FUNCIÓN DE TRANSFERENCIA
|
|
|
- Lourdes Rivero Maidana
- hace 9 años
- Vistas:
Transcripción
1 FUNCIÓN DE TRANSFERENCIA 1. RESPUESTA IMPULSO La respuesta ipulso de un sistea lineal es la respuesta del sistea a una entrada ipulso unitario cuando las condiciones iniciales son cero. Para el caso de sisteas continuos la entrada corresponde a la función delta de Dirac. La respuesta ipulso del sistea se puede deterinar a partir de la ecuación que lo describe. Ejeplo 1 Encuentre la respuesta ipulso del sistea representado por la siguiente ecuación diferencial: Solución: y ( t) 4 y( t) 3 x( t) Haciendo x( t) ( t) se obtiene la respuesta y( t) h( t). Por lo tanto, h( t ) debe satisfacer la siguiente ecuación diferencial: h ( t) 4 h( t) 3 ( t) Aplicando la transforada de Laplace a abos iebros de la ecuación y recordando que las condiciones iniciales son cero, se obtiene: sh( s) 4 H( s) 3 Despejando H( s ), H( s)( s ) H( s) s Ahora, se aplica la transforada inversa de Laplace a H( s ) para hallar h( t ) o respuesta ipulso: t h( t) L e s Página 1 de 5
2 . FUNCIÓN DE TRANSFERENCIA En general, cualquier sistea lineal invariante en el tiepo (LTI) puede odelarse ediante una ecuación diferencial de la fora: n n1 1 d y d y dy d u d u du a a a y b b b b u n n 1 n 1 n 1 n dt dt dt dt dt dt donde (1) Esta ecuación diferencial relaciona la señal de salida y( t ) de un sistea con la señal de entrada u( t ) del iso, y perite conocer la respuesta de dicho sistea a una señal de entrada deterinada, ediante su resolución. A esta ecuación se le denoina ecuación diferencial característica del sistea. Sin ebargo, el trataiento analítico del sistea a través de la ecuación diferencial característica es, en general, coplejo. Es por ello que se introduce el concepto de función de transferencia. La función de transferencia de un sistea lineal invariante en el tiepo se obtiene realizando la transforada de Laplace de la ecuación diferencial característica del sistea, con condiciones iniciales nulas. Es decir, para obtener la función de transferencia del sistea lineal que está representado la ecuación (1), se aplica la transforada de Laplace en abos lados de la ecuación y se suponen condiciones iniciales cero. El resultado es: ( s a s a s a ) Y ( s) ( b s b s b s b ) U ( s) n n n1 n Entonces, la función de transferencia entre y( t ) y u( t ) está dada por: Y( s) b s b s b s b G( s) U( s) s a s a s a n n1 1 n1 n () Donde, U( s ) es la transforada de Laplace de la entrada del sistea y Y( s ) es la transforada de Laplace de la salida del iso. La función de transferencia contiene toda la inforación de la dináica del sistea. En concreto, la característica dináica del sistea depende fundaentalente de las raíces del polinoio del denoinador de la función de transferencia; estas raíces se denoinan polos de la función de transferencia. Página de 5
3 Para que un sistea sea físicaente realizable, el orden del denoinador debe ser ayor o igual (de hecho en la práctica siepre es ayor) que el orden del nuerador, de este odo se garantiza que el sistea es causal. Por últio, hay que resaltar que la función de transferencia no ofrece inforación sobre la estructura física del sistea, con lo cual diversos sisteas físicos pueden tener la isa función de transferencia, aplicándose, de este odo, el concepto de sistea análogo. Los sisteas análogos son útiles cuando alguno de los sisteas es coplejo, caro, frágil o de respuesta uy lenta (por ejeplo, en aplicaciones con prototipos electrónicos). Algunas de las propiedades de la función de transferencia se resuen a continuación: La función de transferencia está definida solaente para un sistea lineal invariante en el tiepo. No está definida para sisteas no lineales. La función de transferencia entre un par de variables de entrada y de salida es la relación entre la transforada de Laplace de la salida y la transforada de Laplace de la entrada. Todas las condiciones iniciales del sistea son cero. La función de transferencia de un sistea de tiepo continuo se expresa sólo coo una función de la variable copleja s. No es función del tiepo, o de cualquier otra variable que se utilice coo la variable independiente. Ejeplo Encuentre la función de transferencia del sistea que tiene coo odelo ateático la siguiente ecuación diferencial: Solución: y 6y 8y u 5u La función de transferencia se puede hallar aplicando la propiedad de la diferenciación real: ( ) (0) (0) 6 ( ) (0) 8 ( ) ( ) (0) 5 ( ) s Y s sy y sy s y Y s su s u U s Teniendo en cuenta que las condiciones iniciales son cero, se tiene s Y s sy s Y s su s U s ( ) 6 ( ) 8 ( ) ( ) 5 ( ) Página 3 de 5
4 Agrupando térinos y despejando se obtiene: Y( s) s 5 G( s) U s s s ( ) REFERENCIAS BIBLIOGRÁFICAS A continuación se presenta el listado de las referencias bibliográficas requeridas: Dorf, R & Bishop, R. (011). Matheatical odels of systes. En: Modern control systes. (1a. ed.). (pp ). Estados Unidos: Prentice Hall. Golnaraghi, F. & Kuo, B. (010). Matheatical foundation. En: Autoatic control systes (9a.ed.). (pp ). Estados Unidos: John Wiley & Sons. Ogata, K. (010). Modelado ateático de sisteas de control. En: Ingeniería de control oderna (5a. ed.). (pp. 13-6). Madrid, España: Pearson Education. Nise, N. (011). Modeling in the frequency doain. En: Control Systes Engineering (6a ed.). (pp ). Estados Unidos: John Wiley & Sons. A continuación se presenta el listado de las referencias bibliográficas copleentarias: Curso virtual de análisis de sisteas dináicos. Recuperado en Design and analyze control systes. Recuperado en La función de transferencia. Recuperado en La respuesta ipulso. Recuperado en Modelización de sisteas eléctricos función de transferencia 1. Recuperado en Modelización de sisteas eléctricos función de transferencia. Recuperado en Modelización de sisteas eléctricos función de transferencia 3. Recuperado en Modelización de sisteas eléctricos función de transferencia 4. Recuperado en Modelización de sisteas ecánicos función de transferencia 1. Recuperado en Modelización de sisteas ecánicos función de transferencia. Recuperado en Modelización de sisteas ecánicos función de transferencia 3. Recuperado en Modelización de sisteas ecánicos función de transferencia 4. Recuperado en Modelización de sisteas ecánicos rotación función de transferencia 1. Recuperado en Página 4 de 5
5 Modelización de sisteas ecánicos rotación función de transferencia. Recuperado en Probleas resueltos de sisteas autoáticos. Recuperado en Resolución de ecuaciones diferenciales con la transforada de Laplace. Recuperado en Teoría de control básica. Recuperado en Página 5 de 5
DIAGRAMAS DE BLOQUES. Figura 1 Elementos de un diagrama de bloques
DIAGRAMAS DE BOQUES 1. EEMENTOS DE UN DIAGRAMA DE BOQUES Un diagrama de bloques de un sistema es una representación gráfica de las funciones realizadas por cada componente y del flujo de las señales. os
EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES
EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES RESOLVER ECUACIONES LINEALES EN UNA VARIABLE RESOLVER ECUACIONES CUADRATICAS EN UNA VARIABLE RESOLVER PROBLEMAS
Modelado en el dominio de la frecuencia Utilizar la transformada Laplace para representar ecuaciones diferenciales lineales
2.3 OBJETIVOS Transformada Laplace (Repaso) Modelado en el dominio de la frecuencia Utilizar la transformada Laplace para representar ecuaciones diferenciales lineales CONTENIDOS Transformada de Laplace
Universidad Ricardo Palma
1. DATOS ADMINISTRATIVOS Universidad Ricardo Palma FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA ELECTRONICA DEPARTAMENTO ACADÉMICO DE INGENIERÍA SÍLABO 1.1 Nombre del curso : CONTROL
MODELADO DE SISTEMAS
MODELADO DE SISTEMAS OBJETIVOS Introducir el concepto de modelo matemático y función de transferencia. Partiendo de los sistemas físicos se desarrolla el modelo matemático en forma de función de transferencia
UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA
UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA Objetivos Geoetría analítica Introducción U 3.1. Definición de recta 91 Dos puntos sólo pueden ser unidos por una sola recta la relación ateática que satisface
Sistemas de control en lazo cerrado
CI_1 Facultad de Informática Control Industrial Sistemas de control en lazo cerrado Curso 2007-08 Conceptos básicos CI_2 Planta: cualquier objeto físico cuya respuesta se desea controlar Las plantas se
CIRCUITOS ELÉCTRICOS. Temas:
CIRCUITOS ELÉCTRICOS Temas: - Conceptos generales de circuitos eléctricos, ley de Ohm y de Kirchhoff. - Energía almacenada en bobinas y capacitores. - Teoremas de redes: Thevenin, Norton, superposición,
Unidad I Análisis de Sistemas Realimentados
Prof. Gerardo Torres - [email protected] - Cubículo 003 Departamento de Circuitos y Medidas de la Escuela de Ingeniería Eléctrica de la Universidad de Los Andes Unidad I Análisis de Sistemas Realimentados
TEMA I: Modelación Experimental de Procesos
TEMA I: Modelación Experiental de Procesos Métodos Clásicos para Modelación o Identificación de Procesos. Introducción La puesta en funcionaiento de un deterinado proceso que opera en lazo cerrado, requiere
Movimiento Armónico Forzado
Moviiento Arónico Forzado Estudieos ahora el oviiento de una asa soetida a una fuerza elástica, en presencia de fuerzas de arrastre y de una fuerza externa que actúa sobre la isa. Asuireos que la fora
PLANIFICACIÓN DE MATEMÁTICA PRIMERO MEDIO
Liceo Pedro de Valdivia La Calera PLANIFICACIÓN DE MATEMÁTICA PRIMERO MEDIO - 2015 Nobre del Profesor: Eduardo Hernán Guerra Cuevas Título: El Conjunto de los Núeros Racionales pedagógicas UNIDAD 1: Núeros
Control Analógico II M.I. Isidro Ignacio Lázaro Castillo
UNIDAD I Método del lugar de las raíces Control Analógico II M.I. Isidro Ignacio Lázaro Castillo Antecedentes históricos En 1948 Walter R. Evans introdujo este método que es gráfico y elegante para la
Asignatura: SISTEMAS LINEALES. Horas/Semana:4 Teoría + 0 Laboratorio. Objetivos
Asignatura: SISTEMAS LINEALES Curso académico: 2007/2008 Código: 590000804 Créditos: 6 Curso: 2 Horas/Semana:4 Teoría + 0 Laboratorio Departamento: ICS Objetivos 1() Para todas las titulaciones OBJETIVOS
Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR
Física General 1 Proyecto PE - Curso 008 Instituto de Física Facultad de Ingeniería UdelaR TITULO D I N Á I C A D E P A R T Í C U L A AUTORES Santiago Góez, Anthony éndez, Eduardo Lapaz INTRODUCCIÓN Analizaos
Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo.
Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo. Introducción. En este documento se describe como el proceso de convolución aparece en forma natural cuando se trata
Factor de forma para conducción bidimensional
Factor de fora para conducción bidiensional En la literatura es frecuente encontrar soluciones analíticas a soluciones de interés práctico en ingeniería. En particular, el factor de fora perite calcular
Análisis y Diseño de Circuitos Eléctricos Nombre en Inglés Analysis and Design of Electrical Circuits SCT
PROGRAMA DE CURSO Código Nombre EL 3001 Análisis y Diseño de Circuitos Eléctricos Nombre en Inglés Analysis and Design of Electrical Circuits SCT Unidades Horas de Horas Docencia Horas de Trabajo Docentes
REGA - Regulación Automática
Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2017 295 - EEBE - Escuela de Ingeniería de Barcelona Este 707 - ESAII - Departamento de Ingeniería de Sistemas, Automática e Informática
1. Señales y sistemas Sistemas lineales e invariantes en el tiempo (SLI) 13.5
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO ANÁLISIS DE SISTEMAS Y SEÑALES 1418 4 09 Asignatura Clave Semestre Créditos Ingeniería Eléctrica Ingeniería de Control
INGENIERÍA EN ENERGÍAS RENOVABLES EN COMPETENCIAS PROFESIONALES
INGENIERÍA EN ENERGÍAS RENOVABLES EN COMPETENCIAS PROFESIONALES ASIGNATURA DE DISEÑO DE SISTEMAS UNIDADES DE APRENDIZAJE 1. Competencias Desarrollar sistemas de Energía Renovable considerando las necesidades
MANUAL DE METODOLOGÍAS ANEXOS ANEXO II. MODELOS DE INTERPOLACIÓN Y EXTRAPOLACIÓN
MANUAL DE METODOLOGÍAS ANEOS ANEO II. MODELOS DE INTERPOLACIÓN ETRAPOLACIÓN ANEO II. MODELOS DE INTERPOLACIÓN ETRAPOLACIÓN FECHA: -AGO -7 II. INTERPOLACIÓN ETRAPOLACIÓN LINEAL En VALMER se aplican distintos
SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton
SOLUCIONARIO GUÍA ÉCNICO PROFESIONAL Dináica I: fuerza y leyes de Newton SGUICC016C3-A16V1 Solucionario guía Dináica I: fuerza y leyes de Newton Íte Alternativa Habilidad 1 C Reconociiento A Aplicación
Guía de verano Mecánica 3º Medios Introducción. Concepto de dirección
Guía de verano Mecánica 3º Medios 17 Introducción Esta guía servirá coo un repaso, de las ideas asociadas con una raa de las ateáticas u iportantes para el físico. El algebra vectorial es iportante porque
Contenidos Control y Automatización
Tema 2: Modelos Matemáticos Susana Borromeo Juan Antonio Hernández Tamames Curso 2014-2015 Contenidos 1. Conceptos básicos. 2. Modelado matemático de sistemas Físicos. Linealización. Función de Transferencia
ECUACIÓN DE BUCKLEY-LEVERETT
ECUACIÓN DE BUCKLEY-LEVERETT EFICIENCIA AL DEPLAZAMIENTO DEFINICIÓN e define la eficiencia al desplazaiento de petróleo por un agente desplazante, agua o gas, por voluen de petroleo desplazado E D voluen
Cimentación de Máquinas Vibrantes Ejemplos
Cientación de Máquinas Vibrantes Ejeplos Estos ejeplos son continuación de la guía de Guía de cientaciones para aquinas vibrantes que puede encontrar en la web de www.areadecalculo.co Ejeplo 1: coprobación
RECTAS PARALELAS Y PERPENDICULARES
RECTAS PARALELAS Y PERPENDICULARES Qué piensas cuando te dicen que dos líneas foran un ángulo recto? Qué terinología usarías para describir a estas líneas? Cóo describirías dos rectas paralelas? Después
Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) =
Transformada de Laplace - Conceptos Básicos Definición: Sea f (t) una función de t definida para t > 0. La Transformada de Laplace de f(t) se define como: L { f (t) } = F(s) = 0 e -st f(t)dt Algunas Propiedades
Dinámica lineal para el crecimiento de plantas y frutos con simetría definida
Dináica lineal para el creciiento de plantas frutos con sietría definida P. Capos-Meza,, G. Atondo-Rubio, C.M. Yee-Rendón Facultad de Ciencias Físico-Mateáticas, Universidad Autónoa de Sinaloa, Ciudad
TEORÍA TTC-002: RESOLUCIÓN DE LA ECUACIÓN DEL TELEGRAFISTA
TEORÍA TTC00: RESOLUCIÓN DE LA ECUACIÓN DEL TELEGRAFISTA En este docuento se resuele de fora ás rigurosa la llaada ecuación del telegrafista, en su expresión en tensión, que puede forularse, según ios,
ÁREA: BÁSICA CLAVE DE LA ASIGNATURA: LA 102
TEÁTIS ÁRE: ÁSI LVE DE L SIGNTUR: L OJETIVO(S) GENERL(ES) DE L SIGNTUR: l térino del curso el aluno analizará los principios de las ateáticas; aplicará los isos coo herraientas para operar en los coportaientos
Medición de señales moduladas con Analizador de Espectro.
Medición de señales oduladas con Analizador de spectro. 1- Fundaentos teóricos a. squea básico del A.. heterodino b. Controles iportantes Center Freq. / SPAN: stos controles periten ajustar la ventana
CINEMÁTICA Y DINÁMICA. PRACTICA DE LABORATORIO No. 6 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE
1. INTRODUCCIÓN CINEMÁTICA Y DINÁMICA PRACTICA DE LABORATORIO No. 6 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE La ley de Hooe describe fenóenos elásticos coo los que exhiben los resortes. Esta ley afira
Principio de Superposición
1 Sistemas en tiempo continuo discreto Un sistema en tiempo continuo discreto e puede ver como una transformación que se aplica a una señal de entrada en tiempo continuo discreto y produce una señal de
1.1. Planteo del Problema Ecuación Diofantina Algoritmo de Euclides Solución Matriz de Sylvester.
. Ubicación de Polos de Una Función de Transferencia. Ubicación de Polos de Una Función de Transferencia.. Planteo del Problea.. Ecuación Diofantina 7... Algorito de Euclides 7... Solución 9..3. Matriz
TRABAJO PRÁCTICO Nº 5 - RESOLUCIÓN ESTÁTICA DE VIGAS. Efectuar la resolución estática de las vigas de la de la planta tipo (s/pb y s/1º).
1/8 TRABAJO PRÁCTICO Nº 5 - RESOLUCIÓN ESTÁTICA DE VIGAS Efectuar la resolución estática de las vigas de la de la planta tipo (s/pb y s/1º). Coo ejeplo se realizará la resolución estática de vigas de la
Determinar el comportamiento transitorio y estacionario del sistema. Especificar e identificar las condiciones de operación
Análisis de estabilidad Determinar el comportamiento transitorio y estacionario del sistema Especificar e identificar las condiciones de operación El primer paso al analizar un sistema de control es establecer
CONTROL DIGITAL DE NIVEL PARA SISTEMA DE TANQUES INTERCONECTADOS MEDIANTE SERVO-VÁLVULA
Vol., No., Julio de. - 6 CONTROL DIGITAL DE NIVEL PARA SISTEMA DE TANQUES INTERCONECTADOS MEDIANTE SERVO-VÁLVULA (Digital control for interconnected tank syste by otor-valve autoatic control) John Freddy
Solemne 1 - Ecuaciones Diferenciales. Para cada uno de los siguientes problemas, resuelva ordenadamente y justifique sus respuestas.
Universidad Diego Portales Facultad de Ingeniería Instituto de Ciencias Básicas Carrera: Ingeniería Civil Prier seestre de 013. Solene 1 - Ecuaciones Diferenciales Para cada uno de los siguientes probleas,
Procesamiento Digital de Señales Octubre 2012
Proceaiento Digital de Señale Octubre 0 Método de ntitranforación PROCESMIENTO DIGITL DE SEÑLES Tranforada Z - (Parte II) Hay tre étodo de antitranforación, o Tranforación Z Invera para obtener la función
PRÁCTICA N 1 INTRODUCCIÒN A MATLAB Y UTILIZACIÓN DE LAS MATEMÁTICAS COMO HERRAMIENTAS PRIMORDIAL EN EL ANÁLISIS DE SISTEMAS DE CONTROL
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DPTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN LABORATORIO DE DINÁMICA Y CONTROL DE PROCESOS
TOTAL DE HORAS: SERIACIÓN INDICATIVA ANTECEDENTE: Análisis de Señales y Sistemas SERIACIÓN OBLIGATORIA SUBSECUENTE: Sistemas de Datos Muestreados
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Ingeniería de Control
Ecuación característica (raíces reales y distintas, raíces reales e iguales, raíces complejas conjugadas)
.6.. Ecuación característica (raíces reales distintas, raíces reales iguales, raíces coplejas conjugadas).6.. Ecuación característica (raíces reales y distintas, raíces reales e iguales, raíces coplejas
Control. Carrera: MTC Participantes Representante de las academias de ingeniería Mecatrónica de los Institutos Tecnológicos.
.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Control Ingeniería Mecatrónica MTC-0 --0.- HISTORIA DEL PROGRAMA Lugar y fecha de
Transformaciones lineales Valores y vectores característicos Ecuaciones diferenciales y transformada de Laplace Leyes físicas
NOMBRE DE LA ASIGNATURA: Dinámica de Sistemas CREDITOS: 4-2-10 APORTACIÓN AL PERFIL Proporcionar conceptos, teorías y herramientas que le permitan integrar diversas disciplinas de la ingeniería tales como:
2.16. FÍSICA RELATIVISTA
2.16. FÍSICA RELATIVISTA Las ecuaciones del electroagnetiso exhiben características novedosas respecto a la física newtoniana. La fuerza de Lorentz, debido al terino q v B depende del sistea inercial desde
Movimiento Amortiguado y Forzado
Moviiento Aortiguado y Forzado Problea 1. Una asa al extreo de un uelle oscila con una aplitud de 5 c y una frecuencia de 1 Hz (ciclos por segundo). Para t = 0, la asa esta en la posición de equilibrio
ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS
ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS JUAN ALFONSO OAXACA LUNA, MARÍA DEL CARMEN VALDERRAMA BRAVO Introducción Uno de los conceptos centrales en el
Física II: Termodinámica, ondas y fluidos
Física II: Terodináica, ondas y fluidos Índice 5 - MOVIMIENTO PERIÓDICO... 5.1 OSCILACIÓN: DESCRIPCIÓN Y DEFINICIÓN... 5. MOVIMIENTO ARMÓNICO SIMPLE (MAS)... 4 Ej. 5.1 Resorte sin fricción... 6 5.3 DESPLAZAMIENTO,
DISEÑO DE UN SISTEMA DE CONTROL Y OBSERVADOR DE ESTADO PARA UNA MANO ARTICULADA
Scientia et Technica Año XII, No 3, Diciebre de 6. UTP. ISSN -7 9 DISEÑO DE UN SISTEMA DE CONTROL Y OBSERVADOR DE ESTADO PARA UNA MANO ARTICULADA RESUMEN En este docuento se realiza el diseño de un algorito
CAPITULO 7 MODELO CON TIEMPOS DE FALLA CON DISTRIBUCION DE PROBABILIDAD GENERAL Y FRECUENCIA DE MUESTREO VARIABLE.
CAPITULO 7 MODELO CON TIEMPOS DE FALLA CON DISTRIBUCION DE PROBABILIDAD GENERAL Y FRECUENCIA DE MUESTREO VARIABLE. En este capítulo se presenta el odelo propuesto por Rahi & Banerjee [3], su solución con
GESTION FINANCIERA. TEMA 4º. El INTERES COMPUESTO. 1.- Capitalización compuesta.
GESTION FINANCIERA. TEMA 4º. El INTERES COMPUESTO. 1.- Capitalización copuesta. Concepto de capitalización copuesta. Térinos a utilizar en la capitalización copuesta. Cálculo del capital final o ontante.
Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE
Ejeplo : Deterina la ecuación de la circunferencia con centro en (,) y que pasa por el punto (,5) Respuesta: ( x + ) + ( y ) 0 Ejeplo : Deterina centro, radio y grafica de x 6x + y + y (x- )² + (y + /)²
Movimiento oscilatorio Movimiento armónico simple (MAS) Dinámica
Moviiento oscilatorio Dináica IES a Magdalena. Avilés. Asturias a aceleración de un punto que oscila con MAS puede epresarse coo: a A sen ( t) En función del tiepo. a En función de la distancia al origen.
Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR
Física General Proyecto PMME - Curso 7 Facultad de Ineniería UdelaR Maquina de Atwood doble Mathías Möller José Oscar Silva Francisco Paroli INRODUCCION: Este trabajo trata de aplicar las leyes de Newton
Propiedades de los Sistemas Lineales e Invariantes en el Tiempo
Propiedades de los Sistemas Lineales e Invariantes en el Tiempo La respuesta al impulso de un sistema LTIC (h(t)), representa una descripción completa de las características del sistema. Es decir la caracterización
1. Calificación máxima: 2 puntos Calcular los siguientes límites (donde Ln significa Logaritmo Neperiano).
JUNIO INSTRUCCIONES: El eaen presenta dos opciones B; el aluno deberá elegir una de ellas contestar raonadaente a los cuatro ejercicios de que consta dicha opción en h. in. OPCIÓN. Calificación áia: puntos
( ) ( )( ) ( )( ) ( ) ( )
de Laplace. (secc..) 5 Apéndice DI_UIV Más ejercicios de Solución de una ecuación diferencial lineal con condiciones iniciales por medio de la trasformada de Laplace (Secc..).[] Ejemplo DI. Teniendo encontrar
Laboratorio De Química TRABAJO PRÁCTICO N 1 DENSIDAD. Similarmente, el peso especifico se define como el peso por unidad de volumen. P V. m V.
TRABAJO PRÁCTICO N 1 DENSIDAD La densidad, δ, de un cuerpo se define coo la asa por unidad de voluen. δ = Siilarente, el peso especifico se define coo el peso por unidad de voluen. P ρ = = δ g Para un
Una Forma Distinta para Hallar la Distancia de un Punto a una Recta
Una Fora Distinta para Hallar la Distancia de un Punto a una Recta Lic. Enrique Vílchez Quesada Universidad Nacional Escuela de Mateática Abstract La siguiente propuesta nace de la iniciativa de copartir
17 Efectúa las siguientes transformaciones e indica qué rapidez, de las tres primeras,
Pág. 7 Efectúa las siguientes transforaciones e indica qué rapidez, de las tres prieras, es ayor: a) 2 /s a k/h b) 54 k/h a /s c) 30 da/in a /s d) 28 r.p.. a rad/s a) 2 2 k 3 600 s 2 3 600 k 43,2 s s 0
Tema 1: Combinatoria
Tea : Cobinatoria C. Ortiz, A. Méndez, E. Martín y J. Sendra Febrero de Índice Guía del tea. Introducción. Principios básicos del conteo 3. Variaciones 4. Perutaciones 4 5. Perutaciones circulares. 5 6.
Experiencia docente en la impartición de un curso de modelado y control de sistemas continuos usando herramientas interactivas
Grado en Ingeniería Electrónica Industrial Experiencia docente en la impartición de un curso de modelado y control de sistemas continuos usando herramientas interactivas 2 1. Asignatura Modelado y control
156 Ecuaciones diferenciales
156 Ecuaciones diferenciales 3.6 Mecánica El paracaidiso es uno de los deportes extreos que día a día cuenta con ayor núero de adeptos. Los que practican este deporte se tiran desde un avión en oviiento
Distancia entre dos puntos
GAE-05_MAAL3_Distancia entre dos puntos Distancia entre dos puntos Por: Sandra Elvia Pérez Para deterinar una expresión que te ayude a calcular la distancia entre dos puntos cualesquiera, toa los siguientes
2. Estabilidad en Sistemas Lineales Invariantes en el Tiempo.
Capítulo 3 2. Estabilidad en Sistemas Lineales Invariantes en el Tiempo. 3.1 Introducción Un sistema estable se define como aquel que tiene una respuesta limitada. Es decir, un sistema es estable si estando
PROBLEMAS DE VIBRACIONES CURSO 2012/2013
PROBLEMAS DE VIBRACIONES CURSO 2012/2013 Problea 1.-En el sistea ecánico representado en la figura adjunta, se considera la barra de longitud L rígida, y se desprecian las asas de la barra y de los resortes
3 TRABAJO Y ENERGIA. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física
3 TRJ Y ENERGI ERNRD RENS GVIRI Universidad de ntioquia Instituto de ísica 2011 Índice general 3. Trabajo y energía 5 3.1. Introducción.......................................... 1 3.2. Ipulso (I)...........................................
2 Métodos de solución de ED de primer orden
CAPÍTULO Métodos de solución de ED de primer orden.4 Ecuaciones diferenciales de Bernoulli Una ecuación diferencial ordinaria de primer orden de la forma a 0.x/y 0 C a.x/y D f.x/y r ; con r 0; : se denomina
FORMATO MICROCURRÍCULO
Proceso: Docencia FORMATO MICROCURRÍCULO Fecha de versión: 01-Dic-2010 Código: FR-DO-025 Versión: 03 Fecha de emisión: 28-Nov-2012 Sección 1. IDENTIFICACIÓN DE LA ASIGNATURA Facultad INGENIERIA Programa
Tema 6. Análisis de Circuitos en Régimen Sinusoidal Permanente
Tea 6. Análisis de Circuitos en Régien Sinusoidal Peranente 6. ntroducción 6. Fuentes sinusoidales 6.3 Respuesta sinusoidal en estado estable 6.4 Fasores 6.5 Relaciones fasoriales para R, L y C 6.6 pedancia
2. Amplía: factoriales y números combinatorios
UNIDAD Cobinatoria 2. Aplía: factoriales y núeros cobinatorios Pág. 1 de FACTORIALES El núero de perutaciones de n eleentos es: P n n n 1) n 2) 2 1 A este producto de n factores decrecientes a partir de
3 TRABAJO Y ENERGIA. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física
3 TRJ Y ENERGI ERNRD RENS GVIRI Universidad de ntioquia Instituto de ísica 2010 Índice general 3. Trabajo y energía 1 3.1. Introducción.......................................... 1 3.2. Ipulso (I)...........................................
Técnicas Avanzadas de Control Memoria de ejercicios
Memoria de ejercicios Curso: 2007/08 Titulación: Ingeniero Técnico Industrial Especialidad: Electrónica Industrial Alumno: Adolfo Hilario Tutor: Adolfo Hilario Caballero Índice general Presentación. 2..
LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS
UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERIA INGENIERÍA ELECTRÓNICA 1 SISTEMAS DINAMICOS 1160601 LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS INSTRUCCIONES
Fuerzas de fricción (o de rozamiento)
Fuerzas de fricción (o de rozaiento) Si un cuerpo se ueve sobre una superficie áspera o rugosa, encontrará adeás de la resistencia del aire, otra fuerza de resistencia debida a la rugosidad de la superficie.
CANARIAS / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO
De las dos opciones propuestas, sólo hay que desarrollar una opción copleta. Cada problea correcto vale por tres puntos. Cada cuestión correcta vale por un punto. Probleas OPCIÓN A.- Un cuerpo A de asa
La Restricción Presupuestaria
MICROECONOMÍA I LM5 Universidad de Granada En la clase anterior... La Restricción Presupuestaria 3. Conjunto y Recta Presupuestaria 3. Variaciones de la recta presupuestaria A. Variación de la renta B.
Contenido. 5. Transformada de Laplace. Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/19 19
Contenido 5. Transformada de Laplace 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/19 19 Contenido: Tema 5 5. Transformada de Laplace 5.1 Definiciones: transformada
x = 0 pues x = ± 1
1 Muchos probleas quedan sin resolver en el conjunto de los núeros reales. En particular, la radicación de índice par de núeros negativos. El ejeplo ás sencillo es que no existe ningún núero real x, tal
donde,, es controlable si y solo si la matriz de controlabilidad tiene rango,
TEORÍA DE CONTROL Tema 8. Controlabilidad y Observabilidad La controlabilidad y la observabilidad son dos conceptos desarrollados para la representación de sistemas en espacio de estado, estos permiten
