ESFERA. REPRESENTACIÓN Y SECCIONES
|
|
|
- María Teresa Padilla Navarro
- hace 8 años
- Vistas:
Transcripción
1 ESFERA. REPRESENTACIÓN Y SECCIONES OBJETIVOS Representar, en el sistema diédrico, superficies esféricas; Representar, sobre la esfera, secciones planas originadas Razonar y saber representar planos tangentes a una esfera así como la ubicación exacta de cualquier punto de ella. por planos proyectantes horizontales o verticales. por un punto cualquiera de su superficie. 1 GENERACIÓN Y ELEMENTOS La superficie esférica es la superficie engendrada por una semicircunferencia generatriz que gira alrededor de su diámetro (fig. 1.1). También puede definirse como el lugar geométrico de puntos equidistantes de otro fijo O, llamado centro de la esfera. Una esfera es la región del espacio que se encuentra en el interior de una superficie esférica. Como elementos básicos que la integran podemos considerar los siguientes (fig. 1.2): Centro: punto interior que equidista de cualquier punto de la superficie de la esfera. Radio: distancia del centro a un punto de la superficie de la esfera. Cuerda: segmento que une dos puntos de la superficie esférica. Diámetro: cuerda que pasa por el centro. Circunferencias máximas: son circunferencias con centro en O y radio el de la esfera; puede obtenerse como secciones de la superficie esférica por planos que pasen por su centro O. La circunferencia máxima contenida en el plano horizontal que pasa por el centro se denomina ecuador de la esfera. Mientras que las circunferencias máximas en planos perpendiculares al horizontal se denominan meridianos. Círcunferencias menores: son todas aquellas circunferencias que pueden obtenerse al seccionar la superficie esférica por cualquier plano que no contenga al centro de la esfera. Las circunferencias menores paralelas al plano horizontal de referencia toman el nombre de paralelos; sus centros se encuentran en el diámetro de la esfera perpendicular al plano horizontal de referencia. 2 REPRESENTACIÓN. PUNTOS EN LA SUPERFICIE ESFÉRICA La representación diédrica de la esfera consistirá en las proyecciones de dos circunferencias máximas paralelas a los planos de proyección. Estas proyecciones son las trazas de los cilindros proyectantes ortogonales a los planos de proyección (fig. 2.1) y, por tanto, son circunferencias cuyo radio es igual al de la esfera: sobre el horizontal quedará representado el ecuador de la esfera y sobre el vertical el denominado meridiano principal. Tanto en la perspectiva isométrica (fig. 2.1), como en su correspondiente representación diédrica (fig. 2.2) que se acompañan a la derecha, se han situado y representado diversos puntos sobre la superficie esférica tales como los designados A, B, C, D, M y N. Para facilitar el análisis de su representación diédrica (fig. 2.2), es aconsejable llevar una visualización paralela con la representación dibujada en perspectiva (fig. 2.1). Comenzamos trazando dos circuferencias de igual radio que la esfera, con centro el punto O(O O ). Como proyección horizontal tendremos la representación del ecuador y como proyección vertical el llamado meridiano principal. Los puntos A(A A ) y B(B B ) situados en el ecuador de la esfera, se verán en el plano vertical de proyección, ubicados sobre un mismo punto en el díametro paralelo a la línea de tierra. Análogamente, se han dibujado los puntos C(C C )y D(D D ) situados en el meridiano principal que se representa. A continuación situamos los puntos M(M M ) y N(N N ) ubicados en una circunferencia menor que representa el contorno de la sección producida por un plano paralelo al horizontal de proyección; esto es, al ecuador de la esfera y pertenecientes al meridiano principal de la superficie esférica. 185
2 3 SECCIÓN PLANA DE LA ESFERA La sección producida en la esfera por un plano secante, cualquiera que sea su posición, siempre será un círculo cuyo centro está en el pie de la perpendicular trazada desde el centro de la esfera al plano. Las proyecciones de dicha sección circular serán en general superficies elipticas siempre y cuando el plano sección no sea paralelo al plano de proyección correspondiente como vimos anteriormente al determinar las pro - yecciones de puntos sobre la esfera, o bien perpendicular a cualquiera de los dos planos de proyección, como es el caso de secciones producidas por planos proyectantes horizontales o verticales. 4 PLANO TANGENTE A LA ESFERA Un plano w, tangente en un punto T a una esfera con centro en O, es perpendicular al radio OT, que une el punto de contacto o tangencia con el centro de la esfera, como muestra la perspectiva de la ilustración inferior (fig. 4.1). 3.1 Sección por un plano proyectante que pasa por el centro de la esfera En la fig. 3.1 el plano α (α 1 α 2 ) que secciona a la esfera, de centro O(O O ), es un plano proyectante horizontal perpendicular al plano horizontal de proyección que pasa por el centro O de la esfera. En este caso la sección será un círculo máximo y se apreciará en la proyección horizontal como el diámetro C D, del ecuador de la esfera. En la proyección vertical la sección se proyectará según una elipse de eje menor horizontal C D y de eje mayor el diámetro vertical del meridiano principal A B ; de igual magnitud que el diámetro de la esfera. A partir de los ejes mayor y menor A B y C D dibujamos geométricamente la elipse. Podemos determinar la verdadera magnitud de la sección circular abatiendo los extremos de los ejes y trazando por ellos una circunferencia. En la fig. 3.1, el abatimiento se ha realizado, sobre el plano vertical de proyección. 3.2 Sección por un plano proyectante que no pasa por el centro de la esfera En la fig. 3.2 el plano sección b (b 1 b 2 ) también es un plano proyectante horizontal, pero no pasa por el centro O(O O ) de la esfera. Ahora, la sección será un círculo menor cuya proyección horizontal se verá como la cuerda C D situada en el ecuador de la esfera y, la proyección vertical del círculo se apreciará como una elipse de ejes A B y C D. El eje mayor A B se determina previo abatimiento de la sección sobre uno de los planos de proyección. En la fig. 3.2, al igual que en el caso anterior (fig. 3.1), se ha abatido sobre el plano vertical. Por último, indicar que los puntos E(E E ) y F(F F ) de tangencia de esta elipse con el contorno aparente vertical, son los puntos de intersección de la circunferencia meridiano principal con el proyectante horizontal de la sección. En su representación diédrica (fig. 4.2), partimos de conocer la situación del centro O(O O ) de la esfera y el punto T(T T ) de tangencia. Para determinar las trazas del plano w tangente a la esfera comenzamos por tazar el radio OT. Las trazas del plano serán perpendiculares a dicho radio, por lo que la horizontal del plano h(h h ) que pasa por el punto T, será en su proyección horizontal h, perpendicular al radio O T ; y su proyección vertical h paralela a la línea de tierra. Dicha recta horizontal h(h h ) nos define la traza V V que nos permite representar las trazas w w del plano tangente. También podría determinarse el plano tangente, trazando el paralelo y meridiano que pasan por el punto dado; las tangentes respectivas a estas curvas en dicho punto, son las que determinan el plano buscado. 186
3 r α 2 P h R S O h Q O P Q h R S α 1 h
4 188
5
6
L. 1 Trazados a mano alzada 17 L. 2 Ángulos y aplicaciones del arco capaz 19 L. 3 Motivo decorativo egipcio 21
dibujo técnico 2º Bachillerato I. GEOMETRÍA MÉTRICA APLICADA II. SISTEMAS DE REPRESENTACIÓN III. DOCUMENTACIÓN GRÁFICA DE PROYECTOS I. GEOMETRÍA MÉTRICA APLICADA 1 TRAZADOS BÁSICOS EN EL PLANO Pág. 15
D17 La esfera. El sistema diédrico
El sistema diédrico D17 La esfera Esfera es el cuerpo geométrico engendrado por un semicírculo que gira alrededor de su diámetro. El radio del semicírculo es el radio de la esfera. El diámetro del semicírculo
M.9 EJERCICIO : SISTEMA DIEDRICO.
EJERCICIO : SISTEMA DIEDRICO. De un plano P proyectante se conoce su traza vertical, se pide: 1.- Determinar su traza horizontal. 2.- Determinar las proyecciones de las esferas de radio 4 cm, situadas
Dibujo Técnico Cuerpos Sólidos Redondos: Desarrollos y Transformadas.
38. CUERPOS SÓLIDOS REDONDOS: DESARROLLOS Y TRANSFORMADAS. 38.6. Desarrollo del cilindro. 38.6.1. Cilindro recto. En realidad el trabajar con un cilindro es lo mismo que trabajar con un prisma pero este
0- Representación de la esfera.
ESFERA: INTERSECCIONES CON PLANO Y RECTA Páginas sugeridas: Dibujotecni.com 10endibujo.com Las imágenes han sido extraídas de estas páginas y algunas de ellas modificadas para aclarar la visualización
DIBUJO TÉCNICO. UNIDAD DIDÁCTICA VIII: Geometría 3D (IV)
UNIDAD DIDÁCTICA VIII: Geometría 3D (IV) ÍNDICE Página: 1 SUPERFICIES DE REVOLUCIÓN 2 2 SUPERFICIE CILÍNDRICA 2 21 CILINDROS 2 22 PROYECCIONES DE UN CILINDRO 3 23 SECCIONES PLANAS 4 3 SUPERFICIES CÓNICAS
Dibujo Técnico Curvas cónicas-parábola
22. CURVAS CÓNICAS-PARÁBOLAS 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar
SISTEMA DIÉDRICO. Intersección del cono con una recta Sección del cono por un plano
SISTEMA DIÉDRICO Intersección del cono con una recta Sección del cono por un plano Intersección del cono con una recta Resolvemos la intersección del cono recto apoyado en el PH con la recta r. Necesitaremos
Superficies Curvas. Guía de clase elaborada por Ing. Guillermo Verger
Superficies Curvas Guía de clase elaborada por Ing. Guillermo Verger www.ingverger.com.ar Superficie cilíndrica Es aquella generada por una recta llamada generatriz que se mueve en el espacio manteniendose
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II Curso 2011-2012 INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN
1. Lugar geométrico de los centros de las circunferencias que pasen por un punto fijo
Unidad 1. Dibujo Geométrico 1. Lugar geométrico de los centros de las circunferencias que pasen por un punto fijo 2. Circunferencia que pasa por dos o tres puntos 1.5. Circunferencia que pasa por dos puntos
SISTEMAS DE REPRESENTACIÓN 20
CIRCUNFERENCIA En el curso de Sistemas de Representación 10 se omite, por falta de tiempo, el tema correspondiente a la construcción y proyecciones de la circunferencia, base fundamental para el estudio
VERDADERA MAGNITUD EN LA REPRESENTACIÓN. ÁNGULOS
VERDADERA MAGNITUD EN LA REPRESENTACIÓN. ÁNGULOS OBJETIVOS Obtener la verdadera magnitud de un segmento mediante el método de cotas o alejamientos relativos entre sus ex - tremos y/o el método de giro.
Las curvas cónicas son las secciones producidas por un plano secante sobre una superficie cónica de revolución. (Fig. 31)
Dibujo Trazado de Curvas cónicas Las curvas cónicas son las secciones producidas por un plano secante sobre una superficie cónica de revolución. (Fig. 31) Fig. 31 Una superficie cónica de revolución es
2º BACH CURVAS TÉCNICAS CURVAS CÓNICAS
2º BACH CURVAS TÉCNICAS CURVAS CÓNICAS CURVAS TÉCNICAS 1. ÓVALOS. El óvalo es una curva cerrada, plana y convexa formada generalmente por cuatro arcos de circunferencia iguales dos a dos; tiene dos ejes
Superficies básicas para Ingeniería
Superficies básicas para Ingeniería 3. Secciones planas de las superficies 2 3. Secciones planas de las superficies Contenido 3. SECCIONES PLANAS DE LAS SUPERFICIES... 3 3.1. FORMA GEOMÉTRICA QUE RESULTA
31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO
31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO 31.1. Representación de la recta. Si un punto se representaba por cuatro proyecciones, la recta se representa igual por cuatro proyecciones. Tenemos la recta
TEMA 5. CURVAS CÓNICAS.
5.1. GENERALIDADES. TEMA 5. CURVAS CÓNICAS. Se denominan secciones cónicas a aquellas superficies que son producidas por la intersección de un plano con una superficie cónica de revolución (una superficie
B23 Curvas cónicas Curvas cónicas
Geometría plana B23 Curvas cónicas Curvas cónicas Superficie cónica de revolución es la engendrada por una recta que gira alrededor de otra a la que corta. Curvas cónicas son las que resultan de la intersección
Diédrico 25. Sección 6. Cono recto por proyectante. Elipse V 2. α 2 V 1. α 1
V α V α G R C D E 0 F G Parte superior B H 3 4 5 6 7 8 E : Parte inferior V α V' ''L8'' 4''L6'' 3''L7'' 5'' K L 5 4 L6 3 L7 O LJ LI L8 β δ '' E' E C LG D LF B LH ' J'LI' 5' C D 3 B J J 0 E K L V 5 0 5
Sistema axonométrico. Con el estudio de esta Unidad nos proponemos alcanzar los siguientes objetivos:
UNIDAD 9 Sistema axonométrico E l sistema axonométrico se divide en ortogonal y oblicuo según sea la dirección de proyección. La axonometría ortogonal puede ser isométrica, dimétrica o trimétrica según
D1 Generalidades: El punto
El sistema diédrico D1 Generalidades: El punto Generalidades Proyección ortogonal de un punto sobre un plano Proyección ortogonal o, simplemente proyección de un punto sobre un plano, es el pie de la perpendicular
Dibujo Técnico Secciones Planas
37. SECCIONES PLANAS 37.1. INTRODUCCIÓN. Para hallar la sección plano de un cuerpo geométrico se pueden emplear tres métodos: a.- Por intersección de aristas o generatrices del cuerpo con el plano. b.-
Tema 7: Superficies regladas desarrollables. Pirámide-cono, prisma-cilindro.
Tema 7: Superficies regladas desarrollables. Pirámide-cono, prisma-cilindro. Definición y representación diédrica. Las superficies regladas están generadas por el movimiento de una recta. En las superficies
α 2 Dibujar las proyecciones y verdadera magnitud, de la sección que produce el plano α, al cilindro recto dado. α 1
Dibujar las proyecciones y verdadera magnitud, de la sección que produce el plano α, al cilindro recto dado. α s 2 x e2 r e H x2 H s2 D s r B x e M N O H A x L H s e0 (α ) 2 0 r0 C α Procedimiento por
B22 Homología. Geometría plana
Geometría plana B22 Homología Homología y afinidad Homología: es una transformación biunívoca e inequívoca entre los puntos de dos figuras F y F'. A cada punto y recta de la figura F le corresponde un
Dibujo Técnico Curvas cónicas
23. CURVAS CÓNICAS 23.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar alrededor
DIBUJO TÉCNICO II CRITERIOS ESPECÍFICOS DE CORRECCIÓN Y SOLUCIONES OPCIÓN A
DIBUJO TÉCNICO II CRITERIOS ESPECÍFICOS DE CORRECCIÓN Y SOLUCIONES OPCIÓN A A1.- La posición de tangencia se obtiene al encontrar el centro C de la circunferencia que se desplaza, como intersección de
S. DIÉDRICO: ABATIMIENTOS, CAMBIOS DE PLANO Y GIROS
SISTEMA DIÉDRICO (III) TEMA 10: 2º DE BACH/Página 1 de 12 NOTA>COMO VERAS HAY DOS RECUADROS PARA TRAZAR LOS DIBUJOS DE LAS PRESENTACIONES, EN ESTA OCASION, EL PRIMERO ES PARA HACER LOS TRAZADOS A MANO
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS 1. TANGENCIAS EN LAS CIRCUNFERENCIAS Decimos que dos elementos geométricos son tangentes cuando tienen un punto en común. Las tangencias
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013 MATERIA: DIBUJO TÉCNICO II Examen para coincidencias INSTRUCCIONES Y
ESTUDIO GRÁFICO DE LA ELIPSE.
Curvas Cónicas para Dibujo y Matemáticas. Aplicación web Dibujo Técnico para ESO y Bachillerato Matemáticas para Bachillerato Educación Plástica y Visual Autor: José Antonio Cuadrado Vicente. ESTUDIO GRÁFICO
D7 Perpendicularidad
El sistema diédrico D7 Perpendicularidad Rectas perpendiculares Rectas perpendiculares son las que se cortan formando ángulos rectos. Dos rectas que se cruzan en el espacio son perpendiculares si al trazar
Se llaman curvas cónicas a las curvas que se obtienen de la intersección de una superficie cónica por un plano.
CURVAS CÓNICAS Se llaman curvas cónicas a las curvas que se obtienen de la intersección de una superficie cónica por un plano. Secciones de un cono Supongamos un cono de revolución de dos ramas; según
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD DIBUJO TÉCNICO CRITERIOS ESPECÍFICOS DE CORRECCIÓN El problema se calificará siempre, como máximo, con cuatro puntos y cada uno de los ejercicios,
DE LA RECTA PROYECCIONES DEL
44 Punto, SISTEM NMÉTIC: recta, plano y cuerpos PECCINES DEL PUNT PECCINES DE L ECT PECCINES DEL PLN ECTS CNTENIDS EN PLNS Plano definido por dos rectas que se cortan INTESECCIÓN DE PLNS INTESECCIÓN DE
22. CURVAS CÓNICAS-ELIPSE
22. CURVAS CÓNICAS-ELIPSE 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar alrededor
Una recta y una circunferencia, o dos circunferencias, son exteriores si no tienen ningún punto común, y secantes si tienen dos puntos comunes.
Geometría plana B19 Tangencias Tangencias y enlaces Conceptos básicos Una recta y una circunferencia, o dos circunferencias, son tangentes entre sí, si tienen un único punto común, llamado punto de tangencia.
31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO
31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO 31.1. Representación de la recta. Si un punto se representaba por cuatro proyecciones, la recta se representa igual por cuatro proyecciones. Proyecciones de
SOLUCIONARIO. 2. Se transportan los segmentos a y. 3. Se transporta el segmento a seis veces consecutivas sobre una semirrecta de origen A.
SOLUCIONARIO UNIDAD 1. TRAZADOS EN EL PLANO. POTENCIA 1. Se traza el arco capaz del ángulo de 30º sobre el segmento A B en el semiplano correspondiente a la posición esperada de P, de los dos en que éste
DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez
DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución- CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α
CURVAS TÉCNICAS CURVAS CÓNICAS
2º BACH CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ CURVAS TÉCNICAS 1. ÓVALOS. El óvalo es una curva cerrada, plana y convexa formada generalmente por cuatro arcos de circunferencia iguales dos
SISTEMA DIÉDRICO II INTERSECCIONES PARALELISMO Y PERPENDICULARIDAD ANA BALLESTER JIMÉNEZ
SISTEMA DIÉDRICO II INTERSECCIONES PARALELISMO Y PERPENDICULARIDAD 1 SISTEMA DIÉDRICO: INTERSECCIONES. r s: Dos rectas se cortan cuando tienen un punto en común. A2 r2 y s2 A1 r1 y s1 α β: Dos planos que
Homología y Afinidad IES BELLAVISTA
Homología y Afinidad IES BELLAVISTA La proyectividad es una transformación geométrica que transforma unos elementos geométricos en otros (puntos, rectas, haces de rectas, formas planas, etc.) mediante
A IES La Asunción. Elx. Mario Ortega González.
1 2 3 4 5 6 C A 1 2 3 4 5 r1 6 F' M r2 B D IES La Asunción. Elx. Mario Ortega González. Trazamos los radios vectores r1 y r2, los sumamos y ya tenemos lo que mide el eje mayor A,B. La distancia desde el
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO OPCIÓN A
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II Curso 2009-2010 INSTRUCCIONES GENERALES Y VALORACIÓN La prueba
GEOMETRÍA TANGENCIAS - 1
GEOMETRÍA TANGENCIAS - 1 TANGENCIAS BÁSICAS Recordemos que dos líneas se dice que son tangentes cuando tienen un solo punto común sin cortarse. Para resolver cualquier problema de tangencias de rectas
Circunferencia y Círculo
Circunferencia y Círculo APRENDIZAJES ESPERADOS Identificar los elementos primarios de Círculo y Circunferencia. Calcular área y perímetro del sector y segmento circular. Contenidos 1. Definición 1.1 Circunferencia
HOMOLOGÍA Y AFINIDAD 1. HOMOLOGÍA
HOMOLOGÍA Y AFINIDAD 1. HOMOLOGÍA La Homología es una transformación geométrica de una figura plana en otra. Se utiliza con mucha frecuencia en geometría descriptiva y por lo tanto en dibujo industrial.
DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez
DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado
Razonar el trazado de rectas tangentes a la elipse y la hipérbola haciendo uso de las circunferencias focales y, a la
CURVAS CÓNICAS OBJETIVOS 1 Conocer y/o recordar los elementos y propiedades fundamentales que configuran las tres curvas cónicas, junto a la construcción geométrica de cada una de ellas. 2 Razonar el trazado
Sistema diédrico: prisma, cono y cilindro
UNIDAD 7 Sistema diédrico: prisma, cono y cilindro Capitel basado en el prisma y el cilindro (Modificación de la fotografía de la Mezquita de las Tornerías, Toledo, de Luana Fischer Ferreira, del Banco
UNIVERSIJ)ADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso MATERIA: DIBUJO TÉCNICO JJ
UNVERSJ)ADES PÚBLCAS DE LA COMUNDAD DE MADRD PRUEBA DE ACCESO A ESTUDOS UNVERSTAROS (LOGSE) Curso 2006-2007 MATERA: DBUJO TÉCNCO JJ NSTRUCCONES GENERALES Y VALORACiÓN La prueba consiste en la realización
16 PROPORCIONALIDAD INVERSA.-POTENCIA
16 PROPORCIONALIDAD INVERSA.-POTENCIA 16.1 Características generales. Consideramos que una variable x puede adquirir los valores a, b, c, d,.. y otra variable y los valores a, b, c, d, x e y son inversamente
Dibujo Técnico Sistema diédrico.- Cambios de plano, giros y ángulos. ÁNGULOS.
30. SISTEMA DIÉDRICO.- CAMBIOS DE PLANO, GIROS Y ÁNGULOS. 30.1. Cambios de plano. Los cambios de planos de proyección consisten en tomar o elegir otros planos de proyección de forma que los elementos que
TANGENCIAS. En general, las tangencias tienen por objeto unir circunferencias y rectas mediante otras circunferencias y
Apuntes TANGENCIAS. Problemas de tangencias: rectas tangentes a circunferencias y circunferencias entre sí, conociendo el radio. Aplicación del eje y centro radical en problemas de tangencias: recta y
Tangencias usando potencia y eje radical IES BELLAVISTA
Tangencias usando potencia y eje radical IES BELLAVISTA Potencia Se define la potencia de un punto con respecto a una circunferencia como el producto de los segmentos comprendidos entre dicho punto y la
OPCIÓN II EJERCICIO 1 : SISTEMA DIÉDRICO.
OPCIÓN II EJERCICIO 1 : SISTEMA DIÉDRICO. Dadas las trazas del plano p y la traza horizontal del plano proyectante a, así como las proyecciones del punto A, se pide: 1. Dibujar las proyecciones de la recta
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID OPCIÓN A
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 2002-2003 MATERIA: DIBUJO TÉCNICO Junio Septiembre R1 R2 INSTRUCCIONES GENERALES Y VALORACIÓN
1º BACH TANGENCIAS CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ
1º BACH TANGENCIAS CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ TANGENCIAS Propiedades: Si dos circunferencias son tangentes, el punto de tangencia se encuentra en la recta que une los centros
DIBUJO TÉCNICO II CRITERIOS ESPECÍFICOS DE CORRECCIÓN Y SOLUCIONES OPCIÓN A
DIBUJO TÉCNICO II CRITERIOS ESPECÍFICOS DE CORRECCIÓN Y SOLUCIONES OPCIÓN A A1.- El lado x del rectángulo solicitado, se puede obtener, considerando su medida como tercera proporcional de los segmentos
22 CURVAS CÓNICAS- HIPÉRBOLAS
22 CURVAS CÓNICAS- HIPÉRBOLAS 22.1 Características generales. La hipérbola se obtiene al cortar la superficie cónica por un plano paralelo al eje que corta las dos hojas de la cónica. 22.2 Focos y directrices.
\ I OPCIÓN I PROBLEMA: SISTEMA DIÉDRICO.
OPCIÓN I PROBLEMA: SISTEMA DIÉDRICO. Dadas las proyecciones horizontal y vertical de un sólido, asf como las trazas de un plano P, se pide: 1.- Determinar las proyecciones de la sección producida por el
OPCIÓN I PROBLEMA: SISTEMA DIÉDRICO. Los puntos A y B, vértices de un cubo, son los extremos de una de las diagonales de la base. Dicha diagonal es además línea de máxima pendiente del plano donde se apoya
UNIVERSIDADES PUBLICAS DE LA COMUNIDAD DE MADRID EV ALU A CI ON PARA EL ACCESO A LAS ENSENANZAS UNIVERSITARIAS OFICIALES DE GRADO Corso B=B'
UNIVERSIDADES PUBLICAS DE LA COMUNIDAD DE MADRID EV ALU A CI ON PARA EL ACCESO A LAS ENSENANZAS UNIVERSITARIAS OFICIALES DE GRADO Corso 2017-2018 MATERIA: DIBUJO TECNICO II INSTRUCCIONES GENERALES Y CALIFICACION
Superficies básicas para Ingeniería
Superficies básicas para Ingeniería 1. Test de conceptos básicos de superficies 2 1. Test de Superficies. Conceptos básicos Instrucciones Las cuestiones que se presentan son de selección múltiple, con
Los cuerpos geométricos en el entorno
Los cuerpos geométricos en el entorno Los prismas Concepto. Clasificación: según la base de los mismos. Elementos de los prismas. Base Caras laterales Aristas básicas Aristas laterales Vértices PRISMA
GEOMETRÍA TANGENCIAS - 1
GEOMETRÍA TANGENCIAS - 1 TANGENCIAS BÁSICAS Recordemos que dos líneas se dice que son tangentes cuando tienen un solo punto común sin cortarse. Para resolver cualquier problema de tangencias de rectas
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID INSTRUCCIONES GENERALES Y VALORACIÓN
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) (Curso 2004-2005) MATERIA: DIBUJO TÉCNICO II Junio Septiembre R1 R2 INSTRUCCIONES GENERALES Y VALORACIÓN
* * * GEOMETRÍA DESCRIPTIVA * * * ÍNDICE
ÍNDICE 1.- CONCEPTO DE PROYECCIÓN.... 1 Proyección de un punto.... 1 Clasificación de las proyecciones.... 1 Sistema Diédrico...3 Sistema de Planos Acotados...3 Sistema Axonométrico...3 Sistema Cónico...4
UNIVERSIDAD POLITÉCNICA DE MADRID PRUEBAS DE ACCESO PARA MAYORES DE 25 AÑOS DIBUJO TÉCNICO INSTRUCCIONES GENERALES Y VALORACIÓN
UNIVERSIDAD POLITÉCNICA DE MADRID PRUEBAS DE ACCESO PARA MAYORES DE 25 AÑOS DIBUJO TÉCNICO 2017 INSTRUCCIONES GENERALES Y VALORACIÓN El alumno realizará, a su elección, una de las dos opciones de prueba
1.- Hallar la VM del triángulo del plano abatiendo. A2 B1. Curso 2º BACHILLERATO. Fecha. Nombre de Alumno. Nº de lámina. Nota
1.- Hallar la VM del triángulo del plano abatiendo. 1.- Hallar la VM del triángulo del plano abatiendo. 1.- Hallar la VM de las siguientes figuras planas contenidas en sus respectivos planos. Abatir el
32. SISTEMA PERSPECTIVA CABALLERA
32. SISTEMA PERSPECTIVA CABALLERA 32.1. Elementos del sistema. En el sistema de perspectiva caballera continuamos utilizando un triedro trirectangulo y las proyecciones cilindrica del mismo modo que en
Bach. I.E.S. Las Salinas de Laguna de Duero DIBUJO TÉCNICO OPCIÓN A Junio 2013 BLOQUE I: GEOMETRÍA MÉTRICA. Calificación máxima: 3 puntos
BLQUE I: GEMETRÍA MÉTRICA PCIÓN A 1.- Dibujad, dejando las construcciones necesarias, una circunferencia tangente a la circunferencia de centro y a la recta t en el punto P. Señalad también el punto de
Dibujar los siguientes cuerpos, de los que se dan algunos de sus elementos.
Cilindro recto de altura mm. Cilindro oblicuo de altura mm. Tronco de cilindro recto. Cono recto de altura mm. Cono oblicuo de vértice V. Tronco de cono recto de Cilindro recto de altura mm. Cilindro oblicuo
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II Curso 2011-2012 INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) (Curso 2003-2004) MATERIA: DIBUJO TÉCNICO II Junio Septiembre R1 R2 INSTRUCCIONES GENERALES Y VALORACIÓN
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO 9 Curso 2012-2013 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES Y CRITERIOS GENERALES DE
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: DIBUJO TÉCNICO II
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2013-2014 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: DIBUJO TÉCNICO II
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO 9 Curso 2012-2013 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES Y CRITERIOS GENERALES DE
DIBUJO EN LA INGENIERIA CIVIL II 2ª Oportunidad Julio
DIBUJO EN LA INGENIERIA CIVIL II 2ª Oportunidad Julio 2012-2013 1 PARCIAL 1.- Trazar la(s) circunferencia(s) que pasa(n) por los puntos A(280,100) B(280,150) y es(son) ortogonale(s) a la circunferencia
Construir un óvalo conociendo el eje mayor.
CURVAS TÉCNICAS Englobaremos dentro de este grupo a los Óvalos y Ovoides, Espirales y Evolventes, Hélices, Curvas Trigonométricas y Curvas Cíclicas. ÓVALO Es una curva cerrada y plana compuesta por un
18. PERSPECTIVA CABALLERA.
18. PERSPECTIVA CABALLERA. La perspectiva caballera es un sistema de representación que utiliza la proyección paralela oblicua, en el que las dimensiones del plano proyectante frontal, como las de los
SISTEMA AXONOMÉTRICO ORTOGONAL
SISTEMA AXONOMÉTRICO ORTOGONAL OBJETIVOS Definir y saber identificar las tres variantes (isométrica, di - mé tri ca y trimétrica) que pueden darse en la proyección axono mé trica, con las ventajas e incovenientes
8. UNIDAD DIDACTICA 8: TANGENCIAS Y ENLACES
8. UNIDAD DIDACTICA 8: TANGENCIAS Y ENLACES 8.1. TANGENCIAS Se dice que dos figuras planas son tangentes cuando tienen un solo punto en común, al que se conoce como punto de tangencia. Las tangencias pueden
Sistema Diédrico (II). Superficies poliédricas y radiadas. Secciones
Sistema Diédrico (II). Superficies poliédricas y radiadas. Secciones En el tema anterior realizamos cambios en las superficies mediante intersecciones y tangencias con rectas o planos. Ahora vamos a ampliar
SISTEMA DIÉDRICO PERTENENCIA VISIBILIDAD VISIBILIDAD 3º PROYECCIÓN PLANOS NO DADOS POR SUS TRAZAS
SISTEMA DIÉDRICO PERTENENCIA 1. Dado un plano cualquiera cuya traza horizontal forma 40º con la LT y 60º la traza vertical, situar pasando por un punto A que le pertenece y de altura 30 mm, todas sus rectas
2º BACH. SISTEMA DIÉDRICO [ABATIMIENTOS, CAMBIOS DE PLANOS, GIROS Y ÁNGULOS]
2º BACH. SISTEMA DIÉDRICO [ABATIMIENTOS, CAMBIOS DE PLANOS, GIROS Y ÁNGULOS] ABATIMIENTOS ABATIMIENTO DE UN PUNTO CONTENIDO EN UN PLANO. Sobre el P.H. Sobre el P.V. 1 ABATIMIENTO DE UNA RECTA CONTENIDA
A RG. Secciones 10: Cono Recto por plano oblicuo BT α 2. δ Lj 2 2. γ Ls 1 1. β Lt 1 1 A 1. α 1
Dibujar las proyecciones y verdadera magnitud, de la sección 2 s 2 t 2 δ Lj 2 2 Ñ2 q 2 j2 j1 N 2 Q 2 H s2 H t2 N Lq LÑ 1 1 1 γ Ls 1 1 j0 β Lt 1 1 H t1 (α ) 2 0 W 1 Y 1 Q 1 H s1 Z j 0 T Procedimiento mixto
COLECCIONES DE EJERCICIOS
COLECCIONES DE EJERCICIOS Esta es la tarifa de las colecciones de ejercicios para practicar la prueba practica de la oposición. En cada colección indico el precio así como el contenido. Cada colección
