Test de primalidad probabiĺıstico

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Test de primalidad probabiĺıstico"

Transcripción

1 Test de primalidad probabiĺıstico Taller de Álgebra I Segundo cuatrimestre de 2013

2 Pequeño Teorema de Fermat Teorema (Pierre de Fermat, 1640) Sea p N primo, y a Z, tal que p a. Entonces a p 1 1 (mod p). Teorema (Converso del teorema anterior) Sea p N, a Z, tal que p a, y a p 1 1 (mod p). Entonces p no es primo.

3 Teorema inverso Idea Entonces, si tengo un p N, y quiero ver si es primo, puedo elegir un a Z, 0 < a < p. Si a p 1 1 (mod p), entonces p no es primo. Si vale la congruencia... vale que p es primo? No Por ejemplo, si tengo p = 9, y a = 8, vemos que a p 1 = 8 8 ( 1) 8 1 (mod 9). Sin embargo, p no es primo.

4 Definiciones Definición (Testigo) Dado p N, a Z, 0 < a < p, se dice que a es un testigo de Fermat de p cuando a p 1 1 (mod p). Definición (Pseudoprimo de Fermat) Dado p N, a Z, 0 < a < p, se dice que p es un pseudoprimo de Fermat en base a cuando p no es primo, pero a p 1 1 (mod p).

5 Idea del test de primalidad Idea De todas maneras, puedo usar al inverso del teorema como un test probabiĺıstico: Si a p 1 1 (mod p), a es un testigo de Fermat para p, entonces definitivamente p no es primo. Si a p 1 1 (mod p), puede que p sea primo o no (p podría ser un pseudoprimo de Fermat en base a). Puedo repetir el test con otro a, tantas veces como quiera, para estar más y más seguro de que p es primo.

6 Test de primalidad de Fermat Test de primalidad de Fermat Entrada: p N, p 2. Salida: Bool, indicando si p es probablemente primo. 1. Elijo un a Z, 0 < a < p Si a p 1 1 (mod p), entonces p no es primo. Devuelvo False Si a p 1 1 (mod p), puede ser que p sea primo Si quiero estar más seguro de que p es primo, ir al paso Si no, devuelvo True.

7 En la compu... A nuestro algoritmo le vamos a pasar un p :: Integer, y una lista as :: [Integer], 0 < a < p a as. Si para todo a en as, a p 1 1 (mod p), vamos a decir que p es probablemente primo. Si de lo contrario, para algún a en as, a p 1 1 (mod p), vamos a decir que p es definivamente no primo. Test de Primalidad de Fermat (casi) fermat :: Integer - > [ Integer ] - > Bool fermat p [] = True fermat p ( a: as) = a ^( p -1) `mod ` p == 1 && fermat p as

8 Exponenciación Pequeño problema... si usamos esto para p muy grande, se va a romper, porque está computando a p 1. Por ejemplo, si nos dan p = , y a = 5, el resultado tendría casi un millón de dígitos. Computar esto es... poco feliz. Idea Vamos a usar el truco que vimos hace algunas clases. Recordemos: 1 si n = 0 ( ) a n = a n 2 2 si n es par ( ) a n 2 2 a si n es impar Podemos hacer todas estas operaciones (mod p), y de esa forma mantener los números que manejamos pequeños!

9 En la compu... Semántica expmod a b c = x exactamente cuando x a b (mod c), y 0 x < c. Exponenciación modular expmod :: Integer - > Integer - > Integer - > Integer expmod a 0 c = 1 expmod a b c b `mod ` 2 == 0 = x ^2 `mod ` c otherwise = x ^2 * a `mod ` c where x = expmod a ( b `div ` 2) c

10 En la compu... Ahora estamos listos para ver la implementación final del test. Primero, su semántica: Semántica fermat p as == True exactamente cuando ningún a en as es un testigo de Fermat para p. Test de Primalidad de Fermat fermat :: Integer - > [ Integer ] - > Bool fermat p [] = True fermat p ( a: as) = expmod a ( p -1) p == 1 && fermat p as

11 Ejercicios 1. Verificar con el algoritmo que vimos, que es un pseudoprimo de Fermat en las bases 2, 3, 5, 7, y 11, pero no en base Hacer una función que, dado un número natural compuesto n, n 2, devuelva los testigos de Fermat de n. 3. Hacer una función que, dado un número natural compuesto n, n 2, cuente cuantos testigos de Fermat de n existen. 4. Los números de Carmichael son números naturales n, tal que n es un pseudoprimo de Fermat en base a, para todo a Z, 0 < a < n, coprimo con n. Por ejemplo, 561 es un número de Carmichael. Hacer una función que, dado un número natural n, n 2, devuelva True si n es un número de Carmichael, y False de lo contrario. 5. Dados a, c, x 0 N, 0 < a, c, x 0 < p, la sucesión x n+1 = a x n + c (mod p) produce números pseudo-aleatorios 1. Hacer una función que, dado un p N, n 2 y un k N, elija unos a, c, x 0 que ustedes quieran, y devuelva la lista [x 0, x 1,..., x k 1 ]. 6. Usando la función de ejercicio anterior (llamémosla testigos), hacer una función que dado un número n N, n 2, y un k N, corra el test de primalidad de Fermat sobre n, usando a testigos n k como posibles testigos de Fermat para n. 1 Dependiendo de la elección de a, c, y x 0 se parecerán más o menos a números uniformes en [0... p 1]

Euclides extendido y Test de primalidad probabiĺıstico

Euclides extendido y Test de primalidad probabiĺıstico Euclides extendido y Test de primalidad probabiĺıstico Taller de Álgebra I Verano de 2014 Lema de Bézout Recordemos este lema: Lema (Étienne Bézout) Sean a, b Z, alguno distinto de 0. Entonces existen

Más detalles

Euclides Extendido y Teorema Chino del Resto

Euclides Extendido y Teorema Chino del Resto Euclides Extendido y Teorema Chino del Resto Taller de Álgebra I Segundo cuatrimestre de 2013 Lema de Bézout Recordemos este lema: Lema (Étienne Bézout) Sean a, b Z, alguno distinto de 0. Entonces existen

Más detalles

Manos a la obra: Recursión, división y listas

Manos a la obra: Recursión, división y listas Manos a la obra: Recursión, división y listas Taller de Álgebra I Cuatrimestre de verano de 2015 Calentando motores La clase pasada vimos ejemplos de definiciones recursivas. Hoy vamos a continuar con

Más detalles

Divisibilidad y congruencia

Divisibilidad y congruencia Divisibilidad y congruencia Taller de Álgebra I Verano 2017 Algoritmo de la división Teorema Dados a, d Z, d 0, existen únicos q, r Z tales que a = qd + r, 0 r < d. Idea de la demostración: (caso a 0,

Más detalles

Listas y Recursión. Taller de Álgebra I. Primer Cuatrimestre de 2015

Listas y Recursión. Taller de Álgebra I. Primer Cuatrimestre de 2015 Listas y Recursión Taller de Álgebra I Primer Cuatrimestre de 2015 Un nuevo tipo: Listas Tipo Lista Las listas pueden contener elementos de cualquier tipo (incluso listas) [1] :: [Integer] [1, 2] :: [Integer]

Más detalles

Números primos y criterios de divisibilidad

Números primos y criterios de divisibilidad Números primos y criterios de divisibilidad Taller de Álgebra I 1er cuatrimestre de 2014 Verificando si un número es primo Ejercicio: ( para hacer ahora!) Escribir una función que determine si un número

Más detalles

Clase 1: Primalidad. Matemática Discreta - CC3101 Profesor: Pablo Barceló. P. Barceló Matemática Discreta - Cap. 5: Teoría de números 1 / 32

Clase 1: Primalidad. Matemática Discreta - CC3101 Profesor: Pablo Barceló. P. Barceló Matemática Discreta - Cap. 5: Teoría de números 1 / 32 Capítulo 5: Teoría de Números Clase 1: Primalidad Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 5: Teoría de números 1 / 32 Teoría de números En esta parte

Más detalles

Mecanismo de Reducción

Mecanismo de Reducción Mecanismo de Reducción Taller de Álgebra I 1er Cuatrimestre 2017 Repaso: Qué vimos hasta ahora? Programar para qué? Implementar algoritmos que solucionen problemas. Pensamiento algorítmico Ver los problemas

Más detalles

Un tercer ejemplo: verificación de primalidad

Un tercer ejemplo: verificación de primalidad Un tercer ejemplo: verificación de primalidad Vamos a ver un algoritmo aleatorizado para verificar si un número es primo. I Este algoritmo es más eficiente que los algoritmos sin componentes aleatorias

Más detalles

Números primos en Haskell

Números primos en Haskell Números primos en Haskell Taller de Álgebra I Segundo cuatrimestre de 2014 Logo data Direccion = Norte Sur Este Oeste deriving Show type Tortuga = ( Pos, Direccion ) type Pos = (Int, Int ) Ejercicios 1

Más detalles

Algoritmo de Euclides y ecuaciones de congruencia

Algoritmo de Euclides y ecuaciones de congruencia Algoritmo de Euclides y ecuaciones de congruencia Taller de Álgebra I Primer cuatrimestre de 2017 Algoritmo de Euclides El algoritmo de Euclides calcula el máximo común divisor entre dos números a, b Z.

Más detalles

Sistemas basados en la Teoría de Números

Sistemas basados en la Teoría de Números Criptografía de clave pública Sistemas basados en la Teoría de Números Departamento de Sistemas Informáticos y Computación DSIC - UPV http://www.dsic.upv.es p.1/20 Criptografía de clave pública Sistemas

Más detalles

Aritmética en Haskell

Aritmética en Haskell Aritmética en Haskell Taller de Álgebra I Primer cuatrimestre de 2014 Algoritmo de división Para obtener el cociente y resto entre dos números enteros, tenemos las funciones div y mod, respectivamente.

Más detalles

Entregable 4.- RESUELTO. Semana del 5 de octubre al 11 de octubre

Entregable 4.- RESUELTO. Semana del 5 de octubre al 11 de octubre Entregable 4.- RESUELTO Semana del 5 de octubre al 11 de octubre 1. Resuelve los siguientes sistemas de ecuaciones 1. 2x = 5 en Z 7 3x = 1 en Z 5 x = 3 en Z 8 2. 2x = 1 en Z 6 x = 4 en Z 11 3x = 2 en Z

Más detalles

FÓRMULA PARA OBTENER NÚMEROS DE CARMICHAEL CON n FACTORES PRIMOS, DONDE n 3.

FÓRMULA PARA OBTENER NÚMEROS DE CARMICHAEL CON n FACTORES PRIMOS, DONDE n 3. FÓRMULA PARA OBTENER NÚMEROS DE CARMICHAEL CON n FACTORES PRIMOS, DONDE n 3 Un entero positivo es un número de Carmichael si ocurre que es un número compuesto libre de cuadrados y cumple la congruencia

Más detalles

Álgebra I Práctica 4 - Números enteros (Parte 2)

Álgebra I Práctica 4 - Números enteros (Parte 2) Congruencia y Tablas de Restos Álgebra I Práctica 4 - Números enteros (Parte 2) 1. Sea a un entero impar que no es divisible por 5. i) Probar que a 4 1 (10). ii) Probar que a y a 45321 tienen el mismo

Más detalles

Generación de números aleatorios con distribución uniforme

Generación de números aleatorios con distribución uniforme Generadores de Números Aleatorios 1 Existen en la actualidad innumerables métodos para generar números aleatorios En la literatura disponible se pueden encontrar gran cantidad de algoritmos. Generación

Más detalles

. 1 TEORIA DE NUMEROS. Tema: ARITMETICA MODULAR. (Apuntes de apoyo a clases teóricas) Tiempo de exposición: 2hs

. 1 TEORIA DE NUMEROS. Tema: ARITMETICA MODULAR. (Apuntes de apoyo a clases teóricas) Tiempo de exposición: 2hs . 1 TEORIA DE NUMEROS Tema: ARITMETICA MODULAR (Apuntes de apoyo a clases teóricas) Tiempo de exposición: 2hs Bibliografía: 2 1. T. Hibbard. Apuntes de Cátedra. Año 2000. 2. J. Yazlle. Apuntes de Cátedra:

Más detalles

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada Álgebra Lineal y Estructuras Matemáticas J. C. Rosales y P. A. García Sánchez Departamento de Álgebra, Universidad de Granada Capítulo 2 Aritmética entera y modular 1. Los números enteros Dado un entero

Más detalles

(1)Factores, Múltiplos y Divisores. (2) Números compuestos y primos

(1)Factores, Múltiplos y Divisores. (2) Números compuestos y primos 4.1-4.2 (1)Factores, Múltiplos y Divisores (2) Números compuestos y primos Factorización Cuando escribimos 12 = 6 x 2 decimos que 6 x 2 corresponde a una factorización de 12. Existen otras factorizaciones

Más detalles

Criptografía Susana Puddu

Criptografía Susana Puddu Susana Puddu Supongamos que Juan quiere enviar un mensaje a Pedro de forma tal que únicamente Pedro sea capaz de entender su contenido. Una manera ingenua de hacer esto es reemplazar cada letra, signo

Más detalles

Tipos de datos algebraicos

Tipos de datos algebraicos Tipos de datos algebraicos Taller de Álgebra I Segundo cuatrimestre de 2013 Programación funcional Recordemos que un tipo de datos es un conjunto dotado con una serie de operaciones sobre los elementos

Más detalles

Introducción a la Teoría de Números

Introducción a la Teoría de Números Introducción a la Teoría de Números La Teoría de Números es un área de las matemáticas que se encarga de los números primos, factorizaciones, de qué números son múltiplos de otros, etc. Aunque se inventó

Más detalles

Teoria de Números. 1. Introducción. Residuos. Olimpiada de Matemáticas en Tamaulipas

Teoria de Números. 1. Introducción. Residuos. Olimpiada de Matemáticas en Tamaulipas Teoria de Números Residuos Olimpiada de Matemáticas en Tamaulipas 1. Introducción Hasta ahora, al trabajar con números enteros siempre nos hemos estado preguntando divide el número a al número b? Al mantenernos

Más detalles

Ejercicios del tema 7

Ejercicios del tema 7 U N I V E R S I D A D D E M U R C I A Ejercicios del tema 7 DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2013/2014. Ejercicios de aritmética y congruencias 1. Un amigo le pregunta a otro: Cuántos hijos

Más detalles

Tema 6: Funciones recursivas

Tema 6: Funciones recursivas Tema 6: Funciones recursivas Programación declarativa (2009 10) José A. Alonso Jiménez Grupo de Lógica Computacional Departamento de Ciencias de la Computación e I.A. Universidad de Sevilla Tema 6: Funciones

Más detalles

ALGORITMOS PARA PRUEBAS DE PRIMALIDAD. Resumen. En este artículo se discuten algoritmos determinísticos y probabilísticos para

ALGORITMOS PARA PRUEBAS DE PRIMALIDAD. Resumen. En este artículo se discuten algoritmos determinísticos y probabilísticos para ALGORITMOS PARA PRUEBAS DE PRIMALIDAD RAÚL MARTINES ZOCON 1, LOLO ORTIZ CESPEDES, JORGE HORNA MERCEDES Y AZUCENA ZAVALETA QUIPUSCOA. Resumen. En este artículo se discuten algoritmos determinísticos y probabilísticos

Más detalles

Enunciados de los problemas (1)

Enunciados de los problemas (1) Enunciados de los problemas (1) Problema 1. El peso de tres manzanas y dos naranjas es de 255 gramos. El peso de dos manzanas y tres naranjas es de 285 gramos. Si todas las manzanas son del mismo peso

Más detalles

Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh

Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh Funciones Lógicas 2009-20102010 Sistemas de Numeración 1 Suma Algebra de Boole: Desarrollada en 1947 por George Boole y se usa para resolver problemas lógico-resolutivos. Son las matemáticas de los sistemas

Más detalles

Guía 4: Demostraciones en Cálculo Proposicional

Guía 4: Demostraciones en Cálculo Proposicional Introducción a los Algoritmos - 2do. cuatrimestre 2014 Guía 4: Demostraciones en Cálculo Proposicional Docentes: Walter Alini y Luciana Benotti. El objetivo principal de esta guía es lograr un buen entrenamiento

Más detalles

Seguridad Informática

Seguridad Informática Seguridad Informática Fundamentos Matemáticos de la Criptografía Ramón Hermoso y Matteo Vasirani Universidad Rey Juan Carlos Índice 1 Divisibilidad 2 Artimética modular 3 Grupos 4 El problema del logaritmo

Más detalles

Lógica Digital - Circuitos Combinatorios

Lógica Digital - Circuitos Combinatorios Lógica Digital - Circuitos Combinatorios Expositor: Esteban Pontnau Primer Cuatrimestre de 2012 Departamento de Computación, FCEyN,Universidad de Buenos Aires. 3 de abril de 2012 Objetivos de la clase

Más detalles

Números primos con DERIVE

Números primos con DERIVE Capítulo 1 Números primos con DERIVE 1.1. Descomposición de enteros como productos de primos Como sabemos, los enteros distintos de cero, se dividen en tres clases: 1. 1, 1: unidades 2. ±2, ±3, ±5, ±7,

Más detalles

Circuitos Combinatorios

Circuitos Combinatorios Circuitos Combinatorios Expositor: Esteban Pontnau Autor: Luis Agustín Nieto Primer Cuatrimestre de 2011 Departamento de Computación, FCEyN,Universidad de Buenos Aires. 5 de abril de 2011 Objetivos de

Más detalles

TEORIA DE NUMEROS DIVISIBILIDAD Y NUMEROS PRIMOS. PRUEBAS DE PRIMALIDAD. LA CRIBA DE ERATOSTENES. ALGORITMOS. TEOREMA: EXISTENCIA DE INFINITOS PRIMOS.

TEORIA DE NUMEROS DIVISIBILIDAD Y NUMEROS PRIMOS. PRUEBAS DE PRIMALIDAD. LA CRIBA DE ERATOSTENES. ALGORITMOS. TEOREMA: EXISTENCIA DE INFINITOS PRIMOS. . 1 TEORIA DE NUMEROS Temas: DIVISIBILIDAD Y NUMEROS PRIMOS. PRUEBAS DE PRIMALIDAD. LA CRIBA DE ERATOSTENES. ALGORITMOS. TEOREMA: EXISTENCIA DE INFINITOS PRIMOS. (Apuntes de apoyo a clases teóricas) (Tiempo

Más detalles

Tema 2. Tipos predefinidos

Tema 2. Tipos predefinidos Programación Declarativa Haskell Informática Sistemas Curso 2003-2004 Pepe Gallardo Universidad de Málaga Tema 2. Tipos predefinidos 2.1 Tipos simples predefinidos El tipo Bool El tipo Int El tipo Integer

Más detalles

2. Determine los números enteros n que satisfacen la relación planteada:

2. Determine los números enteros n que satisfacen la relación planteada: ÍÒ Ú Ö Æ ÓÒ Ð Ä Å Ø ÒÞ Ä Ò ØÙÖ Ò Å Ø Ñ Ø ÔÐ Ì ÓÖ Æ Ñ ÖÓ ÈÖÓ ÓÖ ÊÓ ÖØÓ ÇÚ Ó Å ÖØ Ò Ê ÑÓ 1 1. Divisibilidad. 1. a) ( ) El producto de dos números naturales m y n aumenta en 132 si cada uno de ellos aumenta

Más detalles

Primalidad, Factorización y más

Primalidad, Factorización y más Primalidad, Factorización y más Pablo Blanc (con diapos robadas a Agustín Santiago Gutiérrez) Buen Kilo de Pan Flauta Training Camp 2017 Pablo Blanc (BKPF) Primalidad, Factorización y más TC 2017 1 / 67

Más detalles

COMPLEMENTO DEL TEÓRICO

COMPLEMENTO DEL TEÓRICO ÁLGEBRA I PRIMER CUATRIMESTRE - AÑO 2016 COMPLEMENTO DEL TEÓRICO El material de estas notas fue dictado en las clases teóricas pero no se encuentra en el texto que seguimos en las mismas ( Álgebra I -

Más detalles

ALGORITMOS PROBABILISTAS NUMÉRICOS SHERWOOD LAS VEGAS MONTE CARLO

ALGORITMOS PROBABILISTAS NUMÉRICOS SHERWOOD LAS VEGAS MONTE CARLO ALGORITMOS PROBABILISTAS NUMÉRICOS SHERWOOD LAS VEGAS MONTE CARLO INTRODUCCIÓN Algoritmo probabilista: Deja al azar la toma de algunas decisiones. Cuando la decisión óptima llevaría mucho tiempo. Problemas

Más detalles

ARITMÉTICA MODULAR ARITMETICA MODULAR PARA PRINCIPIANTES EN EL VI CONGRESO DE MATEMATICAS Y GEOGEBRA IBAGUÉ OCTUBRE 7, 8 Y 9 DEL 2014

ARITMÉTICA MODULAR ARITMETICA MODULAR PARA PRINCIPIANTES EN EL VI CONGRESO DE MATEMATICAS Y GEOGEBRA IBAGUÉ OCTUBRE 7, 8 Y 9 DEL 2014 ARITMETICA MODULAR PARA PRINCIPIANTES EN EL VI CONGRESO DE MATEMATICAS Y GEOGEBRA IBAGUÉ OCTUBRE 7, 8 Y 9 DEL 2014 Si a, b, k Ɛ Z y m Ɛ N entonces a b (mod m) a b es múltiplo de m, es decir a b = km a

Más detalles

Algoritmo de Euclides

Algoritmo de Euclides Algoritmo de Euclides No es necesario realizar ensayo y error para determinar el inverso multiplicativo de un entero módulo n. Si el módulo que está siendo usado es pequeño hay algunas pocas posibilidades

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Aritmética Entera Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 36 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos. Tema

Más detalles

Algoritmos y programas. Algoritmos y Estructuras de Datos I

Algoritmos y programas. Algoritmos y Estructuras de Datos I Algoritmos y programas Algoritmos y Estructuras de Datos I Primer cuatrimestre de 2012 Departamento de Computación - FCEyN - UBA Programación funcional - clase 1 Funciones Simples - Recursión - Tipos de

Más detalles

Práctica 1: Representación de números

Práctica 1: Representación de números Práctica 1: Representación de números Organización del Computador I DC - UBA 2do. Cuatimestre 2014 Menú del día Hoy vamos a ver: Representación de numeros Aritmética en otras bases (no decimales) Cambios

Más detalles

Arreglos. Algoritmos y Estructuras de Datos I. Arreglos en C++ Arreglos y listas

Arreglos. Algoritmos y Estructuras de Datos I. Arreglos en C++ Arreglos y listas Arreglos Algoritmos y Estructuras de Datos I Primer cuatrimestre 2007 Teórica de imperativo 3 Algoritmos de búsqueda secuencias de una cantidad fija de variables del mismo tipo se declaran con un nombre,,

Más detalles

Fundamentos matemáticos del método RSA

Fundamentos matemáticos del método RSA Fundamentos matemáticos del método RSA Dr.Hugo D.Scolnik Profesor Titular Regular Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 1 Nociones elementales

Más detalles

Tipos de datos en S. Lógica y Computabilidad. Codificación de variables y etiquetas de S. Codificación de programas en S

Tipos de datos en S. Lógica y Computabilidad. Codificación de variables y etiquetas de S. Codificación de programas en S Tipos de datos en S Lógica y Computabilidad Verano 2011 Departamento de Computación - FCEyN - UBA Computabilidad - clase 5 Codificación de programas, Halting problem, diagonalización, tesis de Church,

Más detalles

Matemáticas Básicas para Computación

Matemáticas Básicas para Computación Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 6 Nombre: Álgebra Booleana Objetivo Durante la sesión el participante identificará las principales características

Más detalles

Laboratorio 2 Probabilidad y Estadística con MATLAB GENERACIÓN DE VARIABLES ALEATORIAS Y SIMULACIÓN

Laboratorio 2 Probabilidad y Estadística con MATLAB GENERACIÓN DE VARIABLES ALEATORIAS Y SIMULACIÓN Laboratorio 2 Probabilidad y Estadística con MATLAB GENERACIÓN DE VARIABLES ALEATORIAS Y SIMULACIÓN Introducción Muchos de los métodos de estadística computacional requieren la capacidad de generar variables

Más detalles

Clave Pública. Criptografía-ULL

Clave Pública. Criptografía-ULL Clave Pública Clave Pública UsuarioA Cifrado E B Mensaje cifrado C Mensaje cifrado C Descifrado D B Usuario B Clave Pública de B Clave Privada de B Mensaje original M Mensaje original M Clave Pública Clave

Más detalles

Teoría de Números. 1. Introducción. Factorización Algebraica. Olimpiada de Matemáticas en Tamaulipas

Teoría de Números. 1. Introducción. Factorización Algebraica. Olimpiada de Matemáticas en Tamaulipas Teoría de Números Factorización Algebraica Olimpiada de Matemáticas en Tamaulipas 1. Introducción El matemático, físico y astrónomo Carl Friedrich Gauss (1777-1855) fue uno de los más importantes personajes

Más detalles

ESTRUCTURA SECUENCIAL ESTRUCTURA SELECTIVA

ESTRUCTURA SECUENCIAL ESTRUCTURA SELECTIVA ESTRUCTURA SECUENCIAL Es aquélla en la que una acción (instrucción) sigue a otra en secuencia. Las tareas se suceden de tal modo que la salida de una es la entrada de la siguiente y así sucesivamente hasta

Más detalles

Elección de estructuras

Elección de estructuras Elección de estructuras Algoritmos y Estructuras de Datos 2 Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires 10 de octubre de 2014 Repaso: Qué es elegir

Más detalles

VALORES PROPIOS (AUTOVALORES) VECTORES PROPIOS (AUTOVECTORES)

VALORES PROPIOS (AUTOVALORES) VECTORES PROPIOS (AUTOVECTORES) VALORES PROPIOS (AUTOVALORES) Y VECTORES PROPIOS (AUTOVECTORES) Autovalores y Autovectores Los vectores propios o autovectores de una matriz A son todos los vectores x i 0, a los que la transformación

Más detalles

Los Números Primos: un vasto campo de exploración

Los Números Primos: un vasto campo de exploración Los Números Primos: un vasto campo de exploración Juan Pablo Prieto Instituto de Matemática y Física Universidad de Talca 1 Introducción Este trabajo pretende mostrar algunas, muy pocas, facetas del estudio

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁLGEBRA Y ANÁLISIS MATEMÁTICO 1 2 cíclicos 3 Subgrupos 4 Algoritmos 5 ElGamal Definición Un grupo es un conjunto de elementos sobre los cuales

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.

Más detalles

Teoría de números. Herbert Kanarek Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre

Teoría de números. Herbert Kanarek Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre Teoría de números Herbert Kanarek Universidad de Guanajuato Enero Junio 2012 Eugenio Daniel Flores Alatorre Bibliografía The theory of numbers Ivan Nivan H. Zuckerman H. Montgomery Temario I. Divisibilidad

Más detalles

Cálculo diferencial e integral I. Eleonora Catsigeras

Cálculo diferencial e integral I. Eleonora Catsigeras Cálculo diferencial e integral I Eleonora Catsigeras Universidad de la República Montevideo, Uruguay 01 de setiembre de 2011. CLASE 14 complementaria. Sobre sucesiones y conjuntos en la recta real. Sucesiones

Más detalles

INTRODUCCIÓN A LA MATEMÁTICA DISCRETA

INTRODUCCIÓN A LA MATEMÁTICA DISCRETA E.T.S. DE INGENIERÍA INFORMÁTICA Apuntes de INTRODUCCIÓN A LA MATEMÁTICA DISCRETA para la titulación de INGENIERÍA INFORMÁTICA Curso 2002-2003 por Fco. Javier Cobos Gavala DEPARTAMENTO DE MATEMÁTICA APLICADA

Más detalles

Teoría de Números. UCR ECCI CI-1204 Matemática Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Teoría de Números. UCR ECCI CI-1204 Matemática Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides UCR ECCI CI-1204 Matemática Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Esta presentación brinda una breve revisión de nociones de la teoría elemental de números, concernientes

Más detalles

Unidad Didáctica 6 Electrónica Digital 4º ESO

Unidad Didáctica 6 Electrónica Digital 4º ESO Unidad Didáctica 6 Electrónica Digital 4º ESO ELECTRÓNICA DIGITAL SEÑALES ELECTRICAS LÓGICA BINARIA CIRCUITOS INTEGRADOS DIGITALES DISEÑO DE CTOS. COMBINACIONALES Y CTOS. IMPRESOS TIPOS SISTEMAS DE NUMERACIÓN

Más detalles

Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh

Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh Sistemas de Numeración Operaciones Aritméticas Con SIGNO 2007-0808 Sistemas de Numeración 1 Suma SUMA: Cuatro posibles casos: AyBsonpositivos => >A+B> >= 0 A y B son negativos => A+B < 0 A positivo y B

Más detalles

DEFINICIÓN: Se define el conjunto vacio como el complementario de en, don de es un conjunto. Se representa por :

DEFINICIÓN: Se define el conjunto vacio como el complementario de en, don de es un conjunto. Se representa por : CONJUNTOS Y APLICACIONES CONCEPTOS BÁSICOS: DEFINICIÓN: Conjunto es una colección de objetos a los que llamo elementos. n dos conjuntos, entonces se dice que es un subconjunto de, se escribe, si para todo

Más detalles

RESUMEN DE ALGORITMOS PROBABILÍSTICOS

RESUMEN DE ALGORITMOS PROBABILÍSTICOS RESUMEN DE ALGORITMOS PROBABILÍSTICOS En los algoritmos probabilísticos hay ciertas decisiones que se toman al azar bajo condiciones estadísticamente estables como una distribución uniforme. Normalmente

Más detalles

Clase 2: Criptografía

Clase 2: Criptografía Capítulo 5: Teoría de Números Clase 2: Criptografía Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 5: Teoría de números 1 / 11 Qué es la criptología? La criptología

Más detalles

Clase 4: Congruencias

Clase 4: Congruencias Clase 4: Congruencias Dr. Daniel A. Jaume * 20 de agosto de 2011 1. Congruencias módulo m En 1801 Gauss, en su libro Disquisitiones Arithmeticae introdujo una notación relacionada con la noción de divisibilidad

Más detalles

Un sistema de numeración está compuesto por el conjunto de símbolos y reglas que se utilizan para representar cantidades.

Un sistema de numeración está compuesto por el conjunto de símbolos y reglas que se utilizan para representar cantidades. Repaso Sistemas Numéricos Un sistema de numeración está compuesto por el conjunto de símbolos y reglas que se utilizan para representar cantidades. A la cantidad de símbolos, que componen dicho conjunto,

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 3 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 23 Sep 2013-29 Sep 2013 Congruencias Definición Congruencia Módulo n Sea n 1 un número entero. Diremos

Más detalles

FUNDAMENTOS DE INFORMÁTICA

FUNDAMENTOS DE INFORMÁTICA FUNDAMENTOS DE INFORMÁTICA Tema 2 Expresiones, operadores y estructuras de control Departamento de Ingeniería de Sistemas y Automática Universidad de Vigo Fundamentos de Informática. Departamento de Ingeniería

Más detalles

Tipos de Datos de python (2ª parte):

Tipos de Datos de python (2ª parte): Tipos de Datos de python (2ª parte): Enteriormente hemos visto algunos de los tipos de datos que maneja python. Vimos: int, float, chr, str, bool También vimos como convertir datos a cada uno de estos

Más detalles

Test de primalidad, aplicación a la criptografía

Test de primalidad, aplicación a la criptografía Test de primalidad, aplicación a la criptografía Prof. Marcela Wilder * Se puede decir que la criptografía es tan antigua como la civilización, cuestiones militares, religiosas o comerciales impulsaron

Más detalles

ESTRUCTURAS DE CONTROL

ESTRUCTURAS DE CONTROL ESTRUCTURAS DE CONTROL En lenguajes de programación, las estructuras de control permiten modificar el flujo de ejecución de las instrucciones de un programa. Con las estructuras de control se puede: De

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 3 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 23 Sep 2013-29 Sep 2013 Congruencias Definición Congruencia Módulo n Sea n 1 un número entero. Diremos

Más detalles

Prácticas de SAGE (caldum) 19 de Enero de 2012

Prácticas de SAGE (caldum) 19 de Enero de 2012 Prácticas de SAGE (caldum) 19 de Enero de 2012 1. Introducción En este ejercicio vamos a ver las posibilidades de programación de SAGE haciendo una implementación del algoritmo de reducción de Gauss de

Más detalles

Organización del Computador 1 Lógica Digital 1: álgebra de Boole y

Organización del Computador 1 Lógica Digital 1: álgebra de Boole y Introducción Circuitos Bloques Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Más detalles

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)

Más detalles

Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas

Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Dr. Marcelo Risk Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2017 Lógica

Más detalles

Complejidad computacional. Algoritmos y Estructuras de Datos I. Complejidad computacional. Notación O grande

Complejidad computacional. Algoritmos y Estructuras de Datos I. Complejidad computacional. Notación O grande Complejidad computacional Algoritmos y Estructuras de Datos I Segundo cuatrimestre de 2014 Departamento de Computación - FCEyN - UBA Algoritmos - clase 10 Introducción a la complejidad computacional y

Más detalles

UNIVERSIDAD DE BUENOS AIRES. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática ÁLGEBRA I. Teresa Krick

UNIVERSIDAD DE BUENOS AIRES. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática ÁLGEBRA I. Teresa Krick UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Departamento de Matemática ÁLGEBRA I Teresa Krick 2017 2 Prefacio Estas notas reflejan el contenido teórico de la materia Algebra I

Más detalles