Departamento de Matemática
|
|
|
- Enrique Guzmán de la Fuente
- hace 9 años
- Vistas:
Transcripción
1 Departamento de Matemática
2 Isometría, origen griego Igual Medida (ISO = misma METRÍA A = medir) Una trasformación Isométrica produce cambios en una figura que no alteran su tamaño Traslación Rotación Simetría
3 raslaciones raslaciones Visualizaciones Una persona subiendo (o bajando) por una escala mecánica. Un ascensor panorámico. Un automóvil desplazándose por un camino recto. Un avión n al despegar hasta adquirir velocidad de crucero.
4 Traslaciones en el plano Las traslaciones, son aquellas isometrías que permiten desplazar en línea recta todos los puntos del plano. Este desplazamiento se s realiza siguiendo una determinada dirección, sentido y dirección, por lo que toda la traslación queda definida por lo que se llama su vector de traslación
5 Traslaciones en el plano Una figura conserva todas sus dimensiones, tanto lineales como angulares Una figura jamás s rota; es decir, el ángulo que forma con la horizontal no varía No importa el número n de traslaciones que se realicen, siempre es posible resumirlas en una única.
6 Traslaciones en el plano C' D' D C E' Fig. b F' Fig. a E A' B' F A B Cómo podemos verificar si son la misma figura?
7 Traslaciones en el plano La forma más simple será mover la figura a en línea recta, en dirección adecuada para hacerla coincidir, con la figura b, este movimiento o se llama traslación. Fig. a Fig. b traslación.exe
8 Traslaciones en el plano Fig. a Fig. b La figura se trasladó 11 unidades hacía la derecha y 3 unidades hacía arriba E( - 6,1) E (5,4) = = 3 Para trasladar la fig.a a la fig.b el vector de traslación es (11,3)
9 Generalizando tenemos: Traslaciones en el plano Si al punto (x,y( x,y) ) se le aplica la traslación T (a,b) resulta (x+a,y+b( x+a,y+b) Nota: Si a > 0; se traslada a unidades hacia la derecha Si a < 0; se traslada a a unidades a la izquierda Si b > 0; se traslada b unidades hacia arriba Si b < 0; se traslada b b unidades hacia abajo Agrandar
10
11 Traslaciones en el plano Consideraciones en la traslación La traslación es un movimiento directo y el polígono obtenido es igual al original Los vectores son paralelos y tienen la misma magnitud Revisar Construcción
12 Trasladar un polígono en un vector dado Realizar Actividad
13 Trasladar un polígono en un vector dado Realizar Actividad
14 Actividades a Realizar Resolver Guía Nº 1 de Transformaciones Isométricas Realizar guía interactiva con el programa GeoGebra
15 Visualizaciones Un carrusel de niños Las aspas de un ventilador Las ruedas de una bicicleta Los punteros de un reloj análogo Hélices de un avión n o un helicóptero
16 Rotaciones Una rotación n es el giro de una figura en torno a un punto llamado centro de rotación n (O) y un ángulo llamado ángulo de giro (α).( A A α O
17 Observaciones: Rotaciones En una rotación n siempre se conservará las longitudes de los segmentos Si el ángulo de rotación α > 0 0 la rotación n es positiva y contra las manecillas del reloj Si el ángulo de rotación α < 0 0 la rotación n es negativa en el sentido del movimiento de las manecillas del reloj α > 0 α < 0
18 Rotación n de un segmento Con centro de rotación n perteneciente a la figura B Rot (A (A,45 ) A Centro de rotación Ángulo de giro Ejemplo
19 Con centro de rotación n exterior a la figura B A P Rotar el segmento AB de la forma Rot (P (P,-90) Pasos a realizar
20 Rotaciones existe rotación? Verificar
21 Cómo verificar si dos figuras corresponden a una rotación? Otra forma! Realizar Comprobación
22 Ubicación n del Centro de rotación, dada la figura y su imagen La solución
23 Rotar polígono ABCD de la forma R(O, 50 ) Cómo se realizó esta Rotación?
24 Actividades a Realizar Resolver Guía Nº 2 de Transformaciones Isométricas Realizar guía dibujando y detectando rotaciones
25 Simetrías Las simetrías nos llevan a otro concepto como belleza y perfección. Cuando observamos nuestro entorno podemos maravillarnos con figuras simétricas
26 Simetría en la arquitectura
27 Simetría en la arquitectura
28 Simetría en la arquitectura
29 Simetría en la naturaleza
30 Simetría en la naturaleza
31 Simetría en el cuerpo humano
32 Simetría En cada uno de los casos anteriores se ve claramente que al trazar ar una recta en el centro de la figura, las partes formadas son indistinguibles en forma y tamaño, excepto por la posición que ocupan. Hay una transformación que lleva la parte izquierda de la figura a la parte derecha sin cambiar su forma ni sus dimensiones.
33 Tipos de Simetría Simetría Axial con respecto a un eje Simetría Central con respecto a un punto Simetría rotacional con respecto a un punto y a un ángulo de giro
34 Simetría Axial o Reflexión A O A La recta L es el eje de simetría d(ao) ) = d(oa ) d(bo ) = d(o B ) B O B d(co ) = d(o C ) AA L C O C BB L CC L L AA //BB //CC
35 Simetría Central El simétrico del punto A con respecto a un punto O es un punto A que cumple que OA = OA y donde los tres puntos pertenecen a una misma recta A O A C B A O A B C
36 Simetría Central Es una transformación en la que a cada punto del plano se le asocia otro punto, llamado imagen, que cumple las siguientes condiciones: El punto y su imagen están a igual distancia de un punto llamado centro de simetría El punto, su imagen y el centro de simetría pertenecen a una misma ma recta
37 ABC y su simétrico respecto al eje y Ver Construcción
38 Dibujar el eje de Simetría Ver Construcción
39 Simetría Rotacional Una figura tiene simetría rotacional si se puede rotar alrededor de su punto central y hacer que ocupe exactamente el mismo espacio más de una vez. Centro de rotación
40 Ejemplos de Simetrías Rotacionales Una figura tiene orden n si tiene n ángulos distintos que generan simetría rotacional Giro en 72 Orden 5 Giro en 120 Orden 3 Giro en 45 Orden 8 Giro en 90 Orden 4
41 Actividades a Realizar Resolver Guía Nº 2 de Transformaciones Isométricas Realizar guía Usando regla y compás Pronto Teselaciones
Traslación: ABCDEF se ha transformado a la figura A B C D E F, en la dirección y longitud del vector d
PROFESOR SANDRO JAVIER VELASQUEZ LUNA 1 TRANSFORMACIONES ISOMETRICAS Si a una figura geométrica se le aplica una transformación, y esta no produce un cambio en la medida de los lados y ángulos se llama
Resumen de Transformaciones Isométricas. Traslaciones
Resumen de Transformaciones Isométricas Una transformación es un procedimiento geométrico o movimiento que produce cambios en una figura. La palabra isometría proviene del griego y significa igual medida
TALLER TRANSFORMACIONES ISOMÉTRICAS. Transformaciones Isométricas
TALLER TRANSFORMACIONES ISOMÉTRICAS Introducción étricas Actividad: En los siguientes pares de transformaciones, reconoce aquellas en las que se mantiene la forma y el tamaño. Una transformación de una
Guía Nº 2 Transformaciones Isométricas
Colegio Raimapu Departamento de Matemática Nombre Alumno o Alumna: Guía Nº 2 Transformaciones Isométricas Curso: Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo indicando la respuesta
Cuáles son las imágenes de los puntos M,N,O,P respecto eje x?
Guía N 3 Nombre: Curso: 1 Medio A-B-C-D Unidad Geometría Fecha: Profesora: Odette Castro M. Contenidos: Transformaciones isométricas en el plano cartesiano Simetría Axial 1. Dibuja la figura simétrica,
TRANSFORMACIONES ISOMÉTRICAS EN EL PLANO CARTESIANO
Matemáticas Aplicadas Tema: Movimiento de los cuerpos geométricos. TRANSFORMACIONES ISOMÉTRICAS EN EL PLANO CARTESIANO Transformación isométrica Isometría proviene del griego iso, prefijo que significa
Transformaciones Isométricas
Transformaciones Isométricas I o Medio Profesor: Alberto Alvaradejo Ojeda Índice 1. Transformación Isométrica 3 1.1. Traslación..................................... 3 1.2. Ejercicios.....................................
DESARROLLO DE HABILIDADES ISOMETRIAS 8
DESARROLLO DE HABILIDADES ISOMETRIAS 8 NOMBRE:.. CURSO: Resolver los siguientes ejercicios y problemas relacionados con Transformaciones isométricas, realizando los procedimientos necesarios para marcar
Geometría Prof. L. Solorza Curso: 1 medio. Guía de isometrías
Guía de isometrías A) Simetrías a) Reflexiones o Simetrías axiales Concepto: Una reflexión o simetría axial, con eje la recta L, es un movimiento del plano tal que a cada punto P del plano le hace corresponder
ROTACIONES. R P,. Si la rotación es negativa se representa por EJEMPLOS
1. TRASLACIONES CAPÍTULO XII TRANSFORMACIONES ISOMETRICAS ISOMETRIAS I Las traslaciones, son aquellas isometrías que permiten desplazar en línea recta todos los puntos del plano. Este desplazamiento se
NIVELACIÓN MATEMÁTICA 2 AÑO Contenidos: Transformaciones Isométricas Prof. Juan Schuchhardt
1 Contenidos: Transformaciones Isométricas Prof. Juan Schuchhardt Introducción: Una transformación de una figura geométrica indica que, de alguna manera, ella es alterada o sometida a algún cambio. En
PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: -
Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía : Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza traslaciones
Tutorial MT-m1. Matemática Tutorial Nivel Medio. Transformaciones isométricas
12345678901234567890 M ate m ática Tutorial MT-m1 Matemática 2006 Tutorial Nivel Medio Transformaciones isométricas Matemática 2006 Tutorial Transformaciones isométricas Marco Teórico El proceso de llevar
Transformaciones Isométricas
19 Transformaciones Isométricas Introducción. Al término de esta lección podrás: Interpretar las transformaciones isométricas de figuras planas como cambios en la posición de una figura. Clasificar las
GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS
Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS Definición: Se llaman transformaciones
Transformaciones Isométricas
Capítulo 11 Transformaciones Isométricas E l estudio de los movimientos en el plano y el espacio han sido muy importantes en nuestra historia, ya que gracias a ellos hemos aprendido a comprender como se
TRANSFORMACIONES EN EL PLANO
ACADEMIA SABATINA TRANSFORMACIONES EN EL PLANO Llamaremos transformación geométrica a una operación que permite producir una nueva figura (imagen) de la dada originalmente. Las podemos clasificar en directas,
TRANSFORMACIONES ISOMETRICAS
PreUnAB Clase # 22 Octubre 2014 TRANSFORMACONES ISOMÉTRICAS Concepto de Isometrías: Las transformaciones isométricas son movimientos que se aplican a figuras geométricas, produciendo cambios de posición,
Translaciones, giros, simetrías.
Translaciones, giros, simetrías. Transformaciones geométricas Transformación geométrica es una aplicación del plano en el plano tal que a cada punto de un plano le hace corresponder otro punto del mismo
MATEMÁTICA MÓDULO 1 Eje temático: Geometría
MATEMÁTICA MÓDULO 1 Eje temático: Geometría 1. CRITERIOS DE CONGRUENCIA Dos triángulos son congruentes cuando sus lados y ángulos correspondientes son congruentes entre sí. Como los elementos primarios
Transformaciones isométricas
Tema 4: Geometría Contenido: Criterios de congruencia de triángulos Nivel: 1 Medio Transformaciones isométricas 1. Transformaciones isométricas Una transformación isométrica es un movimiento en que se
Guía Práctica Segundos medios
Fuente: Pre Universitario Pedro de Valdivia Guía Práctica Segundos medios ISMETRÍS Y TESELINES TRSLINES Las traslaciones, son aquellas isometrías que permiten desplazar en línea recta todos los puntos
REPRESENTAR FIGURAS Y BUSCAR SIMILITUDES. DOS TRIÁNGULOS ESTÁN UNIDOS POR UN LADO COMPLETO
REPRESENTAR FIGURAS Y BUSCAR SIMILITUDES. ACTIVIDAD Nº 1 1. Recorta 6 triángulos equiláteros de 6 cm de lado. 2. Combina 2 triángulos, para encontrar nuevas formas geométricas, de acuerdo a la siguiente
Objetivos: Trasladar figuras en el plano cartesiano. Reconocer o identificar una traslación.
Guía N 19 Nombre: Fecha: Contenido: Transformaciones isométricas. Objetivos: Trasladar figuras en el plano cartesiano Reconocer o identificar una traslación. Las transformaciones geométricas están presentes
Movimientos en el plano y mosaicos
Matemáticas de Nivel II de ESPA: Movimientos en el plano - 1 Movimientos en el plano y mosaicos En esta unidad se presenta la utilidad de la geometría para ornamentar objetos y espacios en las actividades
Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 5: Transformaciones geométricas planas. Orientación espacial
Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 5: Transformaciones geométricas planas. Orientación espacial 1 Transformaciones geométricas 2 ISOMETRÍAS EN LIBROS DE PRIMARIA Cuáles de
Congruencia en las transformaciones isométricas
Congruencia en las transformaciones isométricas [ E s c r i b a l a d i r e c c i ó n d e l a c o m p a ñ í a ] Página 1 Actividades de iniciación Para empezar y poder recordar algunos ejemplos en la vida
20. TRANSFORMACIONES Y MOVIMIENTOS
20. TRANSFORMACIONES Y MOVIMIENTOS Los movimientos y las transformaciones son modificaciones aplicadas a los elementos del plano puntos, rectas, figuras_ con el fin de cambiar su posición o para convertirlos
3º ESO - UNIDAD 12.- TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO
3º ESO - UNIDAD 12.- TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO OBJETIVOS MÍNIMOS DE LA UNIDAD 12 1.- Reconocer los diferentes tipos de movimientos 2.- En cuanto a las traslaciones, saber construir la
MOVIMIENTOS EN EL PLANO
MOVIMIENTOS EN EL PLANO MOVIMIENTOS EN EL PLANO. ÍNDICE Movimientos en el plano. Definición. Traslación. Rotación. Simetría central. Simetría axial. Los siete tipos de frisos. Ejemplos de movimientos en
Guía para el estudiante
Guía realizada por Bella Peralta C. Magister en Educación Matemática [email protected] [email protected] Nombre: Fecha: Curso: Con el desarrollo de esta guía aprenderás a identificar
MOVIMIENTOS Y TRANSFORMACIONES EN EL PLANO
MOVIMIENTOS Y TRANSFORMACIONES EN EL PLANO Traslación: Traslación (sin deslizadores) Traslación de un objeto: Traslación de una imagen: Actividad con geogebra: Construye un pentágono regular y trasládalo
TEMA 4. TRANSFORMACIONES EN EL PLANO
TEMA 4. TRANSFORMACIONES EN EL PLANO HERRAMIENTAS PARA TRANSFORMACIONES En este bloque encontramos las siguientes herramientas: Simetría axial La herramienta Refleja objeto en recta dibuja la figura simétrica
TRANSF0RMACIONES GEOMÉTRICAS
DIBUJO TÉNCICO 2º BACH TRANSF0RMACIONES GEOMÉTRICAS Nos referimos a Transformaciones Geométricas cuando hablamos de la operación u operaciones necesarias para convertir una figura F en otra figura F portadora
Plan de clase (1/2) Escuela: Fecha: Profesor (a):
Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 8 Eje temático: F E y M Contenido: 8.5.3 Construcción de figuras simétricas respecto de un eje, análisis y explicitación de las propiedades
1.3 PROPORCIÓN Y RELACIONES GEOMÉTRICAS (transformaciones geométricas)
TEMA 1: Dibujo geométrico 1.3 PROPORCIÓN Y RELACIONES GEOMÉTRICAS (transformaciones geométricas) El tamaño es una cualidad de toda figura que percibimos comparándolo con el entorno donde se sitúa. La proporción
TEMA 4 TRANSFORMACIONES EN EL PLANO
TEMA 4 TRANSFORMACIONES EN EL PLANO Introducción. Bloque de herramientas Transformar. Mosaicos. Mosaicos regulares. Mosaicos irregulares. Actividades propuestas. INTRODUCCIÓN En este tema expondremos las
Guía: Isometrías en el computador
Guía: Isometrías en el computador Traslaciones en el Plano (Geogebra) Descripción Las acciones que se presentan en esta guía tienen como propósito que usted trabaje isometrías usando el computador. Para
PSU Matemática NM-4 Guía 24: Isometrías. Transformaciones isométricas en el plano
Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM-4 Guía 4: Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza diferentes
Club GeoGebra Iberoamericano 7 MOSAICOS E ISOMETRÍAS
7 MOSAICOS E ISOMETRÍAS MOSAICOS E ISOMETRÍAS ISOMETRÍAS. LOS MOVIMIENTOS EN EL PLANO QUE MANTIENEN LAS DISTANCIAS Presentación Encontramos simetría en el rostro humano y en muchos seres vivos. También
TEMA 6: GEOMETRÍA EN EL PLANO
TEMA 6: GEOMETRÍA EN EL PLANO Definiciones/Clasificaciones Fórmulas y teoremas Dem. Def. y Clasificación de polígonos: Regular o irregular Cóncavo o convexo Por número de lados: o Triángulos: clasificación
Guía para maestro. Movimientos en el plano. Guía para el maestro. Compartir Saberes
Guía para maestro Guía realizada por Bella Peralta C. Magister en Educación Matemática [email protected] [email protected] Son transformaciones que conservan distancias y ángulos
UTalca - Versión Preliminar
1. Definición La parábola es el lugar geométrico de todos los puntos del plano que equidistan de un punto y una recta dada. Más claramente: Dados (elementos bases de la parábola) Una recta L, llamada directriz
C onstrucción de triángulos
C onstrucción de triángulos Figuras básicas y ángulos Nombre Escuela Edad Fecha Propósito: Distinguir triángulos con características diferentes. Escribe lo que entiendas por triángulo isósceles. Dibuja
Transformaciones Isométricas
Introducción Transformaciones Isométricas Actividad: En los siguientes pares de transformaciones, reconoce aquellas en las que se mantiene la forma y el tamaño. Una transformación de una figura geométrica
Unidad 4Transformaciones geométricas
4.1. Dados los puntos A, B y C sobre una recta r, de manera que AB = 20 mm y BC = 20 mm, determina sobre r el punto D para que la razón doble (ABCD) = 19/14. 1. Por los puntos A y B de la recta r se trazan
Dinámica del movimiento rotacional
Dinámica del movimiento rotacional Torca, momento angular, momento cinético o momento de torsión: La habilidad de una fuerza para rotar o girar un cuerpo alrededor de un eje. τ = r F r= es la posición
Frisos desplazados Plan de clase (1/2) Escuela: Fecha: Profesor (a).
Frisos desplazados Plan de clase (1/2) Escuela: Fecha: Profesor (a). Curso: Matemáticas 3 Secundaria Eje temático: FEyM Contenido: 9.2.2 Análisis de las propiedades de la rotación y de la traslación de
Materia: Matemática de Octavo Tema: Rotaciones
Materia: Matemática de Octavo Tema: Rotaciones Qué pasaría si quisieras encontrar el centro de rotación y el ángulo de giro de las flechas en el símbolo de reciclaje internacional mostrado abajo? Son tres
METODOLOGÍA DEL ANÁLISIS DE VELOCIDADES Y ACELERACIONES POR EL MÉTODO DEL POLÍGONO.
METODOLOGÍA DEL ANÁLISIS DE VELOCIDADES Y ACELERACIONES POR EL MÉTODO DEL POLÍGONO. INTRODUCCIÓN Para una mejor apreciación del estudio de la dinámica se clasifica en dos ramas: cinemática y cinética.
3º DE EDUCACIÓN SECUNDARIA OBLIGATORIA MATEMÁTICAS UNIDAD 7 MOVIMIENTOS EN EL PLANO. SEMEJANZAS
3º DE EDUCACIÓN SECUNDARIA OBLIGATORIA MATEMÁTICAS UNIDAD 7 MOVIMIENTOS EN EL PLANO. SEMEJANZAS a) Presentación b) Evaluación Inicial c) Conceptos d) Actividades e) Autoevaluación f) Otros recursos: bibliografía
TRANSFORMACIONES GEOMÉTRICAS EN EL PLANO
Recopilación Teórica 1 Transformaciones Geométricas TRANSFORMACIONES GEOMÉTRICAS EN EL PLANO Acerca de la temática de esta unidad. La composición arquitectónica tiene como finalidad, la organización de
SECCIÓN 7.3 INTRODUCCION A VECTORES. Capítulo 7
SECCIÓN 7.3 INTRODUCCION A VECTORES Capítulo 7 Introducción Cantidades tales como área, volumen, longitud, temperatura y tiempo se componen únicamente de una magnitud y se pueden describir completamente
TEMA 9.- TRANSFORMACIONES EN EL PLANO.
GEOMETRÍ: 5.- TRNSFORMIONES EN EL PLNO TEM 9.- TRNSFORMIONES EN EL PLNO. Definición 9.1.- Llamaremos transformación geométrica en el plano a una operación u operaciones geométricas que permiten deducir
TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad
TORNEOS GEOMÉTRICOS 2017. Primera Ronda Primer Nivel - 5º Año de Escolaridad Problema 1. El hexágono regular de la figura tiene área 6cm 2. Halla el área de la región sombreada. Solución: El triángulo
PÁGINA 113. a) De H 1 a H 2, y de H 1 a H 3 son traslaciones. b) El vector que caracteriza la traslación que transforma AB.
PÁGINA 113 H 4 H 3 H 1 H 2 1 Observa el mosaico de arriba, al que se le llama multihueso. De las transformaciones que llevan H 1 a H 2, H 3 y H 4 : a) Cuál o cuáles de ellas son traslaciones? b) Cuál es
unidad 11 Transformaciones geométricas
unidad 11 Transformaciones geométricas Cómo dibujar ángulos de 60 con regla y compás Página 1 La cuerda de un arco de 60 (apertura del compás) es igual al radio con que se ha trazado. Veamos el proceso:
Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G.
Nombre: Curso: Movimiento Circunferencial Uniforme. (MCU) Caracteristicas 1) La trayectoria es una circunferencia 2) La partícula recorre distancia iguales en tiempos iguales Consecuencias 1) El vector
TRANSFORMACIONES ISOMÉTRICAS
TRANSFORMACIONES ISOMÉTRICAS En una transformación isométrica: 1) No se altera la forma ni el tamaño de la figura. 2) Sólo cambia la posición (orientación o sentido de ésta). TRANSFORMACIONES ISOMÉTRICAS
MATEMÁTICA 5 BÁSICO MATERIAL DE APOYO PARA EL DOCENTE LOCALIZACIONES, CARACTERIZACIONES Y TRANSFORMACIONES GEOMÉTRICAS
MATEMÁTICA 5 BÁSICO LOCALIZACIONES, CARACTERIZACIONES Y TRANSFORMACIONES GEOMÉTRICAS Material elaborado por: Héctor Muñoz Adaptación: Equipo de Matemática Programa Mejor Escuela 1. DESCRIPCIÓN GENERAL
UNIDAD DIDÁCTICA: Unidades 06: Metros, Gramos y Litros De Matemáticas. (T.9 y T.10)
UNIDAD DIDÁCTICA: Unidades 06: Metros, Gramos y Litros De Matemáticas. (T.9 y T.10) Utilizar el metro como la unidad principal de medida de longitud. Utilizar el litro y el gramo unidades de principal
Guía para maestro. Reflexión de figuras. Compartir Saberes
Guía para maestro Guía realizada por Nury Espinosa Profesional en Matemáticas La palabra isometría tiene su origen en el prefijo griego iso (igual o mismo), y metría (de medir). Una definición más precisa
Física: Momento de Inercia y Aceleración Angular
Física: Momento de Inercia y Aceleración Angular Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Momento de Torsión (Torque) La capacidad de un fuerza de hacer girar un objeto se define como torque.
Tema 2 Campo de velocidades del sólido rígido
Mecánica Clásica Tema Campo de velocidades del sólido rígido EIAE 5 de septiembre de 011 Velocidad de un punto del sólido. Deducción matricial.................................. Tensor velocidad angular......................................................
1. El plano cartesiano
1. El plano cartesiano Para representar puntos en un plano, definidos por un par ordenado de números reales, se utiliza generalmente el sistema de coordenadas rectangulares, que se caracteriza por: Estar
Nombre: Curso: Fecha: -
1 Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM-4 Guía 4: Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza
Sección 2.5. Gráficas de Funciones Transformaciones en el plano
Sección 2.5 Gráficas de Funciones Transformaciones en el plano Funciones Pares e Impares Las funciones se clasifican como pares o impares dependiendo del tipo de simetría que reflejan sus gráficas. Terminología
6. Mosaicos y movimientos. en el plano
6. Mosaicos y movimientos en el plano Ámbito científico 1. Mosaicos 2. Módulos planos 3. Diseña mosaicos 4. Ejemplos de mosaicos 5. Ejemplos de tramas 6. Mosaicos semiregulares I 7. Libro de espejos 8.
ISOMETRÍA ( MOVIMIENTO): transformación que conserva la forma y el tamaño de las figuras.
ISOMETRÍAS EN EL PLANO ISOMETRÍA ( MOVIMIENTO): transformación que conserva la forma y el tamaño de las figuras. Hay dos tipos de isometrías: Isometría directa: mantiene el sentido de giro de las agujas
RX 3º SECUNDARIA 08 ECUACIONES CUADRÁTICAS: FACTORIZACIÓN
RX 3º SECUNDARIA 08 ECUACIONES CUADRÁTICAS: FACTORIZACIÓN FACTORIZAR X 2 + BX = 0 1. En un bazar se montó un puesto de cojines bordados, típicos de Chiapas. En el puesto se ofrece una promoción para los
QCAD: ACTIVIDAD 1: PRUEBA
QCAD: ACTIVIDAD 1: PRUEBA Para ello debes pulsar en el botón línea y después elige rectángulo. 3. Elige ahora Líneas verticales y dibuja una desde la posición 10,10 y longitud 50. 4. Elige el botón Paralelas
Geogebra: Construyendo un mar de Isometrías
Geogebra: Construyendo un mar de Isometrías Trasladando figuras geométricas en el plano. Descripción Autor: Manuel Galaz. Las siguientes acciones tienen el propósito de explorar propiedades relacionadas
open green road Guía Matemática TRANSFORMACIONES ISOMÉTRICAS tutora: Jacky Moreno .cl
Guía Matemática TRANSFORMACIONES ISOMÉTRICAS tutora: Jacky Moreno.cl 1. Transformaciones isométricas Las transformaciones geométricas están presentes en diversos campos de la actividad humana así como
Secundaria. Matemáticas 3
Secundaria Matemáticas 3 Bloque 1 1 1 2 2 23 Una ecuación para cada problema 26 29 31 35 Hay problemas que tienen solución... Como estos! La línea que los une / Triángulos, cuadriláteros y formas semejantes
TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad Apellido Nombres DNI Tu Escuela.. Localidad Provincia
Primer Nivel - 5º Año de Escolaridad Problema 1. El hexágono regular de la figura tiene área 6cm 2. Halla el área de la región sombreada. Problema 2. Usando sólo una regla sin marcas, dibujar en la cuadrícula
1º BACH SISTEMA DIÉDRICO III
SISTEMA DIÉDRICO III ABATIMIENTOS, GIROS, CAMBIOS DE PLANO. SISTEMA DIÉDRICO III: ABATIMIENTOS, CAMBIOS DE PLANO Y GIROS 1- ABATIMIENTOS Los abatimientos se utilizan para hallar la verdadera magnitud (
Remedial Unidad N 3 Matemática Octavo Básico 2017
Remedial Unidad N 3 Matemática Octavo Básico 2017 GUÍA DE TRABAJO REMEDIAL N 1 UNIDAD N 3 Nombre Curso 8 año básico Fecha Objetivo Comprender el Teorema de Pitágoras y lo aplica en la resolución de problemas
Cuaderno I: MOVIMIENTOS EN EL PLANO
á Cuaderno I: MOVIMIENTOS EN EL PLANO á MOVIMIENTOS EN EL PLANO Las transformaciones geométricas ha sido una de las constantes de la mayoría de las culturas, presentándose en los elementos decorativos
Dinámica del Sólido Rígido
Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera
El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.
Capítulo 4. Estudio de la línea recta El análisis cartesiano (René Descartes 1596-1650) descubrió que las ecuaciones pueden tener una representación gráfica. Para lograr esa representación gráfica es necesario
MECÁNICA. Cinemática 3D del Sólido Rígido
DEPARTAMENTO DE INGENIERÍA MECÁNICA MECÁNICA Cinemática 3D del Sólido Rígido 1.-(bj15_7) La barra doblada ABCD gira con respecto a una línea que une los puntos A y D con una velocidad angular de 75 rad/s
Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué?
Ecuaciones de la forma y = m. Haga las gráficas de y = y = y = y = y y y y y y a. Como son las rectas b. Cuales son simétricas respecto al origen c. La recta y que tipo de simetría presenta respecto a
Unidad Didáctica 9. Proporción y Estructuras Modulares
Unidad Didáctica 9 Proporción y Estructuras Modulares 1.- Proporcionalidad Para poder comparar dos cantidades se halla la razón o cociente entre ellas. La razón se puede expresar de distintas maneras.
PLANIFICACIÓN DE MATEMÁTICA PRIMERO MEDIO
Liceo Pedro de Valdivia La Calera PLANIFICACIÓN DE MATEMÁTICA PRIMERO MEDIO - 2015 Nombre del Profesor: Eduardo Hernán Guerra Cuevas Título: Geometría euclidiana Tiempo estimado: 65 horas pedagógicas UNIDAD
\ I OPCIÓN I PROBLEMA: SISTEMA DIÉDRICO.
OPCIÓN I PROBLEMA: SISTEMA DIÉDRICO. Dadas las proyecciones horizontal y vertical de un sólido, asf como las trazas de un plano P, se pide: 1.- Determinar las proyecciones de la sección producida por el
Guía de Matemática Segundo Medio
Guía de Matemática Segundo Medio Aprendizaje Esperado:. Analizan la ecuación de la recta; establecen la dependencia entre las variables y la expresan gráfica y algebraicamente.. Identifican e interpretan
OPERACIONES GEOMÉTRICAS CON VECTORES
GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.ch Profesor: David Valenzuela Z Magnitudes escalares y vectoriales La gran variedad de cosas medibles (magnitudes) se pueden clasificar en
Listo para seguir? Intervención de destrezas Figuras básicas de la geometría
8-1 Listo para seguir? Intervención de destrezas Figuras básicas de la geometría Un punto es una ubicación exacta. Una línea es una trayectoria recta que se extiende sin fin en direcciones opuestas. Un
MECANISMOS DE TRANSMISION LEVAS METODO GRAFICO
MECANISMOS DE TRANSMISION LEVAS METODO GRAFICO INTRODUCCION En ingeniería mecánica, una leva es un elemento mecánico hecho de algún material (madera, metal, plástico, etc.) que va sujeto a un eje y tiene
4) Traslada el siguiente polígono 4, 8, 12 y 16 cuadrados hacia abajo. 5) Traslada el siguiente polígono 12 cuadrados hacia la derecha y 5 hacia abajo
Cuál es tu nombre? Fecha: 1) Indica cuántos cuadrados se trasladó hacia la derecha la figura. cuadrados cuadrados cuadrados 2) Indica cuántos cuadrados se trasladó hacia abajo la figura. cuadrados cuadrados
INTRODUCCIÓN A LA GEOMETRÍA DINÁMICA
El significado de geometría dinámica lo podemos resumir diciendo que se trata de un programa con una serie de elementos u objetos elementales (puntos, segmentos, circunferencias, polígonos, etc.), a partir
Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica
Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica 1. a) Marcar en un eje los puntos a(1);b( 2) y c(4). b) Hallar los puntos simétricos respecto al origen
Proyecto Guao CONGRUENCIA DE TRIÁNGULOS
CONGRUENCIA DE TRIÁNGULOS Y si te dieran dos triángulos con todas las medidas de los ángulos y todas las longitudes de los lados marcados? Cómo sabrías si los dos triángulos son congruentes? Después de
Remedial Unidad N 3 Matemática Sexto Año Básico 2017
v Remedial Unidad N 3 Matemática Sexto Año Básico 2017 GUÍA DE TRABAJO REMEDIAL N 1 UNIDAD N 3 Nombre Curso 6 año básico Fecha Objetivo Habilidad cognitiva Tiempo Reconocer elementos propios de las de
segmento S semirrecta s Pentágono
Actividad 1. Primeros pasos (I). A) Dibuja los objetos que se ven más abajo: P recta r segmento S semirrecta s vector u A Pentágono octógono regular B Triángulo C Círculo B) Borra todos los objetos. (Más
algebra, calculo, funciones estadísticas. Lo ha elaborado Markus Hohenwarter junto a un
Instructivo Introducción del software Geogebra. Por: Jesús Evenson Pérez Arenas Guía de introducción de Geogebra Institución Educativa Antonio Donado Camacho. Área: Matemáticas Componente: Geométrico,
CUADERNO AUXILIAR de
CUADERNO AUXILIAR de 1 1 Enseñanza Media Técnico Profesional 3.- GEOMETRÍA LICEO POLITÉCNICO DOMINGO 2 La geometría tiene dos grandes tesoros: uno es el teorema de Pitágoras, y el otro el número áureo.
