Algoritmo de Euclides
|
|
|
- Aurora Soto Gallego
- hace 9 años
- Vistas:
Transcripción
1 Algoritmo de Euclides No es necesario realizar ensayo y error para determinar el inverso multiplicativo de un entero módulo n. Si el módulo que está siendo usado es pequeño hay algunas pocas posibilidades para chequear, ensayo y error puede ser una buena alternativa. Sin embargo algunos modernos sistemas criptográficos de clave pública usan módulos muy grandes y requieren la determinación de inversos. Ahora examinaremos un método que puede ser usado para construir inversos multiplicativos módulo n (cuando existen). Los elementos de Euclides, sumado a la geometría contienen una gran cantidad de teoría de números, propiedades de los enteros positivos. El Algoritmo de Euclides es la proposición II del libro VII de Los Elementos de Euclides. La pregunta fue esta: dadas dos longitudes (las cuales son números enteros positivos), cual es la mayor (entero) longitud que puede usarse para medir ambos. Por ejemplo si tenemos dos longitudes de 14 y 21, la mayor longitud que las mide a ambas es 7. Si las longitudes son 7 y 25, la máxima común medida es 1. Etc. Euclides, describe un proceso para determinar la máxima común medida de dos longitudes. En términos de la teoría de números, el describe como encontrar cual es el ahora llamado máximo común divisor (MCD) de dos enteros positivos. El Algoritmo de Euclides para encontrar el MCD Comencemos con dos enteros positivos, por ejemplo y Dividimos el mayor por el menor : = Y tenemos = 13566x Ahora dividimos el divisor anterior por el resto : 8610 = = 8610x Nuevamente dividimos el divisor por el resto 8610 : 4956 = = 4956x Repetimos el proceso 4956 : 3654 =
2 4956 = 3654x nuevamente 3654 : 1302 = = 1302x : 1050 = = 1050x : 252 = = 252x : 42 = = 42x6 + 0 El proceso se detiene cuando el resto es cero (0) El máximo común divisor es el resto anterior es decir 42 MCD(13566, 35742) = 42 Ahora tenemos que ver que efectivamente es el máximo común divisor. Para hacer esto mostraremos que 42 puede ser escrito en términos de y Comenzamos con el penúltimo resultado: 1050 = 252x = 1x1050-4x252 Pero 252 = x1050 Reemplazando este resultado, 42 = 1x1050 4x(1302-1x1050) 42 = 1x1050 4x x = 5x1050 4x1302 Pero 1050 = 1x3654 2x = 5x(1x3654 2x1302) -4x = 5x x1302 4x = 5x x1302 Pero 1302 = x = 5x x(4956 1x3654) 42 = 5x x x = 19x x4956 Pero 3654 = x1 42 = 19x( x1) 14x4956
3 42 = 19x x x = 19x x4956 Pero 4956 = x1 42 = 19x x( x1) 42 = 19x x x = 52x x13566 Pero 8610 = x2 42 = 52x( x2) 33x = 52x x x = 52x x13566 Lo importante acá es señalar que el MCD de y puede ser expresado como una combinación lineal de ellos mediante un proceso inverso del algoritmo de Euclides PRIMOS RELATIVOS Un par de enteros positivos se dice que son primos relativos si su máximo común divisor (MCD) es 1. Por ejemplo los números 3 y 5 son primos relativos porque MCD(3,5) = 1. Encontrando inversos multiplicativos modulo n Cualquier entero positivo, menor que n y primo relativo con n tiene un inverso multiplicativo modulo n. Esta es una consecuencia del algoritmo de Euclides. Veremos en el siguiente ejemplo por qué esto debe ser asi. Algun entero positivo menor que n y que no es primo relativo con n no tiene inverso multiplicativo modulo n. MCD(15, 26) = 1, por lo tanto 15 y 26 son primos relativos. Luego 15 tiene inverso multiplicativo módulo 26. Usando el algoritmo de Euclides podemos construir el inverso multiplicativo de 15 módulo 26. Usamos el algoritmo de Euclides para encontrar el MCD(15,26) 26 : 15 = 1 26 = 15x : 11 = 1 15 = 11x : 4 = 2 11 = 4x : 3 = 1 4 = 3x
4 3 : 1 = 3 0 Por lo tanto MCD(15,26) = 1 Ahora expresaremos 1 como combinación lineal de 15 y 26 retrocediendo en el algoritmo de Euclides. 1 = 4 3x1 Pero 3 = 11 4x2, reemplazando 1 = 4 (11 4x2)x1 1 = x2 1 = 4x3 11x1 Pero 4 = 15x1 11x1, reemplazando 1 = (15x1 11x1)x3 11x1 1 = 15x3 11x3 11x1 1 = 15x3 11x4 Y como 11 = 26 15x1, tenemos 1 = 15x3 (26 15x1)x4 1 = 15x3 26x4 + 15x4 1 = 15x7 26x4 Finalmente, tenemos que 26 0 (mod 26) Y la ecuación 1 = 7x15 4x26 Se convierte en la congruencia 1 7x15 (mod 26) Por lo tanto el inverso de 15 módulo 26 es 7 (y el inverso de 7 módulo 26 es 15). MCD(6,26) = 2, por lo tanto 6 y 26 no son primos relativos, por lo tanto 6 y 26 no son primos relativos, de ahí que 6 no tiene inverso multiplicativo módulo 26, entonces si suponemos que si existe y suponemos que existe el inverso multiplicativo de 6 módulo 26, llamémoslo m, entonces debe tenerse que: 6m 1 (mod 26) Esto significa que 6m es igual a 1 más un múltiplo de 26: 6m = k Pero, 2 divide a 6 y 2 divide a 26 por lo tanto si la ecuación fuera correcta 2 debería dividir a 1. De hecho esto es falso, por lo tanto, el hecho de suponer que 6 tiene un inverso multiplicativo módulo 26 es falsa. 1,3,5,7,9,11,15,17,19,21,23,25 son primos relativos con 26 por lo tanto tienen inversos multiplicativos módulo 26. 2,4,6,8,10,12,14,16,18,20,22,24 no son primos relativos con 26, por lo tanto no tienen inversos multiplicativos módulo 26.
5 Práctica (1) Determine en cada caso el MCD, no es obligación usar el algoritmo de Euclides para encontrarlo. Cuál de los pares son primos relativos? a) MCD(6,15) b) MCD(6,16) c) MCD(8,17) d) MCD(6,21) e) MCD(15,27) (2) Determine en cada caso el MCD y cuál(es) de los pares son primos relativos. a) MCD(37,3120) b) MCD(24,138) c) MCD(12378, 3054) d) MCD(314, 159) e) MCD(306,657) (3) Para cada uno de los MCD hallados en la pregunta 2) exprese el MCD encontrado como una combinación lineal de los dos enteros dados. (4) Encuentre el inverso multiplicativo módulo 3120 de 37 (5)Encuentre el inverso multiplicativo de 19 módulo 26 (6) Tiene 24 inverso multiplicativo módulo 138?. Explique (7) Qué enteros módulo 16 tienen inversos multiplicativos. Determine los inversos. (8) Qué enteros módulo 7 tienen inversos multiplicativos. Determine (9) Qué enteros módulo 14 tienen inversos multiplicativos. Determine (10) Qué enteros módulo 9 tienen inversos multiplicativos. Determine
Aritmética entera. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15
Aritmética entera AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15 Objetivos Al finalizar este tema tendréis que: Calcular el máximo común divisor de
Propiedades de números enteros (lista de problemas para examen)
Propiedades de números enteros (lista de problemas para examen) Denotamos por Z al conjunto de los números enteros y por N al conjunto de los números enteros positivos: N = 1, 2, 3,...}. Valor absoluto
GUÍA DE EJERCICIOS. Área Matemática - Polinomios
GUÍA DE EJERCICIOS Área Matemática - Polinomios Resultados de aprendizaje. Realizar operaciones entre polinomios. Aplicar Regla de Ruffini, para determinar raíces de un polinomio. Aplicar los procedimientos
Tarea 2 de Álgebra Superior II
Tarea 2 de Álgebra Superior II Divisibilidad 1. Sean a, b, c, d Z. Determine si los siguientes enunciados son verdaderos o falsos. Si son verdaderos, probar el resultado, y si son falsos, dar un contraejemplo.
Entregable 4.- RESUELTO. Semana del 5 de octubre al 11 de octubre
Entregable 4.- RESUELTO Semana del 5 de octubre al 11 de octubre 1. Resuelve los siguientes sistemas de ecuaciones 1. 2x = 5 en Z 7 3x = 1 en Z 5 x = 3 en Z 8 2. 2x = 1 en Z 6 x = 4 en Z 11 3x = 2 en Z
Algoritmo de Euclides y ecuaciones de congruencia
Algoritmo de Euclides y ecuaciones de congruencia Taller de Álgebra I Primer cuatrimestre de 2017 Algoritmo de Euclides El algoritmo de Euclides calcula el máximo común divisor entre dos números a, b Z.
DIVISIBILIDAD NÚMEROS NATURALES
DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar
Divisibilidad y congruencia
Divisibilidad y congruencia Taller de Álgebra I Verano 2017 Algoritmo de la división Teorema Dados a, d Z, d 0, existen únicos q, r Z tales que a = qd + r, 0 r < d. Idea de la demostración: (caso a 0,
4.2 Números primos grandes. MATE 3041 Profa. Milena R. Salcedo Villanueva
4.2 Números primos grandes MATE 3041 Profa. Milena R. Salcedo Villanueva 1 Números primos grandes Existe una cantidad infinita de números primos ¹ ¹Resultado aprobado por Euclides alrededor del año 300
Gu ıa Departamento. Matem aticas U.V.
Universidad de Valparaíso Instituto de Matemáticas 1. Determinar el cociente y el residuo de 541 y de -541al dividir por 17 391 y -391 al dividir por 17 Guía de Teoría de Números 2. Sea a Z,n N comparar
Euclides Extendido y Teorema Chino del Resto
Euclides Extendido y Teorema Chino del Resto Taller de Álgebra I Segundo cuatrimestre de 2013 Lema de Bézout Recordemos este lema: Lema (Étienne Bézout) Sean a, b Z, alguno distinto de 0. Entonces existen
Operaciones de números racionales
Operaciones de números racionales Yuitza T. Humarán Martínez Adapatado por Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo El conjunto de los números racionales consiste
Introducción a la Teoría de Números
Introducción a la Teoría de Números La Teoría de Números es un área de las matemáticas que se encarga de los números primos, factorizaciones, de qué números son múltiplos de otros, etc. Aunque se inventó
Práctica 2 - Ejercicio 2.8
Algoritmos y Estructura de Datos III Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires 27 de Marzo de 2013 2.8 - Euclides 2.8. a. Escribir el algoritmo de Euclides para calcular el
= 310 (1 + 5) : 2 2 = = = 12 ( 3) ( 5) = = 2 = ( 4) + ( 20) + 3 = = 21
Unidad I, NÚMEROS NATURALES Y ENTEROS A continuación se enuncian las claves de cada pregunta hechas por mí (César Ortiz). Con esto, asumo cualquier responsabilidad, entiéndase por si alguna solución está
Aritmética modular. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética modular 1 / 16
Aritmética modular AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aritmética modular 1 / 16 Objetivos Al finalizar este tema tendréis que: Saber qué es Z n. Saber operar en
mcd y mcm Máximo Común Divisor y Mínimo Común múltiplo www.math.com.mx José de Jesús Angel Angel [email protected]
mcd y mcm Máximo Común Divisor y Mínimo Común múltiplo www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 2007-2008 Contenido 1. Divisores de un número entero 2 2. Máximo común divisor
Clase 1: Primalidad. Matemática Discreta - CC3101 Profesor: Pablo Barceló. P. Barceló Matemática Discreta - Cap. 5: Teoría de números 1 / 32
Capítulo 5: Teoría de Números Clase 1: Primalidad Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 5: Teoría de números 1 / 32 Teoría de números En esta parte
AMPLIACIÓN DE MATEMÁTICAS. a = qm + r
AMPLIACIÓN DE MATEMÁTICAS CONGRUENCIAS DE ENTEROS. Dado un número natural m N\{0} sabemos (por el Teorema del Resto) que para cualquier entero a Z existe un único resto r de modo que con a = qm + r r {0,
PROPAGACIÓN DE INCERTEZAS
PROPGIÓN DE INERTEZS Sean ± y ± los resultados de dos mediciones, es decir que son dos intervalos: Si queremos hacer una cuenta con y, por ejemplo +, el resultado no será un único número ya que es todo
(1)Factores, Múltiplos y Divisores. (2) Números compuestos y primos
4.1-4.2 (1)Factores, Múltiplos y Divisores (2) Números compuestos y primos Factorización Cuando escribimos 12 = 6 x 2 decimos que 6 x 2 corresponde a una factorización de 12. Existen otras factorizaciones
Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma
Polinomios Definición 1.1. Un conjunto K junto con dos operaciones definidas en él que denotaremos por + : K K K : K K K para las cuales se cumplen las siguientes propiedades: Asociatividad Conmutatividad
Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización. Aritmética I.
Leandro Marín Septiembre 2010 Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización Los Números Enteros Llamaremos números enteros al conjunto infinito
FISICA I Repaso. Si el alumno no supera al maestro, ni es bueno el alumno; ni es bueno el maestro (Proverbio Chino)
Si el alumno no supera al maestro, ni es bueno el alumno; ni es bueno el maestro (Proverbio Chino) Profesor: Cazzaniga, Alejandro J. Física I E.T.N : 28 - República Francesa Pág. 1 de 9 Conjuntos numéricos
El primer día del mes es juves. Cuál es el 29 día del mes?
Divisibilidad. Para resolver juntos: Un cartel tiene 4 luces de colores Amarillo, Verde; Rojo; Blanco. Se van encendiendo, por minuto. El primer minuto, la luz amarilla, el segundo minuto la verde, el
Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto...
ÍNDICE Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales... 3 Ejercicios... 5 Orden y valor absoluto... 6 Ejercicios... 7 Suma de números reales... 9 Reglas
Continuación Números Naturales:
Continuación Números Naturales: Múltiplos y divisores de un número natural. Reglas de divisibilidad. Mínimo común múltiplo y Máximo común divisor. Ejercicios de aplicación. Continuación Números Naturales:
TEORÍA DE DIVISIBILIDAD
TEORÍA DE DIVISIBILIDAD MÚLTIPLOS Y DIVISORES.- Dados dos números naturales a y b, con a b, se dice que a es divisible por b o que a es múltiplo de b o que b es divisor de a, si la división de a : b es
Ejemplos: a) 15 si es múltiplo de 5 ; 15 si contiene a 5 tres veces. b) 20 no es múltiplo de 7 ; 20 no contiene a 7 un número entero de veces.
Clase-02 Continuación Números Naturales: Múltiplos: Si n IN ; múltiplo de un número n es todo número natural que contiene a n un número entero de veces. Ejemplos: a) 15 si es múltiplo de 5 ; 15 si contiene
Aritmética Modular. (c) 2012 Leandro Marin
0214.00 1 Aritmética Modular 3 487002 140007 (c) 2012 Leandro Marin 1. Introducción En este tema veremos el concepto de congruencia módulo n, así como los anillos de restos modulares y su estructura. Calcularemos
Divisibilidad. Rafael F. Isaacs G. * Fecha: 14 de abril de 2005
Divisibilidad Rafael F. Isaacs G. * Fecha: 14 de abril de 2005 El máximo común divisor La relación n divide a m tiene sentido cuando n y m son enteros o naturales, pero no para fraccionarios o reales (por
Relaciones de orden. Definición 1. Llamamos conjunto ordenado a un par (E, ) donde E es un conjunto y es un orden definido en E
Relaciones de orden Diremos que una relación R es de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. Generalmente usaremos la notación en lugar de R para expresar relaciones de
DIVISIBILIDAD NÚMEROS NATURALES
DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar
Álgebra y Matemática Discreta
Álgebra y Matemática Discreta Sesión de Teoría 1 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 16 Sep 2013-22 Sep 2013 Los Números Enteros El Conjunto Z Vamos a empezar por la aritmética más
x a que sean divisores de un polinomio con coeficientes enteros, se deben asignar valores al número a que dividan al término independiente.
or lo tanto: para determinar epresiones a que sean divisores de un polinomio con coeficientes enteros, se deben asignar valores al número a que dividan al término independiente. Apliquemos este resultado
Álgebra y Matemática Discreta
Álgebra y Matemática Discreta Sesión de Teoría 3 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 23 Sep 2013-29 Sep 2013 Congruencias Definición Congruencia Módulo n Sea n 1 un número entero. Diremos
Ecuaciones de primer grado o lineales
CATÁLOGO MATEMÁTICO POR JUAN GUILLERMO BUILES GÓMEZ BASE 8: ECUACIONES DE PRIMER Y DE SEGUNDO GRADO RESOLUCIÓN DE PROBLEMAS ECUACIONES DE PRIMER GRADO O LINEALES CON UNA SOLA INCÓGNITA: Teoría tomada de
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA IV : LAS FRACCIONES. OPERACIONES Los siginificados de una fracción. Fracciones propias e impropias. Equivalencias de fracciones. Amplificación y simplificación. Fracción
Matriz de Insumo - Producto
Matriz de Insumo - Producto Introducción En esta sección vamos a suponer que en la economía de un país hay sólo tres sectores: industria (todas las fábricas juntas), agricultura (todo lo relacionado a
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto
EJEMPLO DE PREGU,TAS
EJEMPLO DE PREGU,TAS MATEMÁTICAS PRIMERO, SEGU,DO Y TERCERO DE BACHILLERATO 1. Lógica proposicional Esta competencia se refiere al conocimiento que usted posee sobre el lenguaje de las proposiciones y
FÓRMULA PARA OBTENER NÚMEROS DE CARMICHAEL CON n FACTORES PRIMOS, DONDE n 3.
FÓRMULA PARA OBTENER NÚMEROS DE CARMICHAEL CON n FACTORES PRIMOS, DONDE n 3 Un entero positivo es un número de Carmichael si ocurre que es un número compuesto libre de cuadrados y cumple la congruencia
Complejidad de algoritmos recursivos
Tema 3. Complejidad de algoritmos recursivos 1. INTRODUCCIÓN... 1 CLASIFICACIÓN DE FUNCIONES RECURSIVAS... 1 DISEÑO DE FUNCIONES RECURSIVAS... 2 2. VENTAJAS E INCONVENIENTES DE LA RECURSIVIDAD... 4 3.
DIVISIBILIDAD: Resultados
DIVISIBILIDAD: Resultados Página 1 de 9 Se enumeran a continuación, como referencia, ciertos resultados sobre divisibilidad. 1.1 Definición. Dados los enteros a y b, se dice que a divide a b (Notación:
Este material es producido por José Arturo Barreto, M,A,, en Caracas, Venezuela,
Este material es producido por José Arturo Barreto, M,A,, en Caracas, Venezuela, mailto:josearturobarreto@yahoo,com Octubre 29/2002 Prueba de Aptitud Académica. Habilidad Numérica. Guía # 2. Relación entre
Álgebra y Matemática Discreta
Álgebra y Matemática Discreta Sesión de Teoría 3 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 23 Sep 2013-29 Sep 2013 Congruencias Definición Congruencia Módulo n Sea n 1 un número entero. Diremos
TEORIA DE NUMEROS. Temas: MAXIMO COMUN DIVISOR ALGORITMO MCD(A,B) IDENTIDAD DE BEZOUT ALGORITMO ST(A,B) EL TEOREMA FUNDAMENTAL DE LA ARITMETICA.
. 1 TEORIA DE NUMEROS Temas: CLASE 2 HS: MAXIMO COMUN DIVISOR ALGORITMO MCD(A,B) IDENTIDAD DE BEZOUT ALGORITMO ST(A,B) CLASE 1:15 H: EL TEOREMA FUNDAMENTAL DE LA ARITMETICA. GENERACION DE LA DESCOMPOSICIÓN
Objetivos formativos de Álgebra
Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo
Introducción a la Matemática Discreta
Introducción a la Matemática Discreta Aritmética Modular Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 39 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos. Tema
TEMA 2: DIVISIBILIDAD
TEMA 2: DIVISIBILIDAD Conceptos de múltiplo y divisor (ejemplos): Del 2 2,4,6,8,10,12,14,16, Del 3 3,6,9,12,15,18,21,24, Por ejemplo: Diremos que 8 es múltiplo de 2 o que 2 es divisor de 8 Conceptos de
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 8
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 8 Teorema del Residuo Si un polinomio P (x) se divide entre x c, entonces, el residuo de la división es P (c). Sin realizar
Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo
Desigualdades o inecuaciones lineales en una variable Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades Una desigualdad o inecuación usa símbolos como ,, para representar
José Humberto Serrano Devia Página 1
Similitudes entre el espacio y las series de Fourier Funciones Ortogonales En esta sección se muestra la forma en que los conceptos vectoriales de producto interno, o producto escalar, y el de ortogonalidad
El Algoritmo de Euclides
El Algoritmo de Euclides Pablo L. De Nápoli Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 25 de abril de 2014 Pablo L. De Nápoli (Departamento de Matemática
Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009
Lección 10: División de Polinomios Dra. Noemí L. Ruiz Limardo 009 Objetivos de la lección Al finalizar esta lección los estudiantes: Dividirán polinomios de dos o más términos por polinomios de uno y dos
Lección 5: Multiplicación y división de números racionales
GUÍA DE MATEMÁTICAS II Lección : Multiplicación y división de números racionales En esta lección se verá cómo multiplicar y dividir números racionales. Usted ya sabe realizar estas operaciones con números
Euclides extendido y Test de primalidad probabiĺıstico
Euclides extendido y Test de primalidad probabiĺıstico Taller de Álgebra I Verano de 2014 Lema de Bézout Recordemos este lema: Lema (Étienne Bézout) Sean a, b Z, alguno distinto de 0. Entonces existen
Tema 5. Factorización de Polinomios y fracciones algebraicas.
Tema. Factorización de Polinomios y fracciones algebraicas.. Polinomio múltiplo y divisor. Factor de un polinomio. Ruffini. Valor numérico de un polinomio. Raíz del polinomio.. Factorización de un polinomio..
Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada
Álgebra Lineal y Estructuras Matemáticas J. C. Rosales y P. A. García Sánchez Departamento de Álgebra, Universidad de Granada Capítulo 2 Aritmética entera y modular 1. Los números enteros Dado un entero
Nuevos Algoritmos de Factorización de Enteros para atacar RSA. Ekoparty
Nuevos Algoritmos de Factorización de Enteros para atacar RSA Ekoparty Buenos Aires, 3 de octubre de 2008 Hugo D.Scolnik Departamento de Computación Universidad de Buenos Aires Esquema de la conferencia:
TÍTULO: MATEMÁTICA EXPERIMENTAL V9
TÍTULO: MATEMÁTICA EXPERIMENTAL V9 Disponibilidad Revisión de conceptos y repaso 12 Preguntas y respuestas sobre los números reales 12 Cómo esta constituido el conjunto de los números reales y como se
EJEMPLOS DE ALGORITMOS. 1.- Diseña el algoritmo que suma todos los números naturales anteriores a un número N dado.
EJEMPLOS DE ALGORITMOS 1.- Diseña el algoritmo que suma todos los números naturales anteriores a un número N dado. Suma = 1 Contador = 2 Contador
EJERCICIOS. 7.3 Valor de un polinomio para x = a. Por lo tanto: para determinar expresiones
or lo tanto: para determinar epresiones a que sean divisores de un polinomio con coeficientes enteros, se deben asignar valores al número a que dividan al término independiente. Apliquemos este resultado
Enunciados de los problemas (1)
Enunciados de los problemas (1) Problema 1. El peso de tres manzanas y dos naranjas es de 255 gramos. El peso de dos manzanas y tres naranjas es de 285 gramos. Si todas las manzanas son del mismo peso
Contenido Objetivos División Sintética de Polinomios. Carlos A. Rivera-Morales. Precálculo II
Carlos A. Rivera-Morales Precálculo II Tabla de Contenido 1 2 : Discutiremos: cómo llevar a cabo el proceso de división sintética de polinomios en una variable real : Discutiremos: cómo llevar a cabo el
Forma polar de números complejos (repaso breve)
Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia
SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números
SCUACAC026MT22-A16V1 0 SOLUCIONARIO Ejercitación Generalidades de números 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN GENERALIDADES DE NÚMEROS Ítem Alternativa 1 E 2 D 3 B 4 E 5 A 6 E 7 B 8 D 9 D
Raíces de polinomios
Raíces de polinomios En ésta página podrás conocer las herramientas necesarias para poder encontrar las raíces de polinomios de una variable con coeficientes enteros. Para ello hemos dividido esta página
Colegio Decroly Americano Matemática 7th Core, Contenidos I Período
Matemática 7th Core, 2015-2016 Contenidos I Período 1. Sentido Numérico a. Identificar y escribir patrones. b. Escribir números en forma de exponentes. c. Escribir cantidades en notación científica. d.
Criterios de divisibilidad y Congruencias
Criterios de divisibilidad y Congruencias Rafael F. Isaacs G. * Fecha: 9 de marzo de 2007 Cuando tenemos un número muy grande escrito en base 10 y deseamos saber si es múltiplo por ejemplo de 9 no necesitamos
Aritmética Modular MATEMÁTICA DISCRETA I. F. Informática. UPM. MATEMÁTICA DISCRETA I () Aritmética Modular F. Informática.
Aritmética Modular MATEMÁTICA DISCRETA I F. Informática. UPM MATEMÁTICA DISCRETA I () Aritmética Modular F. Informática. UPM 1 / 30 La relación de congruencia La relación de congruencia Definición Dado
Tema 2. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Polinomios.... Definiciones.... Operaciones con polinomios.... Factorización de un polinomio.... Teorema del resto. Criterio de divisibilidad por -a.... Propiedades
NÚMEROS ENTEROS. OBSERVACION: En la división se cumple la regla de los signos de la multiplicación.
NÚMEROS ENTEROS Los elementos del conjunto = {, -3,-2,-1, 0, 1, 2, } se denominan Números Enteros. OPERATORIA EN ADICIÓN Al sumar números de igual signo, se suman los valores absolutos de ellos conservando
En una recta numérica el punto que representa el cero recibe el nombre de origen.
1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se van ampliando a medida que se necesita resolver ciertas problemáticas de la
Clase 4: Congruencias
Clase 4: Congruencias Dr. Daniel A. Jaume * 20 de agosto de 2011 1. Congruencias módulo m En 1801 Gauss, en su libro Disquisitiones Arithmeticae introdujo una notación relacionada con la noción de divisibilidad
Que es la Aritmetica?
Que es la Aritmetica? La Aritmética es una rama de las matemáticas que se encarga de estudiar las estructuras numéricas elementales, asi como las propiedades de las operaciones y los números en si mismos
5 centenas + 2 decenas + 8 unidades, es decir: = 528
Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan
Anillo de Polinomios.
Capítulo 6 Anillo de Polinomios. Una forma de definir los polinomios en forma intuitiva es la siguiente: Sea (K,+, ) un cuerpo, entonces un polinomio con coeficiente en K es de la siguiente forma p(x)
2. Aritmética modular Ejercicios resueltos
2. Aritmética modular Ejercicios resueltos Ejercicio 2.1 Probar, mediante congruencias, que 3 2n+5 + 2 4n+1 es divisible por 7 cualquiera que sea el entero n 1. Trabajando módulo 7 se tiene que 3 2n+5
Capítulo I ELEMENTOS PREVIOS
Capítulo I ELEMENTOS PREVIOS Antes de iniciar lo referente a Criterios de Divisibilidad, recordaremos algunos conceptos y propiedades previas que nos permitirán comprender de mejor manera el contenido
Tema 3. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.
Clase 2: Algoritmo de Euclídes
Clase 2: Algoritmo de Euclídes Dr. Daniel A. Jaume, * 8 de agosto de 2011 1. Máximo común divisor Para entender que es el máximo común divisor de un par de enteros (no simultáneamente nulos). Lidearemos
Algoritmo de Euclides
Algoritmo de Euclides Melanie Sclar Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires AED III Melanie Sclar (UBA) Algoritmo de Euclides AED III 1 / 21 Ejercicio 2.8 de la práctica Ejercicio
Manos a la obra: Recursión, división y listas
Manos a la obra: Recursión, división y listas Taller de Álgebra I Cuatrimestre de verano de 2015 Calentando motores La clase pasada vimos ejemplos de definiciones recursivas. Hoy vamos a continuar con
Ecuaciones de primer grado
Matemáticas Unidad 16 Ecuaciones de primer grado Objetivos Resolver problemas que impliquen el planteamiento y la resolución de ecuaciones de primer grado de la forma x + a = b; ax = b; ax + b = c, utilizando
Módulo 10 Postulados de campo
Módulo 10 Postulados de campo OBJETIVO: Conocerá los postulados de campo y su aplicación; utilizara postulados de campo en proposiciones de números reales Ahora, estamos interesados en ver el comportamiento
Tema 3. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.
2. Determine los números enteros n que satisfacen la relación planteada:
ÍÒ Ú Ö Æ ÓÒ Ð Ä Å Ø ÒÞ Ä Ò ØÙÖ Ò Å Ø Ñ Ø ÔÐ Ì ÓÖ Æ Ñ ÖÓ ÈÖÓ ÓÖ ÊÓ ÖØÓ ÇÚ Ó Å ÖØ Ò Ê ÑÓ 1 1. Divisibilidad. 1. a) ( ) El producto de dos números naturales m y n aumenta en 132 si cada uno de ellos aumenta
Estudiar Matemática. Asesoramiento didáctico: Horacio Itzcovich Coordinación de la serie: Claudia Broitman
Estudiar Matemática Asesoramiento didáctico: Horacio Itzcovich Coordinación de la serie: Claudia Broitman María Mónica Becerril, Verónica Grimaldi, Héctor Ponce, Mónica Urquiza 8 + 5 X = 5.047 km 3 ( 79
PLAN DE AREA DE MATEMATICAS
PLAN DE AREA DE MATEMATICAS Identificación: Nombre: Centro Educativo Rural San Miguel Nivel: Básica Primaria Municipio: Sincelejo Departamento: Sucre Naturaleza: Oficial Carácter: Mixto Núcleo: Numero
Polinomios (lista de problemas para examen)
Polinomios (lista de problemas para examen) En esta lista de problemas el conjunto de los polinomios de una variable con coeficientes complejos se denota por P(C). También se usa la notación C[x], si la
La estructura de un cuerpo finito.
9. CUERPOS FINITOS El objetivo de este capítulo es determinar la estructura de todos los cuerpos finitos. Probaremos en primer lugar que todo cuerpo finito tiene p n elementos, donde p es la característica
SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL A
XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP ITCR UCR UNA UNED - MICIT SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL A 01 7 3 9 7 13 1. El resultado de la operación + 1 1 16 3 40 16 a) 319 30 b) 319 90
Cuál es la solución? Plan de clase (1/4) Escuela: Fecha: Profr.(a): Curso: Matemáticas 3 Secundaria Eje temático: SNyPA
Cuál es la solución? Plan de clase (1/4) Escuela: Fecha: Profr.(a): Curso: Matemáticas 3 Secundaria Eje temático: SNyPA Contenido: 9.2.1 Uso de ecuaciones cuadráticas para modelar situaciones y resolverlas
