22 CURVAS CÓNICAS- HIPÉRBOLAS
|
|
|
- María Soledad Carmona Aguilar
- hace 9 años
- Vistas:
Transcripción
1 22 CURVAS CÓNICAS- HIPÉRBOLAS 22.1 Características generales. La hipérbola se obtiene al cortar la superficie cónica por un plano paralelo al eje que corta las dos hojas de la cónica Focos y directrices. Focos. El foco o los focos (F 1 -F 2 o F-F ) de una curva cónica son los puntos de tangencia entre el plano secante que produce la cónica y las esferas inscritas en el cono que sean a la vez tangentes al plano (teorema de Dandelin). Los focos son llamados puntos notables de las cónicas. La hipérbola tiene dos focos. Directrices. Se denomina directriz d de una curva cónica a la recta de intersección del plano secante con el plano que contiene a la circunferencia de tangencia entre el cono y la esfera que siendo tangente al plano secante, esta inscrita en la superficie cónica. La hipérbola tiene dos directrices Circunferencia principal y circunferencias focales. Circunferencia principal. Es la que tiene por centro, el centro de la curva y por diámetro la longitud del eje real, siendo este la distancia entre los vértices: Hipérbola: Ø = V 1 -V 2 =2a La recta se puede considerar una circunferencia de radio infinito. Circunferencias focales. Son las que tiene por centro los focos y radio la longitud del eje real, siendo este la distancia entre los vértices: Hipérbola: 1
2 Tenemos dos circunferencia focales al tener dos focos R = V 1 -V 2 = 2a Excentricidad: Dado un punto cualquiera de una cónica, se denomina excentricidad a la razón constante de la distancias de dicho punto al foco y a la directriz correspondiente: Hipérbola e=af 2 /AD> Hipérbolas. La hipérbola es una curva abierta y plana, con dos ramas simétrica respecto a dos ejes y en la que un punto P de la misma tiene la propiedad de que diferencia de las distancias a dos puntos llamados focos (F y F ) o F 1 y F 2 ) es constante e igual a 2a. Siendo 2a el valor del eje real Propiedades: - La hipérbola tiene dos ejes perpendiculares que se cortan en el punto medio, centro O. - Simetría: Es simétrica respecto al eje AB y respecto al otro eje CD. - Ejes: Al eje mayor AB se le llama eje real y vale 2a y al eje menor CD se llama eje virtual y vale 2b. - Distancia focal: La distancia focal F-F vale 2c. los focos se encuentran siempre en el eje real. - Radios vectores: (r 1 y r 2 ): son las rectas PF y PF que unen cada punto de la hipérbola con los focos. - Circunferencia principal: (C p ) es la que tiene por centro el de la hipérbola y radio a. - Circunferencias focales: (C f y C f ): son las que tienen por centros los focos y radio 2a. - Distancia focal: La distancia focal F-F vale 2c, los focos se encuentran siempre en el eje real. - Asíntotas: Las asíntotas de la hipérbola, son dos rectas tangentes a la curva en el infinito. Son simétricas respecto a los dos ejes y pasan por el centro. En la hipérbola siempre se verifica que c 2 = a 2 + b Construcción de la hipérbola por puntos Se conoce los vértices A-B =2a y la distancia focal F 1 -F 2 =2c 1º Trazamos los dos ejes perpendiculares y situamos los datos; los vértices AB y los focos F 1 y F Situamos sobre el eje real una serie de puntos cualquiera 1, 2, 3, 4,. 3.- Tomemos el punto 3 por ejemplo, cogemos la distancia del punto al vértice B; 3-B=r 1, y trazamos una arco de centro en F 2 y radio r Tomamos la distancia del punto al vértice A; 3-A=r 2, y trazamos una arco de centro en F 1 y radio r 2, que corta al arco anterior en el punto P que es un punto de la hipérbola. 2
3 5.- Se repite la operación cambiando de centros es decir con centro en F 1 y radio r 1 y con centro en F 2 y radio r 2, y se obtienen los puntos del otro lado de la hipérbola respecto al eje virtual. 6.- Se repite el procedimiento con los otros puntos 1, 2, 4, y se unen y obtenemos la hipérbola Construcción de la hipérbola por haces proyectivos. Se conoce los vértices 2a =AB y la distancia focal 2c= F 1 -F 2 1º Trazamos los dos ejes perpendiculares y situamos los datos; los vértices AB y los focos F 1 y F Hallamos un punto P de la hipérbola por el método de puntos por ejemplo. 3.- Trazamos el rectángulo BMPN; Se dividen los lados MP y PN en un numero de partes iguales (por ejemplo 8). 4.- Unimos las divisiones de MP con el vértice B y las del lado PN con el foco F Los puntos de intersección de los rayos homónimos u homólogos de estos dos haces son puntos de la hipérbola. Así F1-6 y B-6 se cortan en un punto de la hipérbola. 6.- Para determinar la otra parte de esta rama de la hipérbola de determinan los punto simétricos de los anteriores y se procede de la misma forma Construcción de la hipérbola por envolventes. Se conoce los vértices A-B =2a y la distancia focal F 1 -F 2 =2c 1º Trazamos los dos ejes perpendiculares y situamos los datos; los vértices AB y los focos F 1 y F Trazamos la circunferencia principal de centro O y radio OA=OB. 3.- Trazamos las asuntotas de la hipérbola, trazando la circunferencia de centro O y radio OF 1 =OF 2. Por el vértice A trazamos la perpendicular al eje que corta a la circunferencia anterior en el punto T y T se unen estos puntos con O y obtenemos las asíntotas. 3
4 4.- Tomamos un punto de la circunferencia principal como el 1 por ejemplo se une con el foco F 2 y se traza la perpendicular al segmento 1-F 2, y obtenemos una tangente a la curva, se toman mas puntos y se repite el procedimiento trazando las perpendiculares que son tangentes a la curva que la envuelven. 5.- Se repite la operación para la otra rama y obtenemos la hipérbola Rectas tangentes a la hipérbola Tangente y normal a una hipérbola. en un punto de la misma. La recta tangente a una hipérbola en un punto P de ella es la recta t bisectriz del ángulo formado por los dos radios vectores PF y PF. La normal a la hipérbola en el punto P es la perpendicular a la tangente y a su vez la bisectriz exterior de los radios vectores PF y PF Tangentes a una hipérbola. desde un punto exterior de la misma. Tenemos una hipérbola definida por los ejes AB y CD y los focos F y F, y un punto exterior a ella P. Como la circunferencia focal es el lugar geométrico de los puntos simétricos del otro foco respecto de las tangentes. En problema consiste en buscar un punto de ella que unido con F, resulte ser una cuerda de la circunferencia de centro P y radio PF. 1.- Se traza la circunferencia focal de centro F y radio 2a. 2.- Con centro en el punto P se traza una circunferencia de radio PF. 3.- Las circunferencias anteriores se cortan en los puntos M y 4
5 N que los unimos con el foco F (foco por el que pasa la circunferencia de centro en el punto dado P). 4.- Trazamos las mediatrices de los segmentos F -N y F -M rectas t y t, que pasan por el punto P (también se puede como vemos trazar la perpendicular a los segmentos por el punto P). 5.- Para determinar los punto de tangencia T y T, unimos los puntos M y N con el otro foco F determinando los puntos de tangencia buscados Tangentes a una hipérbola paralelas a una dirección dada d. Tenemos una hipérbola definida por los ejes AB y CD y los focos F y F, y una recta d. La circunferencia focal es en este caso de radio infinito por lo que se convierte en una recta perpendicular a la dirección dada. 1.- Se traza la circunferencia focal de centro F y radio 2a. 2.- Por el otro foco F se traza una perpendicular a la dirección dada d. 3.- La circunferencia focal y la perpendicular a la dirección d se cortan en los puntos M y N. 4.- Trazamos las mediatrices de los segmentos F -N y F - M rectas t y t, que son paralelas a la dirección dada d y son las tangentes buscadas 5.- Para determinar los punto de tangencia T y T, unimos los puntos M y N con el otro foco F determinando los puntos de tangencia buscados Asíntotas de la hipérbola. Las asuntotas son dos rectas que pasas por el centro O de la curva y son tangentes en el infinito, por lo tanto de lo que se trata es de trazar desde el punto O las tangentes a la curva. 1º Método.-Trazamos la circunferencia de centro O y radio OF=OF = c. Por el vértice A se traza la perpendicular al eje AB que corta a la circunferencia anterior en los puntos 1 y 2. Unimos 1 y 2 con el centro O y obtenemos las dos asuntotas. 2º Método.- Se traza la circunferencia principal de centro O y radio OB=OA= a. Por uno de los focos F trazamos las tangentes a la circunferencia anterior obteniendo los puntos 3 y 4 que unidos con el centro de la hipérbola O determinan las asuntotas. 3º Método.-Se traza la circunferencia principal de centro O y radio OB=OA= a. 5
6 Se traza la circunferencia que pasa por O y por F cuyo centro es el punto medio de OF, O. Las dos circunferencias se cortan en los puntos 5 y 6 que unidos con O nos determinan las asíntotas 6
Dibujo Técnico Curvas cónicas
23. CURVAS CÓNICAS 23.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar alrededor
Dibujo Técnico Curvas cónicas-parábola
22. CURVAS CÓNICAS-PARÁBOLAS 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar
22. CURVAS CÓNICAS-ELIPSE
22. CURVAS CÓNICAS-ELIPSE 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar alrededor
ESTUDIO GRÁFICO DE LA ELIPSE.
Curvas Cónicas para Dibujo y Matemáticas. Aplicación web Dibujo Técnico para ESO y Bachillerato Matemáticas para Bachillerato Educación Plástica y Visual Autor: José Antonio Cuadrado Vicente. ESTUDIO GRÁFICO
Se llaman curvas cónicas a las curvas que se obtienen de la intersección de una superficie cónica por un plano.
CURVAS CÓNICAS Se llaman curvas cónicas a las curvas que se obtienen de la intersección de una superficie cónica por un plano. Secciones de un cono Supongamos un cono de revolución de dos ramas; según
B23 Curvas cónicas Curvas cónicas
Geometría plana B23 Curvas cónicas Curvas cónicas Superficie cónica de revolución es la engendrada por una recta que gira alrededor de otra a la que corta. Curvas cónicas son las que resultan de la intersección
TEMA 5. CURVAS CÓNICAS.
5.1. GENERALIDADES. TEMA 5. CURVAS CÓNICAS. Se denominan secciones cónicas a aquellas superficies que son producidas por la intersección de un plano con una superficie cónica de revolución (una superficie
2º BACH CURVAS TÉCNICAS CURVAS CÓNICAS
2º BACH CURVAS TÉCNICAS CURVAS CÓNICAS CURVAS TÉCNICAS 1. ÓVALOS. El óvalo es una curva cerrada, plana y convexa formada generalmente por cuatro arcos de circunferencia iguales dos a dos; tiene dos ejes
Razonar el trazado de rectas tangentes a la elipse y la hipérbola haciendo uso de las circunferencias focales y, a la
CURVAS CÓNICAS OBJETIVOS 1 Conocer y/o recordar los elementos y propiedades fundamentales que configuran las tres curvas cónicas, junto a la construcción geométrica de cada una de ellas. 2 Razonar el trazado
CURVAS CÓNICAS-TANGENCIAS:
CURVAS CÓNICAS-TANGENCIAS: ELIPSE Recta tangente por un punto de la elipse 1.Se hallan los focos. 2.Se traza la Circunferencia focal correspondiente a uno de los focos.(f2) 3.Averiguar el simétrico de
CURVAS TÉCNICAS CURVAS CÓNICAS
2º BACH CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ CURVAS TÉCNICAS 1. ÓVALOS. El óvalo es una curva cerrada, plana y convexa formada generalmente por cuatro arcos de circunferencia iguales dos
Tangencias usando potencia y eje radical IES BELLAVISTA
Tangencias usando potencia y eje radical IES BELLAVISTA Potencia Se define la potencia de un punto con respecto a una circunferencia como el producto de los segmentos comprendidos entre dicho punto y la
Unidad Didáctica 8. Dibujo Geométrico
Unidad Didáctica 8 Dibujo Geométrico 1.- Tazados Geométricos Básicos Trazados Rectas Paralelas Rectas paralelas. Las que no llegan nunca a cortarse, o se cortan en el infinito. Con Escuadra y Cartabón:
n Por ejemplo, en un pentágono tenemos que saber que sus ángulos suman 540º y cada ángulo del pentágono son 108º.
MATEMÁTICAS 3º ESO TEMA 10 PROBLEMAS MÉTRICOS EM EL PLANO- 1. ÁNGULOS EN LOS POLÍGONOS La suma de los ángulos de un polígono de n lados es: 180º (n-2) 180º(n - 2) La medida de cada ángulo de un polígono
Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz
1 Lugar Geométrico Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz Mediatriz de un segmento es el lugar geométrico de los puntos del plano que equidistan
TEMA 3 TRAZADO GEOMETRICO. CONICAS
TEM 3 TRZDO GEOMETRICO. CONICS 1. CIRCUNFERENCIS...2 1.1 TNGENCIS...2 2. DIVISION DE CIRCUNFERENCIS...9 2.1 EN TRES Y SEIS PRTES IGULES...9 2.2 EN CUTRO Y OCHO PRTES IGULES...10 2.3 EN CINCO Y DIEZ PRTES
4. Escribe la ecuación de la circunferencia de centro C(-2,3) y radio 4. Sol: (x+2) 2 +(y-3) 2 =16.
Problemas de circunferencias 4. Escribe la ecuación de la circunferencia de centro C(-2,3) y radio 4. Sol: (x+2) 2 +(y-3) 2 =16. 10. 5. Calcula la potencia del punto P(-1,2) a la circunferencia: x 2 +y
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS 1. TANGENCIAS EN LAS CIRCUNFERENCIAS Decimos que dos elementos geométricos son tangentes cuando tienen un punto en común. Las tangencias
8. UNIDAD DIDACTICA 8: TANGENCIAS Y ENLACES
8. UNIDAD DIDACTICA 8: TANGENCIAS Y ENLACES 8.1. TANGENCIAS Se dice que dos figuras planas son tangentes cuando tienen un solo punto en común, al que se conoce como punto de tangencia. Las tangencias pueden
Las curvas cónicas son las secciones producidas por un plano secante sobre una superficie cónica de revolución. (Fig. 31)
Dibujo Trazado de Curvas cónicas Las curvas cónicas son las secciones producidas por un plano secante sobre una superficie cónica de revolución. (Fig. 31) Fig. 31 Una superficie cónica de revolución es
COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS
LUGARES GEOMÉTRICOS Y CÓNICAS 01. Halla la ecuación de la circunferencia de centro ( 5, 12) y radio 13. Comprueba que pasa por el punto (0, 0). 02. Halla las ecuaciones de los siguientes lugares geométricos:
1. Lugar geométrico de los centros de las circunferencias que pasen por un punto fijo
Unidad 1. Dibujo Geométrico 1. Lugar geométrico de los centros de las circunferencias que pasen por un punto fijo 2. Circunferencia que pasa por dos o tres puntos 1.5. Circunferencia que pasa por dos puntos
Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6
página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto
GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA
ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas
1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a)
Ejercicios de cónicas 1º bachillerato C 1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) b) c) d) e) f) g) h) i) Soluciones: a) Circunferencia de centro ( y radio 3. Excentricidad
Curvas geométricas DIBUJO TÉCNICO I. Curvas técnicas OBJETIVOS
DIBUJO TÉCNICO I Curvas geométricas Si prestamos atención a nuestro entorno, nos damos cuenta de que en muchos de los objetos que nos rodean están presentes las curvas técnicas y las curvas cónicas. Por
ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos:
ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos: Curso: TEMA 1: TRAZADOS BÁSICOS. 1. RECTAS PARALELAS Las rectas paralelas son aquellas que por mucho que las prolongues nunca se van a cortar.
Láminas para hacer durante las vacaciones
Diseño Equipacional Dibujo Técnico 1 Comisión 1 C Prof. Sanchez Láminas para hacer durante las vacaciones Se trabaja en hojas A4, con el mismo formato y rótulo que el resto de las láminas. En cada hoja
Bloque 2. Geometría. 4. Iniciación a las Cónicas
Bloque 2. Geometría 4. Iniciación a las Cónicas 1. La circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. Elevando al cuadrado
TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios:
TEMA 7: CÓNICAS CIRCUNFERENCIA Se define la circunferencia como el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. A dicha distancia se le llama radio de la circunferencia.
1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0
Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Geometría Analítica 1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a
Lugares geométricos y cónicas
Lugares geométricos y cónicas E S Q U E M A D E L A U N I D A D. Lugar geométrico página 6.. Definición página 6. Circunferencia página 6.. Ecuación página 6.. Casos particulares página 67. Elipse página
Tema 3. GEOMETRIA ANALITICA.
Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase
Unidad 8 Lugares geométricos. Cónicas
Unidad 8 Lugares geométricos. Cónicas PÁGINA 75 SOLUCIONES. La elipse es una cónica obtenida al cortar una superficie cónica por un plano oblicuo al eje y que corte a todas las generatrices. La hipérbola
Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante.
REPARTIDO IV - CÓNICAS Elipse Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante. Elementos de la elipse Focos Son los puntos fijos F
1º BACH TANGENCIAS CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ
1º BACH TANGENCIAS CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ TANGENCIAS Propiedades: Si dos circunferencias son tangentes, el punto de tangencia se encuentra en la recta que une los centros
TANGENCIAS. En general, las tangencias tienen por objeto unir circunferencias y rectas mediante otras circunferencias y
Apuntes TANGENCIAS. Problemas de tangencias: rectas tangentes a circunferencias y circunferencias entre sí, conociendo el radio. Aplicación del eje y centro radical en problemas de tangencias: recta y
11. CURVAS TÉCNICAS ÓVALO Definición Construcción de óvalos
11. CURVAS TÉCNICAS Las curvas técnicas tienen muchas aplicaciones en la resolución de problemas de dibujo técnico, ya sean éstos provenientes del ámbito del diseño industrial, arquitectónico o gráfico.
Academia de Matemáticas T.M Geometría Analítica Página 1
INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos
Dibujo Técnico Curvas técnicas
22 CURVAS TÉCNICAS En la actualidad, una parte importante de los objetos que se fabrican están realizados bajo algún tipo de forma curva geométrica. Si prestamos atención a nuestro entorno, nos damos cuenta
Homología y Afinidad IES BELLAVISTA
Homología y Afinidad IES BELLAVISTA La proyectividad es una transformación geométrica que transforma unos elementos geométricos en otros (puntos, rectas, haces de rectas, formas planas, etc.) mediante
LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.
LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de
Tema 6 Tangencias, Enlaces y Polaridad
Tema 6 Tangencias, Enlaces y Polaridad En este tema revisaremos la unión de curvas y líneas mediante tangencias, además de introducir el concepto de polaridad. Las tangencias es un campo extensísimo, del
1º BACH TANGENCIAS CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ
1º BACH TANGENCIAS CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ TANGENCIAS Propiedades: Si dos circunferencias son tangentes, el punto de tangencia se encuentra en la recta que une los centros
UNIVERSIDAD CENTROAMERICANA JOSÉ SIMEÓN CAÑAS ALGEBRA VECTORIAL Y MATRICES GUIA DE TRABAJO Secciones Cónicas Ciclo 02 de 2012
UNIVERSIDAD CENTROAMERICANA JOSÉ SIMEÓN CAÑAS ALGEBRA VECTORIAL Y MATRICES GUIA DE TRABAJO Secciones Cónicas Ciclo 0 de 0 PARTE I: Ejercicios cortos de selección Múltiple. En cada uno de los siguientes
Tangencias IES BELLAVISTA
Tangencias IES BELLAVISTA Posiciones relativas entre recta y circunferencia Posiciones relativas entre dos circunferencias Consideraciones sobre tangencias Si dos circunferencias son tangentes, el punto
CURVAS CÓNICAS ELIPSE. 1. Definición como lugar geométrico.
CURVAS CÓNICAS ELIPSE 1. Definición como lugar geométrico. La elipse es una curva cerrada plana que es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos
TEMA 6 CÓNICAS CÓNICAS TEMA 6. 1.º BACHILLERATO - CIENCIAS. 1. La circunferencia. Ecuación de una circunferencia. (x - a) + (y - b) = r.
TEMA 6 CÓNICAS Se denomina sección cónica (o simplemente cónica) a todas las curvas resultantes de las diferentes intersecciones entre un cono y un plano; si dicho plano no pasa por el vértice, se obtienen
IPN CECYT 7 CUAUHTEMOC ACADEMIA DE MATEMÁTICAS GUÍA PARA EL E.T.S GEOMETRÍA ANALÍTICA
IPN CECYT 7 CUAUHTEMOC ACADEMIA DE MATEMÁTICAS GUÍA PARA EL E.T.S DE GEOMETRÍA ANALÍTICA CONCEPTOS BÁSICOS 1.- Hallar la distancia entre los pares de puntos cuyas coordenadas son: a) A (4, 1), B (3, 2)
B5 Lugares geométricos
Geometría plana B5 Lugares geométricos Lugar geométrico Se llama así a la figura que forman todos los puntos que tienen una misma propiedad. Los lugares geométricos pueden ser del plano o del espacio,
18. TANGENCIAS Características generales Rectas tangentes a una circunferencia desde un punto exterior.
18. TANGENCIAS 18.1. Características generales. Tangencia entre recta y circunferencia: una recta t es tangente a una circunferencia de centro O en un punto T cuando es perpendicular en T al radio OT.
HOMOLOGÍA Y AFINIDAD 1. HOMOLOGÍA
HOMOLOGÍA Y AFINIDAD 1. HOMOLOGÍA La Homología es una transformación geométrica de una figura plana en otra. Se utiliza con mucha frecuencia en geometría descriptiva y por lo tanto en dibujo industrial.
INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO
PRIMER EXAMEN PARCIAL INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO GUÍA DE GEOMETRÍA ANALÍTICA 2016-2017A SISTEMA DE COORDENADAS, LUGARES
Ejercicios 16/17 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.
Ejercicios 16/17 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =
16 PROPORCIONALIDAD INVERSA.-POTENCIA
16 PROPORCIONALIDAD INVERSA.-POTENCIA 16.1 Características generales. Consideramos que una variable x puede adquirir los valores a, b, c, d,.. y otra variable y los valores a, b, c, d, x e y son inversamente
DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA
SISTEMA COORDENADO CARTESIANO, DISTANCIA ENTRE DOS PUNTOS ANGULO ENTRE DOS RECTAS y AREA 1) Transportar a una gráfica los siguientes puntos: a) ( 5, 2 ) b) (0, 0 ) c) ( 1 + 3, 1-3 ) d) ( 0, 3 ) e) ( -
11. ALGUNOS PROBLEMAS CON TRIÁNGULOS
11. ALGUNOS PROBLEMAS CON TRIÁNGULOS Estos problemas son ejemplos de aplicación de las propiedades estudiadas. 11.1. Determinar la posición de un topógrafo que tiene tres vértices geodésicos A,B,C, si
A pesar de la importancia de las cónicas como secciones de una superficie cónica, para estudiar los elementos y propiedades de cada una de ellas en
SECCIONES CÓNICAS Las secciones cónicas se pueden definir como lugares geométricos en el plano, sin embargo la definición clásica de las cónicas, que se debe a Apolonio de Perga, se hizo mediante un procedimiento
Ejercicios de Álgebra y Geometría Analítica
Ejercicios de Álgebra y Geometría Analítica Profr. Fausto Cervantes Ortiz Recta Dibujar las rectas indicadas 1. y = x + 1 2. y = 2x + 5 2 3. y = x + 2 4. y = x + 2 5. y = 2x 3 2 6. y = 3 2 x + 1 2 7. y
Autoevaluación. Bloque III. Geometría. BACHILLERATO Matemáticas I * 8 D = (3, 3) Página Dados los vectores u c1, 1m y v (0, 2), calcula:
Autoevaluación Página Dados los vectores u c, m y v (0, ), calcula: a) u b) u+ v c) u : ( v) u c, m v (0, ) a) u c m + ( ) b) u+ v c, m + (0, ) (, ) + (0, 6) (, ) c) u :( v) () (u v ) c 0 + ( ) ( ) m 8
Ejercicios 17/18 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.
Ejercicios 17/18 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =
ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos:
CTIVIDDES DE GEMETRÍ PR 4º ES DE EPV Nombre y apellidos: Curso: TEM 1: TRZDS BÁSICS. 1. RECTS PRLELS Las rectas paralelas son aquellas que por mucho que las prolongues nunca se van a cortar. 1.1. Trazado
LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90
LA GEOMETRÍA PLANA La geometría plana trata de aquellos elementos que solo tienen dos dimensiones y, que por lo tanto, se encuentran y operan en un plano. Los elementos básicos con los que se suele trabajar
GUIA ADICIONAL CÁLCULO 1 GEOMETRÍA ANALÍTICA. 1.- Grafique los siguientes puntos y encuentre la distancia entre ellos:
GUIA ADICIONAL CÁLCULO GEOMETRÍA ANALÍTICA ELEMENTOS DE GEOMETRÍA ANALÍTICA.- Grafique los siguientes puntos y encuentre la distancia entre ellos: a ) A(, 3) B( 5,3) b ) A( 4, 5) B(5, 3) c ) A(4, ) B(6,
Tangencias y puntos de intersección con una recta. Otros problemas de cónicas
CURVAS CÓNICAS La elipse. La hipérbola y la parábola. Tangencias y puntos de intersección con una recta. Otros problemas de cónicas TEMA7 Objetivos y orientaciones metodológicas El curso pasado estudiamos
Es la elipse el conjunto de puntos fijos cuya suma de distancias a dos puntos fijos llamados focos es constante.
ESQUEMA LAS CÓNICAS LA PARÁBOLA ECUACIONES DE LA PARÁBOLA ECUACIÓN DE LA TANGENTE A UNA PARÁBOLA ELIPSE ECUACIONES DE LA ELIPSE PROPIEDADES DE LA ELIPSE LA HIPÉRBOLA ECUACIONES DE LA HIPÉRBOLA 10 ASÍNTOTAS
1. L U G A R E S G E O M É T R I C O S E N E L P L A N O
L U G A R E S G E O M É T R I C O S. C Ó N I C A S 1. L U G A R E S G E O M É T R I C O S E N E L P L A N O Se define un lugar geométrico como el conjunto de puntos del plano que cumplen una determinada
GEOMETRÍA TANGENCIAS - 1
GEOMETRÍA TANGENCIAS - 1 TANGENCIAS BÁSICAS Recordemos que dos líneas se dice que son tangentes cuando tienen un solo punto común sin cortarse. Para resolver cualquier problema de tangencias de rectas
21.3. Rectas tangentes exteriores a dos circunferencias.
21. TANGENCIAS 21.1. Características generales. Tangencia entre recta y circunferencia: una recta t es tangente a una circunferencia de centro O en un punto T cuando es perpendicular en T al radio OT.
Polígonos IES BELLAVISTA
Polígonos IES BELLAVISTA Polígonos: definiciones Un polígono es la porción de plano limitada por rectas que se cortan. Polígono regular: el que tiene todos los lados y ángulos iguales. Polígono irregular:
Dibujo Técnico Curvas técnicas
22 CURVAS CÍCLICAS 22.1 Introducción. Son curvas lugares geométricos de las posiciones de un punto de una circunferencia o de una recta que rueda sin resbalar sobre otra circunferencia o sobre otra una
Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se
9 Lugares geométricos. Cónicas
9 Lugares geométricos. Cónicas Página Dónde se situará el depósito? La solución es P = (0, ) Página Hazlo tú. Mediatriz: y + = 0 Página 7 Hazlo tú. B : 7 7y = 0 B : 7 7y = 0 Hazlo tú. Es una recta, y =
4. UNIDAD DIDÁCTICA 4: FORMAS GEOMÉTRICAS II
4. UNIDAD DIDÁCTICA 4: FORMAS GEOMÉTRICAS II En el tema anterior empezamos a conocer lo más básico de las formas geométricas. En este tema vamos a aprender a trazar otras formas un poco más complejas,
Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:
1 CONOCIMIENTOS PREVIOS. 1 Cónicas. 1. Conocimientos previos. ntes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Ecuaciones. Sistemas de ecuaciones. Sería conveniente realizar
ALTURAS DE UN TRIÁNGULO
TRIÁNGULO Polígono de tres lados. Según la longitud de sus lados, los triángulos se clasifican en equiláteros, si sus tres lados son iguales, isósceles, si tienen dos lados iguales, y escálenos, si los
Relaciones geométricas IES BELLAVISTA
Relaciones geométricas IES BELLAVISTA Igualdad y semejanza Dos figuras son iguales cuando sus lados y sus ángulos son iguales y están igualmente dispuestos. Dos figuras son semejantes cuando sus ángulos
Cónicas, denición y nomenclatura
Las curvas llamadas cónicas son importantes desde muchos puntos de vista. Desde un punto de vista práctico, sirven para aproximar peque nos trozos de curvas complicadas con un grado de aproximación mayor
TRANSFORMACIONES GEOMÉTRICAS: Proyectividad y homografía. Homología y afinidad. Inversión.
HLGÍ, FINI E INERSIÓN. TRNSFRINES GEÉTRIS: Proyectividad y homografía. Homología y afinidad. Inversión. L HLGÍ En el espacio, dos secciones planas de una pirámide o de un cono son homológicas entre sí,
En la actualidad, una parte importante de los objetos que se fabrican están realizados bajo algún tipo de forma curva geométrica.
06 urvas geométricas En la actualidad, una parte importante de los objetos que se fabrican están realizados bajo algún tipo de forma curva geométrica. Si prestamos atención a nuestro entorno, nos damos
( ) 2 +( 1) 2. BLOQUE III Geometría analítica plana. Resoluciones de la autoevaluación del libro de texto
Pág. de Dados los vectores u, y v0,, calcula: a u b u + v c u v u, v0, 5 a u = = = + b u + v =, + 0, =, + 0, 6 =, c u v = u v = 0 + = Determina el valor de k para que los vectores a, y b6, k sean ortogonales.
20. TRANSFORMACIONES GEOMÉTRICAS BASADAS EN LA PROPORCIONALIDAD DIRECTA
20. TRANSFORMACIONES GEOMÉTRICAS BASADAS EN LA PROPORCIONALIDAD DIRECTA La transformación de una figura en otra que cumpla unas leyes determinadas con la anterior se denominan homografias: Homografía:
UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS
UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS Álgebra Guía de Ejercicios º Elementos Elementos de Geometría Analítica Plana ELEME TOS DE GEOMETRÍA A ALÍTICA Distancia
ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia.
ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de 2012. Circunferencia. Elementos de la circunferencia. El segmento de recta es una cuerda. El segmento de recta es una cuerda que pasa por el centro, por lo tanto
Dibujo Técnico Cuerpos Sólidos Redondos: Desarrollos y Transformadas.
38. CUERPOS SÓLIDOS REDONDOS: DESARROLLOS Y TRANSFORMADAS. 38.6. Desarrollo del cilindro. 38.6.1. Cilindro recto. En realidad el trabajar con un cilindro es lo mismo que trabajar con un prisma pero este
Guía de estudio Nº 3: Ejercicios propuestos sobre Lugares geométricos. Secciones cónicas
U.C.V. Facultad de Ingeniería CÁLCULO I (5) Guía de estudio Nº : Ejercicios propuestos sobre Lugares geométricos. Secciones cónicas.- Determine la ecuación del lugar geométrico de los puntos (, ) del plano
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3 b) y 16 x Lugares geométricos y cónicas
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN 4 La ecuación del lugar geométrico de los puntos del plano que equidistan de la recta x y 4, y del punto P (, ) es: a) x y x y 68 0 b) 4x 9y
2.-GEOMETRÍA PLANA O EUCLIDIANA
2.-GEOMETRÍA PLANA O EUCLIDIANA 2.1.-Triángulos. Definición, clasificación y notación. Puntos notables, ortocentro, circuncentro, baricentro e incentro. Propiedades de las medianas. Los Triángulos son
2.-GEOMETRÍA PLANA O EUCLIDIANA
2.-GEOMETRÍA PLANA O EUCLIDIANA 2.2.-Cuadriláteros. Definición, clasificación y notación. Clasificación de los cuadriláteros: Paralelogramos y no paralelogramos. Los cuadriláteros son los polígonos de
Apuntes de Dibujo Técnico
APUNTES DE DIBUJO TÉCNICO 1. Materiales para trazados geométricos. - La Escuadra y el Cartabón. El juego de escuadra y cartabón constituye el principal instrumento de trazado. Se deben usar de plástico
Geometría Analítica Enero 2015
Laboratorio #1 Distancia entre dos puntos I.- Hallar el perímetro del triángulo, cuyos vértices son los puntos dados. A( 2,, B( 8,, C( 5, 10) R( 6, 5) S( 2, - T(3,- U( -1, - V( 2, - W( 9, 4) II.- Demuestre
TEMA 3. LUGARES GEOMÉTRICOS
TEMA 3. LUGARES GEOMÉTRICOS LA HERRAMIENTA LUGAR GEOMÉTRICO Para construir un lugar geométrico necesitaremos dos objetos: un punto que será el que describirá el lugar geométrico, y otro que será el punto
ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.
ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el
