TEMA 4. TRANSFORMACIONES EN EL PLANO
|
|
|
- Natividad Romero Aguilera
- hace 9 años
- Vistas:
Transcripción
1 TEMA 4. TRANSFORMACIONES EN EL PLANO HERRAMIENTAS PARA TRANSFORMACIONES En este bloque encontramos las siguientes herramientas: Simetría axial La herramienta Refleja objeto en recta dibuja la figura simétrica de un objeto con respecto a un eje que puede ser una recta, una semirrecta, un segmento, un vector, un eje o el lado de un polígono. El proceso se iniciará al marcar el objeto del cual deseamos obtener su simétrico, a continuación, señalaremos el eje con respecto al que se realizará la simetría. El objeto obtenido como simétrico es un objeto dependiente del objeto inicial, por lo que para cambiar su aspecto tendremos que modificar el aspecto del original. Agustín Carrillo de Albornoz Torres - 60
2 También cambiará, aunque en este caso, sólo de posición, al variar el eje de simetría. Simetría central Con la herramienta Refleja objeto por punto se realiza una simetría central, por lo que aplica un giro de 180º con respecto a un punto. La forma de utilizar esta herramienta es análoga a la anterior; para realizar la simetría se podrá utilizar uno de los vértices del objeto inicial o cualquier otro punto del plano. Evidentemente, los objetos obtenidos dependen del objeto inicial y del punto con respecto al cual se ha realizado la simetría. Inversión La herramienta Refleja punto por circunferencia dibuja un punto A' inverso de un punto A con respecto a una circunferencia. Agustín Carrillo de Albornoz Torres - 61
3 Los puntos A y A' verifican la relación: OA OA' = r 2 siendo O el centro de la circunferencia y r su radio. Podemos comprobar la relación entre las distancias que relacionan al punto A con su inverso A' con respecto a la circunferencia de centro r. Utilizando Distancia o longitud medimos las distancias OA, OA' y el radio de la circunferencia. A continuación, calculamos el valor de las expresiones OA OA' y 2 r llevando las medidas anteriores al Campo de entrada. Para ello, pulsamos el botón derecho del ratón sobre cada una de las medidas. Aparecerá el siguiente menú desplegable: Agustín Carrillo de Albornoz Torres - 62
4 Traslación Con la herramienta Traslada objeto por vector obtendremos la imagen de un objeto al que se le aplica una traslación determinada por un vector creado previamente. Rotación Utilizaremos la herramienta Rota objeto en torno a punto el ángulo indicado, para dibujar la imagen de un objeto al que se le aplica un giro cuyo ángulo está determinado por un valor numérico. Una vez seleccionado el polígono y el punto, alrededor del cual se desea girar, aparecerá un cuadro de diálogo para introducir el ángulo de giro. Agustín Carrillo de Albornoz Torres - 63
5 El ángulo de giro también puede ser el valor de la medida de un ángulo previamente calculado. Homotecia La herramienta Homotecia desde un punto por un factor de escala crea la imagen de un objeto que se reduce o amplía, según un valor numérico que determina el factor de homotecia. El factor de homotecia se introduce a través del cuadro de diálogo que aparecerá después de seleccionar el polígono al que se desea aplicar la homotecia y el punto origen. Una vez introducido el factor de homotecia, aparecerá la figura original y su transformada. Ejemplo 1 Sea A y B dos puntos que están en el mismo lado de una recta r. Encontrar el camino mínimo desde el punto A hasta B, pasando por un punto de la recta. Dibujamos una recta r y los dos puntos A y B. Agustín Carrillo de Albornoz Torres - 64
6 El problema quedará resuelto cuando esté determinado el punto C en la recta que hace que AC + CB sea mínimo. Utilizando la herramienta Reflexión de un objeto dada la recta de simetría axial (Simetría axial) obtenemos el punto B' simétrico de B con respecto a la recta r. El camino más corto es AC + CB siendo C el punto de intersección del segmento AB con la recta r. Por tanto si AC + CB es el camino más corto, como BC = B'C, tenemos el camino más corto para ir desde A hasta B pasando por un punto de la recta r. Agustín Carrillo de Albornoz Torres - 65
7 Este enunciado corresponde a problemas como el siguiente: Un pájaro está sobre la rama de un árbol (A), situado al borde de un río y desea pasar a otro árbol, situado en la orilla izquierda (B), aprovechando para beber agua sin parar su vuelo. Hacia qué punto del río debe dirigirse para hacer el recorrido más corto? Ejemplo 2 Construir un cuadrado a partir del segmento correspondiente al lado. Es posible determinar los vértices utilizando sólo la herramienta Rotación? Generalizar el método anterior para dibujar otros polígonos regulares inscritos en una circunferencia. Para dibujar un cuadrado a partir del segmento AB correspondiente al lado, bastará con trazar perpendiculares al lado por lo puntos A y B. A continuación, utilizando la herramienta Compás dibujamos las circunferencias de radio AB con centro en A y B, respectivamente. Agustín Carrillo de Albornoz Torres - 66
8 Los puntos de corte con las rectas anteriores serán los dos vértices que faltan para completar el cuadrado que a continuación, dibujaremos utilizando la herramienta Polígono. Para realizar la construcción de un cuadrado utilizando la herramienta Rota objeto en torno a punto, bastará con girar un ángulo de 90 en sentido antihorario, el punto B con respecto al punto A y girar 90 en sentido horario; el punto A con respecto al extremo B, en sentido contrario. Los dos puntos que obtenemos son vértices del cuadrado, que dibujaremos de nuevo utilizando la herramienta Polígono. Agustín Carrillo de Albornoz Torres - 67
9 Ejemplo 3 Construir un triángulo, a partir de dos de sus lados y del ángulo comprendido. Una vez dibujados los segmentos a y b correspondientes a los lados y al ángulo, trazamos una semirrecta sobre la que trasladaremos las distintas medidas. Con la herramienta Circunferencia dados su centro y radio, dibujamos sendas circunferencias de radios a y b, tomando como centro el origen de la semirrecta, que corresponderá al vértice A del triángulo buscado. Estas circunferencias determinan dos puntos de intersección con la semirrecta, que corresponden al vértice B del triángulo y a un punto C que da la distancia del segundo lado. Utilizamos la herramienta Rotación para girar el punto C alrededor del punto A con ángulo de rotación igual al ángulo medido en A; obtendremos el punto C' que corresponde al tercer vértice del triángulo. Agustín Carrillo de Albornoz Torres - 68
10 Ejemplo 4 Comprobar que la composición de dos homotecias de centros diferentes, es una homotecia cuyo centro está alineado con los anteriores y su razón de homotecia es el producto de las razones. Dibujamos un triángulo ABC, dos puntos O y O' que utilizaremos como centros de las sucesivas homotecias, cuyas razones sean 2 y 1'5, respectivamente. Realizamos la primera homotecia del triángulo con centro en O y razón 2 y, al triángulo obtenido le aplicamos una nueva homotecia de razón 1'5 y centro O'. Para determinar el centro de la composición de las dos homotecias, trazamos dos rectas que unan puntos homotéticos del primer y del tercer triángulo; el punto de intersección O'' corresponde al centro de la homotecia composición. Agustín Carrillo de Albornoz Torres - 69
11 Para hallar la razón k de la homotecia composición, bastará con aplicar la O'' A'' definición de homotecia en la que se cumple la relación: = k. O'' A MOSAICOS Un mosaico se construye repitiendo, de forma ordenada, una o varias figuras geométricas para rellenar el plano o el espacio, sin dejar huecos ni producir solapamientos. Ejemplo 6 Construir un mosaico utilizando un triángulo cualquiera. Dibujamos un triángulo ABC que rellenamos de color y en él marcamos los vectores AB y AC. Agustín Carrillo de Albornoz Torres - 70
12 Utilizando la herramienta Traslada objeto por vector realizamos dos traslaciones del triángulo ABC, tomando como vectores AB y AC, respectivamente. Repitiendo el proceso de traslación sobre los nuevos triángulos, utilizando los mismos vectores, obtendremos el mosaico formado con el triángulo ABC. Podemos deformar el triángulo ABC, arrastrado cualquiera de los vértices del triángulo inicial. Agustín Carrillo de Albornoz Torres - 71
13 Ejemplo 7 Construcción de un mosaico a partir de una figura geométrica irregular. En un triángulo equilátero ABC, dibujado a través de la herramienta Polígono regular, construimos una figura geométrica con la cual realizaremos un mosaico a través de traslaciones. A partir del punto A, con final en el punto B, dibujamos tres segmentos que no tienen por qué ser iguales, aunque recomendamos definir un polígono, al que después realizaremos un giro de 60 con centro en el punto A. Definimos el punto F como punto medio del lado BC del triángulo y un punto G interior al triángulo, sobre el que realizamos una simetría con respecto al punto F para obtener el punto G'. Con la herramienta Polígono, definimos la figura geométrica que vamos a utilizar para realizar el mosaico que rellenamos para mejorar el efecto. Agustín Carrillo de Albornoz Torres - 72
14 Definimos los vectores AB y CB. A continuación, realizando traslaciones, utilizando los dos vectores anteriores y ocultando previamente todos los vértices, obtendremos el correspondiente mosaico. ACTIVIDADES PROPUESTAS 1. Sea ABC un triángulo acutángulo y P un punto sobre el lado AB. Obtener los puntos Q y R en los lados AC y BC respectivamente, tales que el perímetro del triángulo PQR sea mínimo. 2. Las rectas r y s son mediatrices de un triángulo ABC. Conocido el vértice A, obtener los dos vértices restantes. Agustín Carrillo de Albornoz Torres - 73
15 3. Las semirrectas Ax y By son dos bisectrices del triángulo ABC. Construir el triángulo. 4. Dibujar un triángulo a partir del segmento correspondiente a un lado y de los dos ángulos adyacentes. 5. Comprobar que la composición de dos simetrías axiales de ejes paralelos, coincide con una traslación. Determinar el vector de la traslación. 6. Dibujar un triángulo ABC y construir su triángulo homotético de razón k. Qué relación existe entre el área y el perímetro de los dos triángulos homotéticos? 7. Sea P un punto cualquiera de la circunferencia circunscrita a un triángulo. Comprobar que los puntos simétricos del punto P, con respecto a cada uno de los lados del triángulo, están alineados. Esta recta, denominada recta de Steiner, es paralela a la recta de Simson y pasa por el ortocentro del triángulo. 8. Sean A y B dos puntos cualesquiera del interior de dos semirrectas, con origen común en el punto O. Determinar los puntos M y N en cada una de las semirrectas, de manera que el camino AM, MN y NB sea de longitud mínima. 9. Sea A uno de los puntos comunes en los que se cortan dos circunferencias. Dibujar una recta que, pasando por A, determine cuerdas de longitud igual en ambas circunferencias. Agustín Carrillo de Albornoz Torres - 74
16 10. Realizar el siguiente mosaico utilizando un cuadrilátero. Agustín Carrillo de Albornoz Torres - 75
TEMA 4 TRANSFORMACIONES EN EL PLANO
TEMA 4 TRANSFORMACIONES EN EL PLANO Introducción. Bloque de herramientas Transformar. Mosaicos. Mosaicos regulares. Mosaicos irregulares. Actividades propuestas. INTRODUCCIÓN En este tema expondremos las
TEMA 3. LUGARES GEOMÉTRICOS
TEMA 3. LUGARES GEOMÉTRICOS LA HERRAMIENTA LUGAR GEOMÉTRICO Para construir un lugar geométrico necesitaremos dos objetos: un punto que será el que describirá el lugar geométrico, y otro que será el punto
ACTIVIDADES PROPUESTAS
GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el
MOVIMIENTOS Y TRANSFORMACIONES EN EL PLANO
MOVIMIENTOS Y TRANSFORMACIONES EN EL PLANO Traslación: Traslación (sin deslizadores) Traslación de un objeto: Traslación de una imagen: Actividad con geogebra: Construye un pentágono regular y trasládalo
EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS
EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS 1- Dados el punto V, la circunferencia de centro O y la recta R tangente a la circunferencia, se pide: a. Dibujar la circunferencia homotética de la dada, sabiendo
Unidad Didáctica 8. Dibujo Geométrico
Unidad Didáctica 8 Dibujo Geométrico 1.- Tazados Geométricos Básicos Trazados Rectas Paralelas Rectas paralelas. Las que no llegan nunca a cortarse, o se cortan en el infinito. Con Escuadra y Cartabón:
EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS
EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS 1- Dados el punto V, la circunferencia de centro O y la recta R tangente a la circunferencia, se pide: a. Dibujar la circunferencia homotética de la dada, sabiendo
11. ALGUNOS PROBLEMAS CON TRIÁNGULOS
11. ALGUNOS PROBLEMAS CON TRIÁNGULOS Estos problemas son ejemplos de aplicación de las propiedades estudiadas. 11.1. Determinar la posición de un topógrafo que tiene tres vértices geodésicos A,B,C, si
12Direcciones de internet
12Direcciones de internet En la dirección http://www.nucleogestion.8m.com/hall.htm se puede pasear libremente por el museo virtual de Escher. Se puede entrar en la sala que se desee haciendo clic sobre
TEMA 1. INTRODUCCIÓN A LA GEOMETRÍA DINÁMICA
TEMA 1. INTRODUCCIÓN A LA GEOMETRÍA DINÁMICA INTRODUCCIÓN El significado de geometría dinámica lo podemos resumir diciendo que se trata de un programa con una serie de elementos u objetos elementales (puntos,
TEMA 5. CREACIÓN DE NUEVAS HERRAMIENTAS
TEMA 5. CREACIÓN DE NUEVAS HERRAMIENTAS INTRODUCCIÓN En los capítulos anteriores hemos estudiado algunas de las herramientas disponibles en GeoGebra, con las que podemos realizar numerosas aplicaciones,
Unidad 4Transformaciones geométricas
4.1. Dados los puntos A, B y C sobre una recta r, de manera que AB = 20 mm y BC = 20 mm, determina sobre r el punto D para que la razón doble (ABCD) = 19/14. 1. Por los puntos A y B de la recta r se trazan
TEMA 6: GEOMETRÍA EN EL PLANO
TEMA 6: GEOMETRÍA EN EL PLANO Definiciones/Clasificaciones Fórmulas y teoremas Dem. Def. y Clasificación de polígonos: Regular o irregular Cóncavo o convexo Por número de lados: o Triángulos: clasificación
Transformaciones geométricas.
Transformaciones geométricas. Transformación es una correspondencia del plano en sí mismo tal que a cada punto P del plano, le corresponde un solo punto P'. Cuando los ángulos y segmentos transformados
TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad
TORNEOS GEOMÉTRICOS 2017. Primera Ronda Primer Nivel - 5º Año de Escolaridad Problema 1. El hexágono regular de la figura tiene área 6cm 2. Halla el área de la región sombreada. Solución: El triángulo
POLÍGONOS POLÍGONOS. APM Página 1
POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.
Movimientos en el plano
Movimientos en el plano Contenidos 1. Vectores Concepto de vector. Coordenadas Vectores equipolentes Suma de vectores 2. Traslaciones Traslación según un vector Composición de traslaciones 3. Giros Giro
Geometría Prof. L. Solorza Curso: 1 medio. Guía de isometrías
Guía de isometrías A) Simetrías a) Reflexiones o Simetrías axiales Concepto: Una reflexión o simetría axial, con eje la recta L, es un movimiento del plano tal que a cada punto P del plano le hace corresponder
Soluciones Nota nº 3
Problemas Propuestos Soluciones Nota nº 3 Problema 1: Para dibujar el trasladado de un cuadrilátero convexo según un vector dado, Cuántos puntos trasladados se necesita conocer? Cuáles elegiría? Cómo resolvería
FORMAS POLIGONALES TEMA 8
FORMAS POLIGONALES TEMA 8 1. LOS POLÍGONOS DEFINICIÓN: Un polígono es una figura geométrica plana limitada por segmentos llamados lados, y por vértices. A B C A Lado D Clasificación de los polígonos:
EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector
EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es
TEMA Nombre IES ALFONSO X EL SABIO
1. Trazar la mediatriz del segmento AB 2. Trazar la perpendicular a la semirrecta s en su extremo A sin prolongar ésta 3. Dividir el arco de circunferencia en dos partes iguales. 4. Dividir gráficamente
TRANSF0RMACIONES GEOMÉTRICAS
DIBUJO TÉNCICO 2º BACH TRANSF0RMACIONES GEOMÉTRICAS Nos referimos a Transformaciones Geométricas cuando hablamos de la operación u operaciones necesarias para convertir una figura F en otra figura F portadora
2.-GEOMETRÍA PLANA O EUCLIDIANA
2.-GEOMETRÍA PLANA O EUCLIDIANA 2.2.-Cuadriláteros. Definición, clasificación y notación. Clasificación de los cuadriláteros: Paralelogramos y no paralelogramos. Los cuadriláteros son los polígonos de
DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez
DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado
Tema 9. GEOMETRÍA CON LA CLASSPAD
Tema 9. GEOMETRÍA CON LA CLASSPAD Introducción. La aplicación geometría. Herramientas para dibujar. Herramientas para construir. Movimientos en el plano. Herramientas para medir. Modificar el aspecto de
REPRESENTAR FIGURAS Y BUSCAR SIMILITUDES. DOS TRIÁNGULOS ESTÁN UNIDOS POR UN LADO COMPLETO
REPRESENTAR FIGURAS Y BUSCAR SIMILITUDES. ACTIVIDAD Nº 1 1. Recorta 6 triángulos equiláteros de 6 cm de lado. 2. Combina 2 triángulos, para encontrar nuevas formas geométricas, de acuerdo a la siguiente
TRAZADOS GEOMÉTRICOS
ELEMENTOS GEOMÉTRICOS Punto Línea recta/curva direcciones posiciones Ángulo tipos posiciones TRAZADOS GEOMÉTRICOS Lugares Geométricos mediatriz bisectriz circunferencia División de la Circunferencia 2-4-8
Club GeoGebra Iberoamericano 7 MOSAICOS E ISOMETRÍAS
7 MOSAICOS E ISOMETRÍAS MOSAICOS E ISOMETRÍAS ISOMETRÍAS. LOS MOVIMIENTOS EN EL PLANO QUE MANTIENEN LAS DISTANCIAS Presentación Encontramos simetría en el rostro humano y en muchos seres vivos. También
Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se
Apuntes de Dibujo Técnico
APUNTES DE DIBUJO TÉCNICO 1. Materiales para trazados geométricos. - La Escuadra y el Cartabón. El juego de escuadra y cartabón constituye el principal instrumento de trazado. Se deben usar de plástico
DIBUJO TÉCNICO II. 2º bach. IES Sánchez Cantón. Transformaciones geométricas anamórficas INVERSIÓN
DIBUJO TÉCNICO II. 2º bach. IES Sánchez Cantón Transformaciones geométricas anamórficas INVERSIÓN CONCEPTO DE POTENCIA DE UN PUNTO RESPECTO DE UNA CIRCUNFERENCIA Antes de centrarnos en el concepto de inversión,
DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez
DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución- CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α
Relaciones geométricas IES BELLAVISTA
Relaciones geométricas IES BELLAVISTA Igualdad y semejanza Dos figuras son iguales cuando sus lados y sus ángulos son iguales y están igualmente dispuestos. Dos figuras son semejantes cuando sus ángulos
Johnson R.A. (1929) Advanced Euclidean Geometry. (pag. 154). Dover publications, INC. New York.
Problema 720.- Teorema Si una recta r contiene al ortocentro H corta a los lados del triángulo ABC en L1, L2 y L3, las simétricas de r respecto a AB, AC y BC concurren en un punto P del circuncírculo y
Figuras planas. Definiciones
Figuras planas Definiciones Polígono: definición Un polígono es una figura plana (yace en un plano) cerrada por tres o más segmentos. Los lados de un polígono son cada uno de los segmentos que delimitan
CURVAS TÉCNICAS: ÓVALOS, OVOIDES Y ESPIRALES
GEOMETRÍA CURVAS TÉCNICAS 1 CURVAS TÉCNICAS: ÓVALOS, OVOIDES Y ESPIRALES Los óvalos y ovoides pertenecen al grupo de los enlaces denominados cerrados, dado que comienzan y terminan en un mismo punto. También
TEMA 1. TRAZADOS GEOMÉTRICOS ELEMENTALES
TEMA 1. TRAZADOS GEOMÉTRICOS ELEMENTALES GEOMETRÍA: Rama de las matemáticas que se ocupa del estudio de las figuras geométricas, incluyendo puntos, rectas, planos Proviene del Griego GEO (tierra) METRÍA
Demostración de teoremas con GeoGebra Es posible?
Ideas para el aula Épsilon - Revista de Educación Matemática 2012, Vol. 29(3), nº 82, 79-87, ISSN: 1131-9321 Demostración de teoremas con GeoGebra Es posible? Agustín Carrillo de Albornoz Torres Universidad
TEMA 6. COORDENADAS Y REPRESENTACIÓN DE FUNCIONES
TEMA 6. COORDENADAS Y REPRESENTACIÓN DE FUNCIONES INTRODUCCIÓN Aunque no existe una herramienta específica para mostrar las coordenadas de un punto o las ecuaciones de rectas, circunferencias o cónicas,
GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.
GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el
Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué?
Ecuaciones de la forma y = m. Haga las gráficas de y = y = y = y = y y y y y y a. Como son las rectas b. Cuales son simétricas respecto al origen c. La recta y que tipo de simetría presenta respecto a
unidad 11 Transformaciones geométricas
unidad 11 Transformaciones geométricas Cómo dibujar ángulos de 60 con regla y compás Página 1 La cuerda de un arco de 60 (apertura del compás) es igual al radio con que se ha trazado. Veamos el proceso:
EL PROBLEMA DE APOLONIO 1
EL PROBLEMA DE APOLONIO 1 Benjamín R. Sarmiento Lugo 2 Universidad Pedagógica Nacional Profesor de Planta Bogotá Colombia [email protected] RESUMEN El objetivo de este cursillo es reconstruir
TIPOS DE LÍNEAS Las rectas no tienen principio ni fin. La recta es una línea formada por una serie de puntos en una misma dirección...
TEMA 8 RECTAS Y ÁNGULOS TIPOS DE LÍNEAS Las rectas no tienen principio ni fin. La recta es una línea formada por una serie de puntos en una misma dirección....... Línea recta Cada una de las partes en
LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90
LA GEOMETRÍA PLANA La geometría plana trata de aquellos elementos que solo tienen dos dimensiones y, que por lo tanto, se encuentran y operan en un plano. Los elementos básicos con los que se suele trabajar
GEOMETRÍA CON GEOGEBRA. Oculta los ejes. Si te confundes en algún paso, utiliza el botón deshacer, en la esquina superior derecha de la pantalla.
GEOMETRÍA CON GEOGEBRA PRIMERA PARTE PUNTOS NOTABLES DE UN TRIÁNGULO Oculta los ejes. Si te confundes en algún paso, utiliza el botón deshacer, en la esquina superior derecha de la pantalla. MEDIATRICES
ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.
ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el
Dibujar un rombo de diagonal BD y lado AB dados. Se dibuja la diagonal DB y se trazan arcos con centro en sus extremos y radio AB, para hallar A y C.
Algunos problemas de cuadriláteros Propiedades Para la resolución de problemas de cuadriláteros es necesario conocer algunas de sus propiedades : - Las diagonales de un paralelogramo se cortan en sus respectivos
Líneas notables de un triángulo
Líneas notables de un triángulo Los cuatro grupos de líneas notables más importantes que se trabajan en los triángulos son las siguientes: Medianas: segmentos que unen los puntos medios de cada lado con
Problema a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A y B respectivamente.
Problema 717.- a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A y B respectivamente. Hallar el lugar geométrico de los puntos comunes a
PUNTOS NOTABLES DE UN TRIÁNGULO
PUNTOS NOTABLES DE UN TRIÁNGULO 1. CIRCUNCENTRO. Cualquier punto de la mediatriz de un lado de un triángulo equidista de los vértices que definen dicho lado. Luego si llamamos O al punto de intersección
Geometría con GeoGebra
Villaescusa IES Ramón Llull 2 Actividad 1: Para empezar Puesta en marcha del programa Una vez instalado el programa en tu ordenador, Para arrancar el programa, haz doble clic sobre el icono que está en
INICIACIÓN A GEOGEBRA
INICIACIÓN A GEOGEBRA Geogebra es un programa libre creado en 2002 por Markus Hohenwarter de la Universidad Johannes Kepler de Linz en Austria. Tal como su nombre indica, Geogebra es un programa que mezcla
( ) 2 +( 1) 2. BLOQUE III Geometría analítica plana. Resoluciones de la autoevaluación del libro de texto
Pág. de Dados los vectores u, y v0,, calcula: a u b u + v c u v u, v0, 5 a u = = = + b u + v =, + 0, =, + 0, 6 =, c u v = u v = 0 + = Determina el valor de k para que los vectores a, y b6, k sean ortogonales.
TRIÁNGULOS. APM Página 1
TRIÁNGULOS 1. Definición de triángulo. 2. Propiedades de los triángulos. 3. Construcción de triángulos. 3.1. Conociendo los tres lados. 3.2. Conociendo dos lados y el ángulo que forman. 3.3. Conociendo
INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES - MATEMÁTICA I - AÑO 2012 TRIÁNGULOS
TRIÁNGULOS Definición: Dados tres puntos no alineados, A, B y C, se llama triángulo a la intersección de los semiplanos que tienen como borde la recta determinada por dos de estos puntos y contiene al
INTRODUCCIÓN A LA GEOMETRÍA DINÁMICA
El significado de geometría dinámica lo podemos resumir diciendo que se trata de un programa con una serie de elementos u objetos elementales (puntos, segmentos, circunferencias, polígonos, etc.), a partir
TEMA 5 GEOMETRÍA ANALÍTICA
TEMA 5 GEOMETRÍA ANALÍTICA Ecuación general de la recta. Una recta queda determinada por un vector que tenga su dirección (llamado vector director) y un punto que pertenezca a esa recta. Tipos de ecuaciones
CONSTRUCCIONES Y LUGARES GEOMÉTRICOS. Matemáticas 1º Educación Secundaria Obligatoria
CONSTRUCCIONES Y LUGARES GEOMÉTRICOS Matemáticas 1º Educación Secundaria Obligatoria Consideraciones metodológicas Los conceptos de mediatriz y bisectriz permitirán introducir el concepto de lugar geométrico
Polígonos IES BELLAVISTA
Polígonos IES BELLAVISTA Polígonos: definiciones Un polígono es la porción de plano limitada por rectas que se cortan. Polígono regular: el que tiene todos los lados y ángulos iguales. Polígono irregular:
4. UNIDAD DIDÁCTICA 4: FORMAS GEOMÉTRICAS II
4. UNIDAD DIDÁCTICA 4: FORMAS GEOMÉTRICAS II En el tema anterior empezamos a conocer lo más básico de las formas geométricas. En este tema vamos a aprender a trazar otras formas un poco más complejas,
LOS POLIGONOS. 1. Definiciones.
LOS POLIGONOS 1. Definiciones. Un triángulo es un polígono cerrado y convexo constituido por tres ángulos (letras mayúsculas y sentido contrario a las agujas del reloj) y tres lado (letras minúsculas).
Perpendiculares, mediatrices, simetrías y proyecciones
Perpendiculares, mediatrices, simetrías y proyecciones 1. Calcular en cada caso la ecuación de la recta perpendicular a la dada, y que pasa por el punto P que se indica: a) 5x 2y 3 0 P( 1, 3) b) x 4 y
Translaciones, giros, simetrías.
Translaciones, giros, simetrías. Transformaciones geométricas Transformación geométrica es una aplicación del plano en el plano tal que a cada punto de un plano le hace corresponder otro punto del mismo
DIBUJO GEOMÉTRICO. - Segmento: es una parte limitada de la recta comprendida entre dos puntos que por lo tanto se nombraran con mayúscula.
DIBUJO GEOMÉTRICO 1. SIGNOS Y LÍNEAS. A. El punto: es la intersección de dos rectas. Se designa mediante una letra mayúscula y se puede representar también con un círculo pequeño o un punto. A B C D X
EJERCICIOS de RECTAS
EJERCICIOS de RECTAS Forma paramétrica: 1. Dado el punto A(,3) y el vector director ur (1, 2), se pide: a) Hallar las ecuaciones paramétricas de la recta r que determinan. b) Obtener otros tres puntos
Taller de Construcciones clásicas de Geometría con Cabri-Géomètre
Taller de Construcciones clásicas de Geometría con Cabri-Géomètre Días 11, 12 y 13 de noviembre de 2008 Juan Francisco Padial y Eugenia Rosado [email protected] [email protected] El taller consiste
Autoevaluación. Bloque III. Geometría. BACHILLERATO Matemáticas I * 8 D = (3, 3) Página Dados los vectores u c1, 1m y v (0, 2), calcula:
Autoevaluación Página Dados los vectores u c, m y v (0, ), calcula: a) u b) u+ v c) u : ( v) u c, m v (0, ) a) u c m + ( ) b) u+ v c, m + (0, ) (, ) + (0, 6) (, ) c) u :( v) () (u v ) c 0 + ( ) ( ) m 8
UNIDAD 8 Geometría analítica
Pág. 1 de 5 I. Sabes hallar puntos medios de segmentos, puntos simétricos de otros y ver si varios puntos están alineados? 1 Los puntos A( 1, 3), B(2, 6), C (7, 2) y D( 5, 3) son vértices de un cuadrilátero.
Dibujo Técnico Curvas técnicas
22 CURVAS TÉCNICAS En la actualidad, una parte importante de los objetos que se fabrican están realizados bajo algún tipo de forma curva geométrica. Si prestamos atención a nuestro entorno, nos damos cuenta
CURSO DE INICIACIÓN A GEOGEBRA
1.- Triángulo equilátero. CURSO DE INICIACIÓN A GEOGEBRA i. En la vista gráfica, desactivar los ejes y activar la cuadrícula. ii. Seleccionar dos puntos A y B con la herramienta iii. Con la herramienta
Unidad 8 Lugares geométricos. Cónicas
Unidad 8 Lugares geométricos. Cónicas PÁGINA 75 SOLUCIONES. La elipse es una cónica obtenida al cortar una superficie cónica por un plano oblicuo al eje y que corte a todas las generatrices. La hipérbola
1.3 PROPORCIÓN Y RELACIONES GEOMÉTRICAS (transformaciones geométricas)
TEMA 1: Dibujo geométrico 1.3 PROPORCIÓN Y RELACIONES GEOMÉTRICAS (transformaciones geométricas) El tamaño es una cualidad de toda figura que percibimos comparándolo con el entorno donde se sitúa. La proporción
BLOQUE 1: Para entrar en calor.
BLOQUE 1: Para entrar en calor. Actividad 1: Teorema de Viviani. En un triángulo equilátero la suma de distancias, desde un punto interior, a los tres lados se mantiene constante. Qué mide esa constante
Geometría con GeoGebra
2 Actividad 1: Para empezar Puesta en marcha del programa Para arrancar el programa, haz doble clic sobre el icono que está en el Escritorio. (si no encuentras el icono en el Escritorio, accede desde Inicio/Todos
TEMA 9.- TRANSFORMACIONES EN EL PLANO.
GEOMETRÍ: 5.- TRNSFORMIONES EN EL PLNO TEM 9.- TRNSFORMIONES EN EL PLNO. Definición 9.1.- Llamaremos transformación geométrica en el plano a una operación u operaciones geométricas que permiten deducir
Transformaciones geométricas
UNIDD 5 Transformaciones geométricas ÍNDIE DE NTENIDS 1. NEPTS ÁSIS SRE TRNSFRMINES GEMÉTRIS...................... 102 2. MVIMIENTS......................................................................
1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a)
Ejercicios de cónicas 1º bachillerato C 1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) b) c) d) e) f) g) h) i) Soluciones: a) Circunferencia de centro ( y radio 3. Excentricidad
TRANSFORMACIONES EN EL PLANO
ACADEMIA SABATINA TRANSFORMACIONES EN EL PLANO Llamaremos transformación geométrica a una operación que permite producir una nueva figura (imagen) de la dada originalmente. Las podemos clasificar en directas,
DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA
SISTEMA COORDENADO CARTESIANO, DISTANCIA ENTRE DOS PUNTOS ANGULO ENTRE DOS RECTAS y AREA 1) Transportar a una gráfica los siguientes puntos: a) ( 5, 2 ) b) (0, 0 ) c) ( 1 + 3, 1-3 ) d) ( 0, 3 ) e) ( -
Construcción de formas poligonales. Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes).
UNIDAD 2 Construcción de formas poligonales Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes). E n esta Unidad se presentan construcciones de triángulos a partir de datos
Matemáticas 1º ESO GEOMETRÍA CON GEOGEBRA
Matemáticas 1º ESO GEOMETRÍA CON GEOGEBRA ACTIVIDAD A1. PRIMEROS PASOS CON GEOGEBRA Dibuja las siguientes figuras utilizando los iconos que te indico. Procura que te queden distribuidas por la pantalla
TEMA 5. CURVAS CÓNICAS.
5.1. GENERALIDADES. TEMA 5. CURVAS CÓNICAS. Se denominan secciones cónicas a aquellas superficies que son producidas por la intersección de un plano con una superficie cónica de revolución (una superficie
PROF: Jesús Macho Martínez
DIBUJO TÉCNICO ELEMENTAL PROF: Jesús Macho Martínez 1º.- Trazar la perpendicular a r por el punto P. 2º.- Trazar la bisectriz del ángulo que forman r y s. P * r r s 3º.- Trazar las tangentes interiores
Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2.
Wilson Herrera 1 Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2. 2. Hallar la ecuación de la recta que pasa por
C onstrucción de triángulos
C onstrucción de triángulos Figuras básicas y ángulos Nombre Escuela Edad Fecha Propósito: Distinguir triángulos con características diferentes. Escribe lo que entiendas por triángulo isósceles. Dibuja
1.3.-Trazados geométricos básicos.
1.3.-Trazados geométricos básicos. 1.3.1.-Notaciones Los elementos básicos del dibujo técnico son el punto, la recta y el plano. El punto no tiene dimensión, podemos considerarlo como una posición del
Transformaciones Isométricas
Transformaciones Isométricas I o Medio Profesor: Alberto Alvaradejo Ojeda Índice 1. Transformación Isométrica 3 1.1. Traslación..................................... 3 1.2. Ejercicios.....................................
La Geometría del triángulo TEMA 3
La Geometría del triángulo TEMA 3 Diana Barredo Blanco Profesora de Matemáticas I.E.S. Luis de Camoens (CEUTA) Los puntos notables de un triángulo son: Circuncentro Incentro Baricentro Ortocentro Circuncentro
b) Halle el punto de corte del plano π con la recta que pasa por P y P.
GEOMETRÍA 1- Considere los puntos A(1,2,3) y O(0,0,0). a) Dé la ecuación de un plano π 1 que pase por A y O, y sea perpendicular a π 2 : 3x-5y+2z=11. b) Encuentre la distancia del punto medio de A y O
Resumen de Transformaciones Isométricas. Traslaciones
Resumen de Transformaciones Isométricas Una transformación es un procedimiento geométrico o movimiento que produce cambios en una figura. La palabra isometría proviene del griego y significa igual medida
2.-GEOMETRÍA PLANA O EUCLIDIANA
2.-GEOMETRÍA PLANA O EUCLIDIANA 2.1.-Triángulos. Definición, clasificación y notación. Puntos notables, ortocentro, circuncentro, baricentro e incentro. Propiedades de las medianas. Los Triángulos son
Soluciones Nota nº 2. Problemas propuestos 1. El segmento AC es una diagonal del cuadrado ABCD. Reconstruir el cuadrado.
Soluciones Nota nº 2 Problemas propuestos 1. El segmento AC es una diagonal del cuadrado ABCD. Reconstruir el cuadrado. Si el segmento AC fuera una diagonal del rectángulo ABCD, que no es cuadrado, es
LA JUVENTUD A JESUCRISTO QUEREMOS DEVOLVER. Nombre estudiante: Fecha: Educador: SERGIO ANDRES RINCON M.
EVALUACIÓN ACADÉMICA GEOMETRIA TERCER PERIODO Gestión Académica Versión 2 / 24-10-2013 Nombre estudiante: Fecha: Educador: SERGIO ANDRES RINCON M. Grado: 7º Logro a valorar: - Predecir y comparar los resultados
