAS II 1. Cinética enzimática 2. Inhibición enzimática 3. Reacciones multisustrato 4. Regulación enzimática 1. Cinética enzimática. Los principios generales de la cinética de las reacciones

Más detalles

Tema 10. Regulación de la actividad enzimática

Tema 10. Regulación de la actividad enzimática Tema 10. Regulación de la actividad enzimática Control de la actividad enzimática Regulación por cambios en la concentración de enzima Regulación alostérica Modificaciones covalentes reversibles Activación

Más detalles

PRACTICO Nº 3 ENZIMOLOGÍA II

PRACTICO Nº 3 ENZIMOLOGÍA II PRACTICO Nº 3 ENZIMOLOGÍA II I. - INTRODUCCIÓN FACTORES QUE AFECTAN LA ACTIVIDAD ENZIMATICA Para definir la actividad de una preparación enzimática se utiliza en la práctica distintas expresiones. La cantidad

Más detalles

UNIDAD 12. METABOLISMO Y ENZIMAS.

UNIDAD 12. METABOLISMO Y ENZIMAS. UNIDAD 12. METABOLISMO Y ENZIMAS. 1.- REACCIONES METABÓLICAS. Reacción metabólica. Cualquier reacción entre biomoléculas que ocurre en los seres vivos. Características de las reacciones metabólicas: -

Más detalles

1. Características generales

1. Características generales 1. Características generales Los enzimas son proteínas que catalizan reacciones químicas en los seres vivos. Los enzimas son catalizadores, es decir, sustancias que, sin consumirse en una reacción, aumentan

Más detalles

El metabolismo es un conjunto de reacciones químicas que tienen lugar en las células del cuerpo

El metabolismo es un conjunto de reacciones químicas que tienen lugar en las células del cuerpo METABOLISMO El metabolismo es un conjunto de reacciones químicas que tienen lugar en las células del cuerpo El metabolismo transforma la energía que contienen los alimentos que ingerimos en el combustible

Más detalles

TEMA 13. LAS REACCIONES METABÓLICAS. LA IMPORTANCIA DE LAS ENZIMAS.

TEMA 13. LAS REACCIONES METABÓLICAS. LA IMPORTANCIA DE LAS ENZIMAS. TEMA 13. LAS REACCIONES METABÓLICAS. LA IMPORTANCIA DE LAS ENZIMAS. 1.-Características de las reacciones metabólicas. 2.- Enzimas y reacciones enzimáticas. 2.1. Mecanismo de las reacciones enzimáticas.

Más detalles

Concentración en función del tiempo

Concentración en función del tiempo Cinética enzimática Act A B Concentración de A o B tiempo Reactivo -da/dt = v = k [A] Producto db/dt = v = k [A 0 ]-[B] Concentración en función del tiempo velocidad tiempo Reactivo v = A 0 exp(-kt) Producto

Más detalles

ENZIMAS. 3)- La mayor parte de las rutas metabólicas son comunes a todos los seres vivos.

ENZIMAS. 3)- La mayor parte de las rutas metabólicas son comunes a todos los seres vivos. ENZIMAS Son sustancias encargadas de facilitar las reacciones químicas (reacciones metabólicas), son catalizadores de las reacciones son biocatalizadores. Las enzimas tienen una naturaleza proteica (salvo

Más detalles

TEMA 5 ENZIMAS. Cualquier complejidad intelectual puede ser transmitida en el lenguaje corriente «Brontosaurus» y la nalga del ministro S.J.

TEMA 5 ENZIMAS. Cualquier complejidad intelectual puede ser transmitida en el lenguaje corriente «Brontosaurus» y la nalga del ministro S.J. TEMA 5 ENZIMAS Cualquier complejidad intelectual puede ser transmitida en el lenguaje corriente «Brontosaurus» y la nalga del ministro S.J.Gould BIOLOGÍA 2º BACHILLERATO Enzimas Concepto Biocatalizador

Más detalles

Las Proteínas BIOLOGÍA 2º BACHILLERATO TEMA 4: Actividades: 1º DÍA Los aminoácidos. Pg

Las Proteínas BIOLOGÍA 2º BACHILLERATO TEMA 4: Actividades: 1º DÍA Los aminoácidos. Pg BIOLOGÍA 2º BACHILLERATO TEMA 4: Las Proteínas Actividades: 1º DÍA Los aminoácidos Pg 58-59-60 1. Define el concepto de aminoácido. Escribe su fórmula general explicando su estructura molecular. 2. a)

Más detalles

Cinética Enzimática. Enrique Rivera González

Cinética Enzimática. Enrique Rivera González Cinética Enzimática Enrique Rivera González Importancia Las enzimas son proteínas capaces de catalizar específicamente reacciones bioquímicas. La actividad catalítica de las enzimas depende de su estructura.

Más detalles

Metabolismo celular I. Reacciones enzimáticas

Metabolismo celular I. Reacciones enzimáticas Metabolismo celular I Reacciones enzimáticas Reacciones químicas: Son transformaciones, por medio de las cuales unas sustancias se convierten en otras. Podemos distinguir dos grupos: 1) reacciones químicas

Más detalles

A B Ej. Cinética de primer orden

A B Ej. Cinética de primer orden Cinética enzimática A B Ej. Cinética de primer orden Concentración de A o B tiempo Reactivo Producto -da/dt = v = k [A] A=A 0 e- kt db/dt = v = k [A 0 ]-[B] B=A 0 + e kt Concentración en función del tiempo

Más detalles

Enzimas Regulatorias. Enzimas Alostéricas. Enzimas modificadas covalentemente. Activación proteolítica de pro-enzimas

Enzimas Regulatorias. Enzimas Alostéricas. Enzimas modificadas covalentemente. Activación proteolítica de pro-enzimas Enzimas Regulatorias Enzimas Alostéricas Enzimas modificadas covalentemente Activación proteolítica de pro-enzimas La inhibición por retroalimentación se refiere a la inhibición de una de las primeras

Más detalles

ACTIVIDAD ENZIMÁTICA. Curvas temporales de la actividad enzimática de la lactato deshidrogenasa de músculo esquelético de pollo.

ACTIVIDAD ENZIMÁTICA. Curvas temporales de la actividad enzimática de la lactato deshidrogenasa de músculo esquelético de pollo. ACTIVIDAD ENZIMÁTICA Curvas temporales de la actividad enzimática de la lactato deshidrogenasa de músculo esquelético de pollo. Monitoreo de la purificación de la lactato deshidrogenasa SDS PAGE Actividad

Más detalles

ENZIMAS. Kuhne en el año de 1876 les llamó enzima a los catalizadores que producían

ENZIMAS. Kuhne en el año de 1876 les llamó enzima a los catalizadores que producían ENZIMAS Dr. Santiago René Anzaldúa Arce. Kuhne en el año de 1876 les llamó enzima a los catalizadores que producían fermentaciones de diversos compuestos, La palabra enzima significa en la levadura, pues

Más detalles

ENZIMAS Catalizadores biológicos

ENZIMAS Catalizadores biológicos ENZIMAS Catalizadores biológicos Las enzimas están en el centro de cada proceso bioquímico. Son el origen de la compleja sinfonía altamente regulada que denominamos vida. ENDOCELULARES EXOCELULARES Citosol

Más detalles

Es la capacidad de realizar un trabajo. A pesar que existen varias formas de energía: química, luminosa, mecánica, etc., solo hay dos tipos básicos:

Es la capacidad de realizar un trabajo. A pesar que existen varias formas de energía: química, luminosa, mecánica, etc., solo hay dos tipos básicos: Es la capacidad de realizar un trabajo. A pesar que existen varias formas de energía: química, luminosa, mecánica, etc., solo hay dos tipos básicos: Potencial: es la capacidad de realizar trabajo como

Más detalles

Página 1 clases83.jimdo.com PRIMERA CLASE DE ENZIMAS DEFINICION ENERGIA DE ACTIVACION CONCENTRACION EN FUNCION DE TIEMPO

Página 1 clases83.jimdo.com PRIMERA CLASE DE ENZIMAS DEFINICION ENERGIA DE ACTIVACION CONCENTRACION EN FUNCION DE TIEMPO Página 1 clases83.jimdo.com 096437814 PRIMERA CLASE DE ENZIMAS DEFINICION ENERGIA DE ACTIVACION CONCENTRACION EN FUNCION DE TIEMPO Página 2 clases83.jimdo.com 096437814 Página 3 clases83.jimdo.com 096437814

Más detalles

ENZIMAS: CONCEPTOS BÁSICOS Y CINÉTICA

ENZIMAS: CONCEPTOS BÁSICOS Y CINÉTICA ENZIMAS: CONCEPTOS BÁSICOS Y CINÉTICA Enzimas: catalizadores de naturaleza proteica Seis clases de enzimas Clase 1. Oxidoreductasas 2. Transferasas 3. Hidrolasas 4. Liasas 5. Isomerasas 6. Ligasas Tipo

Más detalles

III. Inhibición enzimática

III. Inhibición enzimática III. Inhibición enzimática Inhibidor: Efector que hace disminuir la actividad enzimática, a través de interacciones con el centro activo u otros centros específicos. Inhibidores Inhibidores Reversibles:

Más detalles

Cuestiones de Bioquímica

Cuestiones de Bioquímica 1º de Química, gr. D http://www.uv.es/bbm Tema 4 Cuestiones de Bioquímica 1) Una reacción enzimática puede escribirse como dos reacciones sucesivas, donde el complejo ES es el intermediario en la conversión

Más detalles

CARACTERÍSTICAS DE LAS ENZIMAS

CARACTERÍSTICAS DE LAS ENZIMAS BIOQUÍMICA I CARACTERÍSTICAS DE LAS ENZIMAS 1. Son los catalizadores de las reacciones químicas de los sistemas biológicos. 2. Tienen gran poder catalítico. 3. Poseen un elevado grado de especificidad

Más detalles

1.- Explica cuáles son los principales factores que afectan a la actividad enzimática.

1.- Explica cuáles son los principales factores que afectan a la actividad enzimática. PREGUNTAS RESUELTAS. LOS ENZIMAS 1.- Explica cuáles son los principales factores que afectan a la actividad enzimática. 2.- Qué es un inhibidor y de cuántos tipos puede ser la acción que realizan? 3.-

Más detalles

NOCIONES BÁSICAS DE ENERGÍA

NOCIONES BÁSICAS DE ENERGÍA NOCIONES BÁSICAS DE ENERGÍA Esta obra está bajo una licencia Attribution-NonCommercial-ShareAlike 3.0 Unported de Creative Commons. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/

Más detalles

GUÍA DE CINÉTICA ENZIMÁTICA

GUÍA DE CINÉTICA ENZIMÁTICA ITEM DE DESARROLLO. GUÍA DE CINÉTICA ENZIMÁTICA 1. Qué se entiende por velocidad máxima (V) de una reacción enzimática? 2. Qué se entiende por velocidad inicial (v) de una reacción enzimática? 3. Calcule

Más detalles

REPARTIDO DE PRÁCTICO DE ACTIVIDAD ENZIMATICA

REPARTIDO DE PRÁCTICO DE ACTIVIDAD ENZIMATICA REPARTIDO DE PRÁCTICO DE ACTIVIDAD EZIMATICA Las enzimas son macromoléculas biológicas que aceleran la velocidad de una reacción hasta lograr el equilibrio. La enorme mayoría de las enzimas conocidas son

Más detalles

Es la capacidad de realizar un trabajo. En términos bioquímicos: representa la capacidad de cambio, ya que la vida depende de que la energía pueda

Es la capacidad de realizar un trabajo. En términos bioquímicos: representa la capacidad de cambio, ya que la vida depende de que la energía pueda Es la capacidad de realizar un trabajo. En términos bioquímicos: representa la capacidad de cambio, ya que la vida depende de que la energía pueda ser transformada de una forma a otra, cuyo estudio es

Más detalles

CATALISIS ENZIMATICA

CATALISIS ENZIMATICA UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS QUIMICAS Y FARMACEUTICAS DEPARTAMENTO DE BIOQUÍMICA Y BIOLOGÍA MOLECULAR CATALISIS ENZIMATICA María Antonieta Valenzuela P 2013 Historia sobre conocimiento de

Más detalles

ENZIMAS SE TRATA DE PROTEÍNAS ESPECIALES QUE EJERCEN SU ACCIÓN UNIÉNDOSE SELECTIVAMENTE A OTRAS MOLÉCULAS DENOMINADAS SUSTRATOS.

ENZIMAS SE TRATA DE PROTEÍNAS ESPECIALES QUE EJERCEN SU ACCIÓN UNIÉNDOSE SELECTIVAMENTE A OTRAS MOLÉCULAS DENOMINADAS SUSTRATOS. ENZIMAS SE TRATA DE PROTEÍNAS ESPECIALES QUE EJERCEN SU ACCIÓN UNIÉNDOSE SELECTIVAMENTE A OTRAS MOLÉCULAS DENOMINADAS SUSTRATOS. INDUCEN MODIFICACIONES QUÍMICAS EN LOS SUSTRATOS A LOS QUE SE UNEN POR:

Más detalles

QUÍMICA BIOLÓGICA. Enzimas Cinética Enzimática

QUÍMICA BIOLÓGICA. Enzimas Cinética Enzimática QUÍMICA BIOLÓGICA Enzimas Cinética Enzimática 2017 INTRODUCCIÓN Proteínas (única excepción: RNAs catalíticos o ribozimas) Holoenzima (complejo catalíticamente activo) Apoenzima (inactiva) Cofactor (coenzimas,

Más detalles

ENZIMAS SON BIOCATALIZADORES AUMENTAN LA VELOCIDAD DE REACCIÓN NO SE GASTAN EN CANTIDADES MUY PEQUEÑAS

ENZIMAS SON BIOCATALIZADORES AUMENTAN LA VELOCIDAD DE REACCIÓN NO SE GASTAN EN CANTIDADES MUY PEQUEÑAS ENZIMAS SON BIOCATALIZADORES AUMENTAN LA VELOCIDAD DE REACCIÓN NO SE GASTAN EN CANTIDADES MUY PEQUEÑAS ENZIMAS: CATALIZADORES BIOLOGICOS ACELERAN LA VELOCIDAD DE LA REACCIÓN SON PROTEÍNAS GLOBULARES NO

Más detalles

ACTIVIDAD ENZIMÁTICA. Dra. Lilian González Segura Departamento de Bioquímica Facultad de Química

ACTIVIDAD ENZIMÁTICA. Dra. Lilian González Segura Departamento de Bioquímica Facultad de Química ACTIVIDAD ENZIMÁTICA Dra. Lilian González Segura Departamento de Bioquímica Facultad de Química Porqué la gran mayoría de las reacciones en los seres vivos necesitan ser catalizadas para que ocurran a

Más detalles

6. Enzimas - Actividades

6. Enzimas - Actividades I.E.S. Flavio Irnitano El Saucejo (Sevilla) Curso 2.015 2.016 Departamento de Biología y Geología NIVEL: 2º Bachillerato MATERIA: BIOLOGÍA 6.1. Concepto y estructura. BLOQUE I. CUÁL ES LA COMPOSICIÓN DE

Más detalles

ESTRUCTURA DE LA TRIOSAFOSFATO ISOMERASA esta proteína es una eficiente enzima involucrada en la vía glucolítica.

ESTRUCTURA DE LA TRIOSAFOSFATO ISOMERASA esta proteína es una eficiente enzima involucrada en la vía glucolítica. ESTRUCTURA DE LA TRIOSAFOSFATO ISOMERASA esta proteína es una eficiente enzima involucrada en la vía glucolítica. Características generales Cinética química Nomenclatura Centro activo Cofactores Factores

Más detalles

Contenidos teóricos. Unidad temática 1. Diseño molecular de vida. Tema 1. El agua como disolvente

Contenidos teóricos. Unidad temática 1. Diseño molecular de vida. Tema 1. El agua como disolvente Contenidos teóricos Unidad temática 1. Diseño molecular de vida. Tema 1. El agua como disolvente Tema 2. Principales biomoléculas presentes en los seres vivos y su relación estructurafunción: proteínas,

Más detalles

Son proteínas globulares altamente especializadas que provocan o aceleran una reacción bioquímica.

Son proteínas globulares altamente especializadas que provocan o aceleran una reacción bioquímica. 1.7.- Enzimas Las reacciones precisan de una cierta cantidad de energía para iniciarse. Esta energía, denominada energía de activación, permite romper los enlaces de las moléculas que están reaccionando

Más detalles

QUÍMICA BIOLÓGICA. Trabajo Práctico Nº2: Cinética Enzimática. Estudio cinético de la Glucosa-6-fosfato deshidrogenasa

QUÍMICA BIOLÓGICA. Trabajo Práctico Nº2: Cinética Enzimática. Estudio cinético de la Glucosa-6-fosfato deshidrogenasa QUÍMICA BIOLÓGICA Trabajo Práctico Nº2: Cinética Enzimática Estudio cinético de la Glucosa-6-fosfato deshidrogenasa Las enzimas son catalizadores biológicos, en la mayoría de los casos de naturaleza proteica.

Más detalles

Universidad Nacional de Tucumán ENZIMAS

Universidad Nacional de Tucumán ENZIMAS ENZIMAS INTRODUCIÓN Las reacciones químicas en sistemas biológicos raramente ocurren en ausencia de un catalizador. Estos catalizadores se denominan enzimas y son casi en su totalidad de naturaleza proteica,

Más detalles

UAM Química Física. Cinética-2

UAM Química Física. Cinética-2 4. Cinética química Velocidad de reacción Mecanismos de reacción Catálisis Teorías cinéticas Reacciones en disolución UAM 2010-11. Química Física. Cinética-2 1 Catálisis Catalizador Mecanismo de reacciones

Más detalles

TEMA 5:BIOCATALIZADORES: ENZIMAS, VITAMINAS Y HORMONAS

TEMA 5:BIOCATALIZADORES: ENZIMAS, VITAMINAS Y HORMONAS TEMA 5:BIOCATALIZADORES: ENZIMAS, VITAMINAS Y HORMONAS INDICE 1. BIOCATALIZADORES 2. ENZIMAS 2.1. CONCEPTO, PROPIEDADES Y COMPOSICIÓN QUÍMICA 2.2. MECANISMOS DE ACCIÓN 2.3. ESPECIFICIDAD ENZIMÁTICA 2.4.

Más detalles

ENZIMAS Las enzimas son proteínas

ENZIMAS Las enzimas son proteínas ENZIMAS Las enzimas son proteínas Actúan como catalizadores de las reacciones químicas necesarias para la supervivencia celular Que es un catalizador??? Es una sustancia que acelera la velocidad de la

Más detalles

INTRODUCCIÓN: DEFINICIONES BIOENERGÉTICA ATP METABOLISMO CELULAR ENZIMAS INHIBICIÓN DE LA ACTIVIDAD ENZIMÁTICA REGULACIÓN DE LA ACTIVIDAD ENZIMÁTICA

INTRODUCCIÓN: DEFINICIONES BIOENERGÉTICA ATP METABOLISMO CELULAR ENZIMAS INHIBICIÓN DE LA ACTIVIDAD ENZIMÁTICA REGULACIÓN DE LA ACTIVIDAD ENZIMÁTICA CAPITULO 4 INTRODUCCIÓN AL METABOLISMO ÍNDICE INTRODUCCIÓN: DEFINICIONES BIOENERGÉTICA ATP METABOLISMO CELULAR ENZIMAS INHIBICIÓN DE LA ACTIVIDAD ENZIMÁTICA REGULACIÓN DE LA ACTIVIDAD ENZIMÁTICA INTRODUCCIÓN

Más detalles

I.E.S. Santa Clara. PAU BIOLOGÍA. 2º BACHILLER.

I.E.S. Santa Clara.  PAU BIOLOGÍA. 2º BACHILLER. ENZIMAS 1. Define el concepto de enzima, indicando la naturaleza de las mismas y su función biológica. Qué parte de una enzima es la encargada de interaccionar con el sustrato? (Jun 96) 2. Explica como

Más detalles

La velocidad de crecimiento de microorganismos se expresa como: dn v (1) dt. donde: N es el número de microorganismos por ml y t el tiempo.

La velocidad de crecimiento de microorganismos se expresa como: dn v (1) dt. donde: N es el número de microorganismos por ml y t el tiempo. EMA 10. REACCIONES BIOLÓGICAS Desarrollo de microorganismos La velocidad de crecimiento de microorganismos se expresa como: dn v (1) dt donde: N es el número de microorganismos por ml y t el tiempo. Determinación

Más detalles

EL CONTROL DE LAS ACTIVIDADES CELULARES

EL CONTROL DE LAS ACTIVIDADES CELULARES EL CONTROL DE LAS ACTIVIDADES CELULARES LAS REACCIONES CELULARES BÁSICAS Todas las células llevan a cabo funciones vitales: Ingestión de nutrientes Eliminación de desperdicios Crecimiento Reproducción

Más detalles

PROTEINAS COMO CATALIZADORES ENZIMAS

PROTEINAS COMO CATALIZADORES ENZIMAS PROTEINAS COMO CATALIZADORES ENZIMAS ENZIMAS son proteínas que catalizan reacciones químicas en los seres vivos. son catalizadores: sustancias que, sin consumirse en una reacción, aumentan notablemente

Más detalles

Licenciatura Ingeniería Bioquímica Industrial MANUAL DE PRÁCTICAS DEL LABORATORIO DE INGENIERÍA ENZIMÁTICA

Licenciatura Ingeniería Bioquímica Industrial MANUAL DE PRÁCTICAS DEL LABORATORIO DE INGENIERÍA ENZIMÁTICA División de Ciencias Biológicas y de la Salud Departamento de Biotecnología Licenciatura Ingeniería Bioquímica Industrial MANUAL DE PRÁCTICAS DEL LABORATORIO DE INGENIERÍA ENZIMÁTICA Dr. Sergio Huerta

Más detalles

PARTE II. FACTORES QUE MODIFICAN LA ACTIVIDAD DE LAS ENZIMAS: EFECTO DE LA CONCENTRACIÓN DE SUSTRATO Y DE UN INHIBIDOR.

PARTE II. FACTORES QUE MODIFICAN LA ACTIVIDAD DE LAS ENZIMAS: EFECTO DE LA CONCENTRACIÓN DE SUSTRATO Y DE UN INHIBIDOR. PARTE II. FACTORES QUE MODIFICAN LA ACTIVIDAD DE LAS ENZIMAS: EFECTO DE LA CONCENTRACIÓN DE SUSTRATO Y DE UN INHIBIDOR. Objetivos: - Determinar la concentración de sustrato en la cual la enzima alcanza

Más detalles

ACCIÓN DE LOS INHIBIDORES COMPETITIVOS Y NO COMPETITIVOS SOBRE LA ACTIVIDAD ENZIMÁTICA

ACCIÓN DE LOS INHIBIDORES COMPETITIVOS Y NO COMPETITIVOS SOBRE LA ACTIVIDAD ENZIMÁTICA ACCIÓN DE LOS INHIBIDORES COMPETITIVOS Y NO COMPETITIVOS SOBRE LA ACTIVIDAD ENZIMÁTICA I. INTRODUCCIÓN Una propiedad característica de las enzimas es su sensibilidad a diversos reactivos químicos que reaccionan

Más detalles

Cinética de Reacciones Catalizadas por Enzimas

Cinética de Reacciones Catalizadas por Enzimas Cinética de Reacciones Catalizadas por Enzimas Las enzimas son biomoleculas que se comportan como catalizadores muy potentes y eficaces de las reacciones químicas en los sistemas biológicos. Una enzima

Más detalles

FISIOLOGÍA GENERAL Jesús Merino Pérez y María José Noriega Borge

FISIOLOGÍA GENERAL Jesús Merino Pérez y María José Noriega Borge ENZIMAS INTRODUCCIÓN Las enzimas son el grupo más variado y especializado de las proteínas, su función es actuar como catalizadores, permitiendo que las reacciones que transcurren en los seres vivos puedan

Más detalles

Similitudes y Diferencias entre los catalizadores inorgánico y las enzimas

Similitudes y Diferencias entre los catalizadores inorgánico y las enzimas CINETICA ENZIATICA Enzimas: Determinan la pauta de las reacciones quimicas Intervienen en mecanismos de transduccion de Energia Estabilizan un estado de transicion Poseen alta especificidad de sustrato.

Más detalles

METABOLISMO. Contenidos trabajados en clase.

METABOLISMO. Contenidos trabajados en clase. METABOLISMO Contenidos trabajados en clase. Qué son? Donde actúan? Como actúan? Propiedades o características Toda reacción exergónica necesita calor (energía )para comenzar Ej La combustión de la madera

Más detalles

Tema 7. Cinética Enzimática

Tema 7. Cinética Enzimática Tema 7 Cinética Enzimática 1 TEMA 7 CINÉTICA ENZIMÁTICA 1. DEFINICIONES CÓMO ACTÚAN LOS ENZIMAS? 2. CINÉTICA ENZIMÁTICA MODELO DE MICHAELIS-MENTEN REPRESENTACIONES 3. INHIBICIONES EN REACCIONES ENZIMÁTICAS

Más detalles

Análisis mediante enzimas

Análisis mediante enzimas Análisis Avanzado de Alimentos Métodos enzimáticos Análisis mediante enzimas Características de las enzimas: Son catalizadores complejos que actúan eficientemente a bajas temperaturas. Eficiencia 10 6

Más detalles

endoenzimas exoenzimas:

endoenzimas exoenzimas: Enzimas Enzimas:son proteínas altamente especializadas que tienen como función la catálisis o regulación de la velocidad de las reacciones químicas que se llevan a cabo en los seres vivos. Son macromoléculas

Más detalles

Cap. 6 Introducción al metabolismo

Cap. 6 Introducción al metabolismo Metabolismo = todas las reacciones químicas que ocurren en un organismo. Maneja los recursos de materiales (moléculas) y de energía según las necesidades del organismo. Incluye: Catabolismo = degradación

Más detalles

GUIA DE ESTUDIO PARA EL EXAMEN DE ADMISIÓN A LA MAESTRIA EN BIOTECNOLOGÍA BIOQUÍMICA

GUIA DE ESTUDIO PARA EL EXAMEN DE ADMISIÓN A LA MAESTRIA EN BIOTECNOLOGÍA BIOQUÍMICA GUIA DE ESTUDIO PARA EL EXAMEN DE ADMISIÓN A LA MAESTRIA EN BIOTECNOLOGÍA 2015 BIOQUÍMICA 1. Compuestos orgánicos. 1.1 Estructura de los compuestos orgánicos. 1.2 Grupos funcionales y uniones. 2. Estructura

Más detalles

Enzimas. Por tanto aceleran en igual proporción la velocidad de la reacción en las dos direcciones. Rosario A. Muñoz-Clares

Enzimas. Por tanto aceleran en igual proporción la velocidad de la reacción en las dos direcciones. Rosario A. Muñoz-Clares Enzimas Las enzimas son catalizadores biológicos que disminuyen la energía de activación de las reacciones que catalizan, pero no modifican la constante de equilibrio. Por tanto aceleran en igual proporción

Más detalles

el acetil CoA procede de cualquier sustancia o molécula que degrademos para obtener energía.

el acetil CoA procede de cualquier sustancia o molécula que degrademos para obtener energía. Tema 16: El acetil CoA. El acetil CoA es un producto común a todas las reacciones de degradación de todas las moléculas orgánicas. Una ruta metabólica nunca está separada de las demás. Estructura. Resto

Más detalles

REACCIÓN QUÍMICA. ENERGÍA DE ACTIVACIÓN

REACCIÓN QUÍMICA. ENERGÍA DE ACTIVACIÓN REACCIÓN QUÍMICA. ENERGÍA DE ACTIVACIÓN Toda reacción química, sea exotérmica o endotérmica, requiere inicialmente una cantidad de energía, denominada energía de activación, para llevarse a cabo. Con esta

Más detalles

Rosario A. Muñoz Clares

Rosario A. Muñoz Clares Rosario A. Muñoz Clares TAREAS 1.- En la reacción de primer orden A B la concentración de A en el tiempo cero es de 0.5 mm. Al cabo de 2 s es de 0.25 mm. Cuál será al cabo de 5 s? 2.- A) Cuál será la constante

Más detalles

ENZIMAS. Son moléculas de naturaleza proteínica que aceleran las reacciones bioquímicas.

ENZIMAS. Son moléculas de naturaleza proteínica que aceleran las reacciones bioquímicas. ENZIMAS ENZIMAS Son moléculas de naturaleza proteínica que aceleran las reacciones bioquímicas. Son catalizadores biológicos que disminuyen la energía de activación de las reacciones que catalizan, de

Más detalles

Al hacer clic en el vínculo al simulador, en tu navegador se abre la hoja del programa, con una interface como la de la figura siguiente:

Al hacer clic en el vínculo al simulador, en tu navegador se abre la hoja del programa, con una interface como la de la figura siguiente: Taller de Modelado de Cinética Enzimática Emplearas el programa de simulación de cinética enzimática que se encuentra en el sitio: (htpp://www.kscience.co.uk/-animations/model.swf) para realiza los ejercicios

Más detalles

IES Francisco Pacheco

IES Francisco Pacheco 6. ENZIMAS. 6.1. Concepto y estructura. 6.2. Mecanismo de acción enzimática. 6.3. Cinética enzimática. 6.4. Regulación de la actividad enzimática: temperatura, ph, inhibidores. 6.5. Nomenclatura y clasificación

Más detalles

Bioquímica Estructural y Metabólica. TEMA 5. Enzimología

Bioquímica Estructural y Metabólica. TEMA 5. Enzimología TEMA 5. Enzimas. Clasificación. Principios de la catálisis enzimá6ca. Energía de ac6vación. Velocidad de reacción y equilibrio de reacción. Ciné6ca enzimá6ca: ecuación de Michaelis- Menten. Ecuación de

Más detalles

Problema 1: Características de las reacciones enzimáticas. Problema 2: Cinética de una enzima alostérica.

Problema 1: Características de las reacciones enzimáticas. Problema 2: Cinética de una enzima alostérica. Problema 1: Características de las reacciones enzimáticas Cuál de los siguientes enunciados, acerca de las reacciones catalizadas por enzimas, NO es cierto? A. Las enzimas forman complejos con sus sustratos.

Más detalles

TREHALASA( 2"x" Glucosa"

TREHALASA( 2x Glucosa Las preguntas a 5 refieren a la actividad de la enzima Trehalasa. La trehalosa es un disacárido NO reductor formado por 2 moléculas de glucosa. En el intestino es hidrolizado por la enzima TREHALASA. TREHALASA(

Más detalles

FACULTAD DE QUÍMICA DEPARTAMENTO DE BIOQUÍMICA. CURSO DE BIOQUÍMICA (CLAVE 1508) Licenciaturas de QFB y QA

FACULTAD DE QUÍMICA DEPARTAMENTO DE BIOQUÍMICA. CURSO DE BIOQUÍMICA (CLAVE 1508) Licenciaturas de QFB y QA FACULTAD DE QUÍMICA DEPARTAMENTO DE BIOQUÍMICA CURSO DE BIOQUÍMICA (CLAVE 1508) Licenciaturas de QFB y QA Prof. Laura Carmona Salazar Grupos: 03 Semestre: 13-I Este material es exclusivamente para uso

Más detalles

Bioquímica I - Curso Enzimas Seminario 2

Bioquímica I - Curso Enzimas Seminario 2 1 Bioquímica I - Curso 2013 Enzimas Seminario 2 Temario: Efecto de la temperatura sobre la velocidad de reacción y la estabilidad de la enzima. Ecuación de Arrhenius (energía de activación). Efecto del

Más detalles

Concepto de Enzima. Mecanismo de Acción Enzimática

Concepto de Enzima. Mecanismo de Acción Enzimática Concepto de Enzima Las enzimas son proteínas con una función catalítica, es decir, proteínas que regulan las reacciones químicas en los seres vivos. Acelera las reacciones y disminuyendo la energía de

Más detalles

Estudia la velocidad a la que ocurren las reacciones químicas

Estudia la velocidad a la que ocurren las reacciones químicas www.clasesalacarta.com Cinética Química Estudia la velocidad a la que ocurren las reacciones químicas Termodinámica Es espontánea? Cinética A qué velocidad ocurre la reacción? Velocidad de una Reacción

Más detalles

UNIDAD 11. METABOLISMO CELULAR Y DEL SER VIVO

UNIDAD 11. METABOLISMO CELULAR Y DEL SER VIVO UNIDAD 11. METABOLISMO CELULAR Y DEL SER VIVO Índice: 1. Las enzimas Definición Influencia de ph y temperatura Cofactores enzimáticos Clasificación de las enzimas 2. La reacción enzimática Complejo enzima-sustrato

Más detalles

Definiciones. Ecuación Expresión Función Constante Parámetro Variable. Rosario A. Muñoz-Clares

Definiciones. Ecuación Expresión Función Constante Parámetro Variable. Rosario A. Muñoz-Clares Definiciones Ecuación Expresión Función Constante Parámetro Variable Definiciones Energía libre Energía de activación Constante de velocidad Constante de equilibrio Constante de afinidad Constante de disociación

Más detalles

UNIVERSIDAD PERUANA CAYETANO HEREDIA CENTRO FORMATIVO PREUNIVERSITARIO BIOLOGÍA METABOLISMO

UNIVERSIDAD PERUANA CAYETANO HEREDIA CENTRO FORMATIVO PREUNIVERSITARIO BIOLOGÍA METABOLISMO UNIVERSIDAD PERUANA CAYETANO HEREDIA CENTRO FORMATIVO PREUNIVERSITARIO BIOLOGÍA METABOLISMO METABOLISMO Ciclo interdependendiente, intercambio de E y materia. AUTOTROFOS FOTOSINTETICOS HETEROTROFOS Procesos

Más detalles

Metabolismo. Catabolismo. Oxidación-reducción 30/09/2009. Clase 5. Energética celular: nutrición y metabolismo

Metabolismo. Catabolismo. Oxidación-reducción 30/09/2009. Clase 5. Energética celular: nutrición y metabolismo Clase 5. Energética celular: nutrición y metabolismo Qué permite a los seres vivos tener conductas? 1. Los organismos vivos: Estructura y función. 2. Metabolismo 1. Oxidación reducción. 2. Energía libre.

Más detalles