Teorema de la Función Implícita

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Teorema de la Función Implícita"

Transcripción

1 Teorema de la Función Implícita Sea F : U R p+1 R U abierto F (x 1, x 2,..., x q, y) y un punto a (a 1, a 2,..., a q, b) en U tal que i)f (a 1, a 2,..., a q, b) 0 ii) 0 y continua, existe entonces una función implicita local entorno del punto dado es decir! y f(x 1,..., x q ) x B δ (a) tal que f(a 1,..., a q ) b y F (x 1, x 2,..., x q, f(x 1, x 2,..., x q )) 0 x B δ (a) Una idea de como probar lo anterior es la siguiente: Como 0 entonces tenemos que > 0 ó < 0 supongamos sin perdida de generalidad que > 0 entonces tenemos que F (x 1, x 2,..., x q, y) es creciente cuando (x 1,..., x q ) es constante F (a 1,..., a q, y) es creciente y [b ɛ, b + ɛ] ademas se tiene que F (a 1,..., a q, b) 0 entonces F (a 1,..., a q, b + ɛ) > 0 F (a 1,..., a q, b ɛ) < 0 Si (x 1,..., x q ) B δ (a 1,..., a q ) entonces F (x 1,..., x q, b + ɛ) > 0 F (x 1,..., x q, b ɛ) < 0 y F continua se tiene entonces que! y f(x 1,..., x q ) [b ɛ, b + ɛ] tal que F (x 1, x 2,..., x q, f(x 1, x 2,..., x q )) 0 y b f(x 1, x 2,..., x q ). Hemos encontrado que si (x 1,..., x q ) B δ (a 1,..., a q ) entonces f(x 1,..., x q ) y (b ɛ, b + ɛ) f es continua. En el caso F (x, f(x)) 0 si y f(x) define una fución implicita para y en términos de x entonces podemos calcular su derivada de la siguiente manera, usando la regla de la cadena Siempre que 0 En el caso F (x, y, f(x, y)) 0 si z f(x, y) define una fución implicita para z en términos de x, y entonces podemos calcular sus derivadas parciales de la siguiente manera, usando la regla de la cadena Siempre que 0 En general para F (x 1,..., x n, y) 0 puede resolverse para y en términos de x i y definir así una vecindad V R n del punto (x 1,..., x n ) una función y f(x 1,..., x n ) la cual tiene derivadas parciales continuas en V que se pueden calcular así: (x 1,..., x n ) i (x 1,..., x n ) i (x 1,..., x n ) Teorema de la Función Implícita (1a Versión). 1

2 Considere la función z f(x, y). Sea (x 0, y 0 ) R 2 un punto tal que F (x 0, y 0 ) 0. Suponga que la función F tiene derivadas parciales continuas en alguna bola con centro (x 0, y 0 ) y que (x 0, y 0 ) 0. Entonces F (x, y) 0 se puede resolver para y en términos de x y definir así una función y f(x) con dominio en una vecindad de x 0, tal que y 0 f(x 0 ), lo cual tiene derivadas continuas en V que pueden (x, y) calcularse como y f (x), x V. (x, y) Importante: Este es un resultado que garantiza la existencia de una función y f(x) definida implícitamente por F (x, y) 0. Esto es, puede resolverse para y en términos de x, pero no nos dice como hacer el despeje. Considere la función f(x, y) x 3 + xy y 3 queremos calcular Hacemos F (x, y) x 3 + xy y 3 entonces se tiene que F x 3x 2 + y y F y x 3y 2 que son siempre continuas. Siempre que x 3y 2 0 F x F y 3x2 + y x 3y 2. Considere la función f(x, y) e 2y+x + sin(x 2 + y) 1 en el punto (0,0) tenemos F (0, 0) 0. Las derivadas parciales de F son F x e 2y+x + 2x cos(x 2 + y) F y 2e 2y+x + cos(x 2 + y) que son siempre continuas. Además, (0, 0) 3 0 de modo que T.F.Im. garantiza una vecindad de x 0 en la cual podemos definir una función y f(x) tal que F (x, f(x)) 0. Obsérvese que en este caso no podemos hacer explícita la función y f(x) sin embargo tal función existe y su derivada es y f (x) e2y+x + 2x cos(x 2 + y) 2e 2y+x + cos(x 2 + y) Considere f(x, y) x 4 e xy3 1 en el punto (1,1) F (1, 1) 1 1 0, F x 4x 3 y 3 e xy3 1 2

3 Por lo tanto, F x (1,1) 3, F y 3xye xy3 1 Y así, F y (1,1) 3, y 3 0. El T.F.Im. nos garantiza que en los alrededores de (1,1) el nivel cero de F se ve como la gráfica de la función y f(x) y que su derivada es y 4x3 y 3 e xy3 1. 3xy 2 e xy3 1 Observe que en este caso la función F permite hacer el despeje en términos de x. F (x, y) x 4 e xy3 1 0 x 4 e xy3 1 ln(x 4 ) xy 3 1 ( ln(x 4 ) 1 3 ) + 1 y f(x) que al derivar se debe de llegar al mismo resultado. x Considere z f(x, y) y el punto (x 0, y 0 ) R 2 tal que f(x 0, y 0 ) 0, si F satisface las hipótesis del T.F.Im. sabemos que en los alrededores de (x 0, y 0 ) la curva F (x, y) 0 se puede ver como la gráfica de la función y f(x). Cuál es la ecuación de la recta tangente a la curva F (x, y) 0 en (x 0, y 0 )? Todo lo que necesitamos es la pendiente de la recta,y ésta es y (x 0 ) (x 0, y 0 ) (y y 0 ) (x (x 0, y 0 ) + (x 0, y 0 )(x x 0 ) 0 0, y 0 ) es decir, (x x 0, y y 0 ) f(x 0, y 0 ) 0 Para dimensiones superiores tenemos: F (x, y, z) 0 y lo que quiero es z ϕ(x, y), y por lo tanto F ((x, y), (ϕ(x, y)) 0. Usando la regla de la cadena:

4 + + 0, entonces se necesita que 0. Por lo tanto, el T.M.Im garantiza que en los alrededores del (x 0, y 0 ), z f(x, y). Teorema de la Función Implícita (2da Versión) Considere la función z f(x 1,..., x n ). Sea p (x 1,..., x n, y) R n+1 un punto tal que F (p) 0. Suponga que la función F tiene derivadas parciales, i 1,..., n, y continuas en alguna bola con centro P i y que 0. Entonces, F (x 1,...,x n ) 0 puede resolverse para y en términos de x y definir así una vecindad v de R n del punto (x 1,...,x n ), una función y f(x 1,...,x n ) lo cual tiene derivadas parciales continuas en v que se pueden calcular con las fórmulas i (x 1,...,x n ) i (x 1,..., x n ) (x 1,..., x n ) con (x 1,..., x n ) v. Sea la función f(x, y, z) x 2 + y 2 + z 2 3. El punto (1, 1, 1) R 3 es tal que f(p) 0. Las derivadas parciales de F son F x 2x, F y 2y, F z 2z. Estas son continuas. En el punto P 1 se tiene que 0. El T.F.Im. dice entonces que en los alrededores del punto P 1, F (x, y, z) 0 puede verse como la gráfica de una función z f(x, y) que tiene por derivadas parciales a f f 2x 2z x z, 2y 2z y z. De hecho, es claro que la función f es f(x, y) 3 x 2 y 2 que representa una esfera con centro en el origen y radio 3, la cual globalmente no es la gráfica de la función z f(x, y) alguna. Pero alrededor del punto (1, 1, 1) de tal esfera, esto se puede ver como la gráfica de la función f(x, y) 3 x 2 y 2. 4

5 Sea f(x, y, z) x + y + z ze z entonces F x 1, F y 1, F z 1 e z (z + 1) si el punto P (x 0, y 0, z 0 ) R 3 es tal que x 0 + y 0 + z 0 e z0 0 y z 0 y como 0. El T.F.Im. sugiere que podamos despejar z en términos de x y y y establecer así una función z f(x, y) con z 0 f(x 0, y 0 ) de modo que su gráfica en los alrededores de P coincide con F (x, y, z) 0. Las parciales de la función f son 1 1 e z (z + 1), 1 1 e z (z + 1). Ahora consideramos F (x, y, z) 0 donde F (x 0, y 0, z 0 0, F tiene derivadas parciales continuas en una bola alrededor de P (x 0, y 0, z 0 ) y alguna de ellas no se anula en P, digamos 0. El T.F.Im. nos dice que en los alrededores de P podemos ver a F (x, y, z) 0 como la gráfica de una función z f(x, y). Cuál es la ecuación del plano tangente a esta gráfica en P? Solo necesitamos (x 0, y 0 ), (x 0, y 0 ) (P ), (P ) (x 0, y 0 ) y las calculamos con ayuda del T.F.Im. que nos dice que (x 0, y 0 ) así la ecuación del plano tangente es (P ) (P ) z z 0 (P ) (P ) (x x 0 ) (y y (P ) 0 ) o sea (P ) (P )(x x 0) + (P )(y y 0) + (P )(z z 0) 0 que se puede escribir como (x x 0, y y 0, z z 0 ) F (P ) Considere la superficie en R 2 definida implícitamente por F (x, y, z) xyz + ln(xyz) z 0. Hallar la ecuación del plano tangente en P (1, 1, 1). Solución: Se tiene yz + 1 x, xz + 1 y, F x (P ) 2, F y (P ) 2, F z (P ) 1. xy + 1 z 1 evaluando en el punto P Así la ecuación del plano tangente procurada es 2(x 1) + 2(y 1) + z 1 0 o sea 2x + 2y + z 5. Consideremos ahora el sistema 5

6 au + bv k 1 x 0 cu + dv k 2 y 0 con a, b, c, d, k 1, k 2 constantes. Nos preguntamos cuando podemos resolver el sistema para u y v en términos de x y y. Si escribimos el sistema como au + bv k 1 x cu + dv k 2 y y sabemos que este sistema tiene solución si det a b c d 0 en tal caso escribimos 1 1 u det a b (k 1 dx k 2 by), v c d det a b (k 2 ay k 1 cx). c d Esta solución no cambiaria si consideramos au + bv f 1 (x, y) cu + dy f 2 (x, y) donde f 1 y f 2 son funciones dadas de x y y. La posibilidad de despejar las variables u y v en términos de x y y recae sobre los coeficientes de estas variables en las ecuaciones dadas. Ahora si consideramos ecuaciones no lineales en u y v escribimos el sistema como g 1 (u, v) f 1 (x, y) g 2 (u, v) f 2 (x, y) nos preguntamos cuando del sistema podemos despejar a uy v en términos de x y y. Mas generalmente, consideramos el problema siguiente, dadas las funciones F y G de las variables u, v, x, y nos preguntamos cuando de las expresiones F (x, y, u, v) 0 G(x, y, u, v) 0 podemos despejar a u y v en términos de x y y en caso de ser posible diremos que las funciones u ϕ 1 (x, y) y v ϕ 2 (x, y) son funciones implícitas dadas. Se espera que n funciones u ϕ 1 (x, y) y v ϕ 2 (x, y) en F (x, y, ϕ 1 (x, y), ϕ 2 (x, y) G(x, y, ϕ 1 (x, y), ϕ 2 (x, y) con (x, y) en alguna vecindad V. 6

7 Suponiendo que existen ϕ 1 y ϕ 2 veamos sus derivadas Lo anterior se puede ver como un sistema de 2 ecuaciones con 2 incógnitas y. Aquí se ve que para que el sistema tenga solución det 0 en (P ) (el det Jacobiano) y según la regla de Cramer det, det Analogamente si derivamos con respecto a y obtenemos + + (con los dos det Jacobianos). de donde det Al determinante det, det (con los dos det Jacobianos). lo llamamos Jacobiano y lo denotamos por (u, v). 7

8 Teorema de la Función Implícita (3ra Versión) Considere las funciones z 1 F (x, y, u, v) y z 2 G(x, y, u, v). Sea P (x, y, u, v) R 4 un punto tal que F (P ) G(P ) 0. Suponga que en una bola B R 4 de centro P las funciones F y G tienen (sus cuatro) derivadas parciales continuas. Si el Jacobiano (P ) 0 entonces las expresiones F (x, y, u, v) 0 (u, v) y G(x, y, u, v) 0 definen funciones (implícitas) u ϕ 1 (x, y) y v ϕ 2 (x, y) definidas en una vecindad v de (x, y) las cuales tienen derivadas parciales continuas en v que se pueden calcular. (x,v) (u,v) (u,x) (u,v) (y,v) (u,v) (u,y) (u,v) Demostración: Como por hipótesis (u, v) det 0 los cuatro términos (P ), (P ), (P ) y (P ) no pueden ser 0 simultaneamente. Sin perdida de generalidad suponemos que (P ) 0. Entonces la función z 2 G(x, y, u, v) satisface las hipótesis tel TFI POR LO QUE podemos concluir que en los alrededores del punto P, v se puede escribir como función de x,y,u. Sea ψ(x, y, u) tal función también podemos calcular sus derivadas parciales en este caso solo utilizaremos la que involucra ψ es decir usando la regla de la cadena ψ ψ ψ ψ 0 ψ. Ahora consideramos la función H(x, y, u) F (x, y, u, ψ(x, y, u)) y vamos a derivarla con respecto a u: ψ H + ψ ψ 8

9 sustituimos el valor ψ que habíamos encontrado y obtenemos ( ) H + ψ pues 0 así lo supusimos y el numerador no es otra cosa que el jacobiano de (u,v) 0 por hipótesis, H satisface tambien las hipótesis del TFI y por tanto u se puede resolver en términos de x e y, es decir ϕ 1 (x, y) tal que ϕ 1 (x, y) u. Ahora regresando a la expresión para ψ tenemos que v ψ(x, y, u) ψ(x, y, ϕ 1 (x, y)) ϕ 2 (x, y). Hemos pues probado la existencia de dos funciones ϕ 1 (x, y) y ϕ 2 (x, y) que expresan a u,v en términos de x,y. Considere las expresiones F (x, y, u, v) xe u+v + uv 1 0 y G(x, y, u, v) ye u v 2uv 1 0. En el punto P (1, 1, 0, 0) se tiene que F (P ) G(P ) 0 y las parciales son: F x e u+v, F y 0, F u xe u+v + v, F v xe u+v + v G x 0, G y e u v, G u ye u v 2v, G v ye u+v 2u 0 las cuales son siempre continuas. El Jacobiano (u, v) es (u, v) det xe u+v + u xe u+v + v det ye u v 2v ye u v 2u que en el punto P vale (u, v) det Entonces el T.F.Im. nos asegura que en los alrededores de P podemos despejar u, v en términos de x y y, así establecer funciones implícitas u u(x, y), v v(x, y) con derivadas parciales (x, v) (u, v) det det e u v xe u+v + v det 0 ye u v 2u xe u+v + u xe u+v + v det ye u v 2v ye u v 2u 9

10 ye 2u + 2ue u+v 2xye 2u + 2(u v) xe u+v + (u + v) ye u v. 10

Ayudantía 7. r sin θ sin θ r cos θ. = cos θ. ] (F (p)) z x2 + y 2 + z 2 ] = [ 2 0 ]. , i {1,..., n}

Ayudantía 7. r sin θ sin θ r cos θ. = cos θ. ] (F (p)) z x2 + y 2 + z 2 ] = [ 2 0 ]. , i {1,..., n} Ayudantía 7 1. Regla de la cadena Problema 1. Sean G(x, y, z) = x 2 + y 2 + z 2 y F (r, θ) = (r cos θ, r sin θ, r). Calcule, utilizando Regla de la Cadena, la matriz derivada de (G F ) en el punto p =

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES ) 3-1. Calcular, para las siguientes funciones. a) fx, y) x cos x sen y b) fx, y) e xy c) fx, y) x + y ) lnx + y )

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

Teorema de la Función Inversa y Extremos Condicionados

Teorema de la Función Inversa y Extremos Condicionados Teorema de la Función Inversa y Extremos Condicionados 1 de noviembre de 2016 1. Función inversa. Se usará el siguiente resultado, probado en el libro: Teorema (de la función implícita, primera versión).

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES HOJA 4: Derivadas de orden superior 4-1. Sea u : R R definida por u(x, y e x sen y. Calcula las cuatro parciales segundas,

Más detalles

Polinomio de Taylor. Extremos.

Polinomio de Taylor. Extremos. CAPÍTULO 6 Polinomio de Taylor. Extremos. En este capítulo trabajamos con el polinomio de Taylor de una función de varias variables y su aplicación al estudio de los extremos de funciones de más de una

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

1. Ecuaciones Exactas. M(x, y)x + N(x, y) = 0 (1.4)

1. Ecuaciones Exactas. M(x, y)x + N(x, y) = 0 (1.4) 1. Ecuaciones Exactas Consideremos la ecuación diferencial M(x, y) + N(x, y)y = 0 (1.1) en donde la variable independiente es x y la variable dependiente es y. Vamos a asociar a esta ecuación diferencial

Más detalles

1. Funciones diferenciables

1. Funciones diferenciables 1. diferenciables Volvamos sobre el significado de la derivada de una función real de una variable real, Como vimos en el capítulo anterior, f : (a, b) R derivable en x 0, equivale a que f(x) f(x 0 ) =

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 54 CONTENIDO Funciones

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 2

Problemas de VC para EDVC elaborados por C. Mora, Tema 2 Problemas de VC para EDVC elaborados por C. Mora, Tema 2 Ejercicio 1 Demostrar que la función u(x, y cosh y sen x es armónica en el plano y construir otra función armónica v(x, y tal que u(x, y + iv(x,

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0).

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0). O bien z z 0 = x 0 z 0 (x x 0 ) y 0 z 0 (y y 0 ). Para obtener la ecuación cartesiana de este plano hacemos x 0 (x x 0 )+y 0 (y y 0 )+z 0 (z z 0 ) = 0, como x 0 + y0 + z0 = x 0 + y0 + r (x 0 + y0) = r

Más detalles

Funciones implícitas y su derivada

Funciones implícitas y su derivada Funciones implícitas su derivada 4 Al considerar la función con ecuación x 3x 5x f, es posible determinar f ( x ) con los teoremas enunciados anteriormente, a que f es una función dada implícitamente en

Más detalles

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n.

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n. April 15, 2009 En este capítulo D denota un subconjunto abierto de R n. 1. Introducción Definición 1.1. Dada una aplicación f : D R, definimos la derivada parcial segunda de f como D ij f = 2 f = ( ) x

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 162 CONTENIDO Funciones

Más detalles

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15.

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 2012/2013 21 de junio de 2013 4 p.) 1) Se considera la función fx) = x 4 e 1 x 2. a) Calcular los intervalos de

Más detalles

Coordinación de Matemáticas III (MAT 023) x a. Además, diremos que f es continua en U si f es continua en cada punto de U.

Coordinación de Matemáticas III (MAT 023) x a. Además, diremos que f es continua en U si f es continua en cada punto de U. Coordinación de Matemáticas III (MAT 023) 1 er Semestre de 2013 Continuidad de Funciones en Varias Variables 1. Continuidad Definición 1.1. Sean U R n abierto, a U y f : U R una función real de varias

Más detalles

a de un conjunto S de R n si

a de un conjunto S de R n si 1 235 Máximos, mínimos y puntos de ensilladura Definición.- Se dice que una función real f( x) tiene un máximo absoluto en un punto a de un conjunto S de R n si f( x) f( a) (2) para todo x S. El número

Más detalles

ax + b (x 1)(x 4). c) (2.0 pto.) Sabiendo que f(0) = 2, escriba el desarrollo de Taylor de orden 3 para f en torno a x 0 = 0.

ax + b (x 1)(x 4). c) (2.0 pto.) Sabiendo que f(0) = 2, escriba el desarrollo de Taylor de orden 3 para f en torno a x 0 = 0. Pauta Control 1 MA1002 Cálculo Diferencial e Integral Fecha: 21 de Abril de 2017 Problema 1. Considere la función f : R \ {1, 4} R, tal que su derivada es f (x) = ax + b (x 1)(x 4). a) (1.0 ptos.) Sabiendo

Más detalles

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena 1 Universidad Simón Bolívar. Preparaduría nº 3. christianlaya@hotmail.com ; @ChristianLaya Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena Derivada

Más detalles

,y 1,y 2,...,y N. ... f N. ) x N. , con la condición y = (y 1,y 2,...,y N Es más cómodo escribir también x = (x 1,x 2,...,x N

,y 1,y 2,...,y N. ... f N. ) x N. , con la condición y = (y 1,y 2,...,y N Es más cómodo escribir también x = (x 1,x 2,...,x N Lección 20 Función implícita 20.1. Planteamiento del problema Puede decirse que el teorema de la función inversa nos permite resolver localmente ciertos sistemas de ecuaciones. Para usar la misma notación

Más detalles

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones:

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones: FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 7 1. Usando sólo la definición de derivada,

Más detalles

CÁLCULO II Funciones de varias variables

CÁLCULO II Funciones de varias variables CÁLCULO II Funciones de varias variables Facultad de Informática (UPM) Facultad de Informática (UPM) () CÁLCULO II Funciones de varias variables 1 / 36 Funciones de varias variables Función vectorial de

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900 (1) La posición vertical de una pelota está dada por h(t) = 128 + 16t 16t 2 en donde t se mide en segundos y h(t) se mide en pies. Durante

Más detalles

Extremos Locales. Un punto x 0 es un punto crítico de f si Df(x 0 ) = 0. Un punto crítico que no es un extremo local se llama punto silla.

Extremos Locales. Un punto x 0 es un punto crítico de f si Df(x 0 ) = 0. Un punto crítico que no es un extremo local se llama punto silla. Extremos Locales Entre las caracteristicas geometricas básicas de la gráficas de una función estan sus puntos extremos, en los cuales la función alcanza sus valores mayor y menor. Definicón.- Si f : u

Más detalles

Tema 4: Teorema de la función inversa e impĺıcita

Tema 4: Teorema de la función inversa e impĺıcita Tema 4: Teorema de la función inversa e impĺıcita Teorema de la función inversa para varias variables Sea A R n un conjunto abierto, f : A R n y ā A Si f es de clase C 1 en A y det(df(ā)) 0, entonces existe

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 3 (DERIVADAS) Profesora: Yulimar Matute Febrero 2012 DERIVADAS POR DEFINICIÓN

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

Curso Propedéutico de Cálculo Sesión 3: Derivadas

Curso Propedéutico de Cálculo Sesión 3: Derivadas Curso Propedéutico de Cálculo Sesión 3: Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico Esquema 1 2 3 4 5 6 7 Esquema 1 2 3 4 5 6 7 Introducción La derivada

Más detalles

Fundamentos matemáticos. Tema 5 Derivación de funciones de una y varias variables

Fundamentos matemáticos. Tema 5 Derivación de funciones de una y varias variables Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 5 Derivación de funciones de una y varias variables José Barrios García Departamento de Análisis Matemático Universidad de La

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 7 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor es el estudio de los extremos relativos de una función escalar. Aunque la analogía con el caso de una variable es total,

Más detalles

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1)

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1) Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : Se pide: v = x yē x + x tē y (3.1) a. A qué tipo de formalismo corresponde este análisis del escurrimiento, lagrangeano o eulereano?

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

DERIVADAS DE FUNCIONES DE VARIAS VARIABLES. Curvas Paramétricas. Dada una curva paramétrica

DERIVADAS DE FUNCIONES DE VARIAS VARIABLES. Curvas Paramétricas. Dada una curva paramétrica ANÁLISIS MATEMÁTICO BÁSICO DERIVADAS DE FUNCIONES DE VARIAS VARIABLES Curvas Paramétricas Dada una curva paramétrica γ : [a, b] R R n t γ(t) = (f 1 (t), f 2 (t),, f n (t)), donde las funciones f k : [a,

Más detalles

(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4.

(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Examen final 0 de enero de 0.75 p. Se considera la función escalar de una variable real fx = lnlnx. lnx a Calcular el

Más detalles

INGENIERÍA VESPERTINA EN AUTOMATIZACIÓN INDUSTRIAL. APUNTE N o 1 CÁLCULO EN VARIAS VARIABLES PROFESOR RICARDO SANTANDER BAEZA

INGENIERÍA VESPERTINA EN AUTOMATIZACIÓN INDUSTRIAL. APUNTE N o 1 CÁLCULO EN VARIAS VARIABLES PROFESOR RICARDO SANTANDER BAEZA INGENIERÍA VESPERTINA EN AUTOMATIZACIÓN INDUSTRIAL APUNTE N o 1 CÁLCULO EN VARIAS VARIABLES MATEMÁTICA II PROFESOR RICARDO SANTANDER BAEZA 2004 Ricardo Santander Baeza Universidad de Santiago de Chile

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

Observaciones del profesor:

Observaciones del profesor: INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a los cuatro ejercicios de una de las dos opciones (A o B) que se le ofrecen. Nunca deberá contestar a unos ejercicios de una opción y a otros

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

4.2 Reducción de orden

4.2 Reducción de orden 4. educción de orden 87 Un conjunto de funciones f y ; y g que cumple con la condición anterior se llama un conjunto fundamental de soluciones. Es decir, un conjunto f y ; y g será un conjunto fundamental

Más detalles

Funciones reales de varias variables.

Funciones reales de varias variables. Tema 4 Funciones reales de varias variables. 4.1. El espacio euclídeo R n. Definición 4.1.1. Se define el producto escalar entre vectores de R n como la aplicación: ( ) : R n R n R : x y = (x 1, x 2,...,

Más detalles

La regla de Cramer. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2... a n1 x 1 + a n2 x

La regla de Cramer. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2... a n1 x 1 + a n2 x Consideremos un sistema de n ecuaciones lineales con n incógnitas como el siguiente: a 11 x 1 + a 1 x +. + a 1n x n b 1 a 1 x 1 + a x +. + a n x n b... a n1 x 1 + a n x +. + a nn x n b n La matriz de los

Más detalles

Guía Semana 7 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática

Guía Semana 7 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática . RESUMEN FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables 08- Guía Semana 7 Teorema de la función inversa. Sea f : Ω Ê N Ê N, Ω abierto, una función de clase

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

Tema 8 Ecuaciones diferenciales

Tema 8 Ecuaciones diferenciales Tema 8 Ecuaciones diferenciales 1. ECUACIONES DIFERENCIALES ORDINARIAS Definición 1.1: Ecuación diferencial Se llama ecuación diferencial de orden n a una ecuación que relaciona la variable independiente

Más detalles

Lección 11: Derivadas parciales y direccionales. Gradiente. Introducción al Cálculo Infinitesimal I.T.I. Gestión

Lección 11: Derivadas parciales y direccionales. Gradiente. Introducción al Cálculo Infinitesimal I.T.I. Gestión Lección 11: Derivadas parciales y direccionales. Gradiente Introducción al Cálculo Infinitesimal I.T.I. Gestión Recordar: - Cálculo de ĺımites - Reglas de derivación Derivadas parciales f : R 2 R función

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 12 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor, que vimos en el capítulo anterior, es el estudio de los extremos relativos de una función escalar. Aunque la analogía

Más detalles

Diferenciabilidad. Capítulo Derivada

Diferenciabilidad. Capítulo Derivada Capítulo 3 Diferenciabilidad 1. Derivada Recordemos que si f : R R es diferenciable en x 0 y f (x 0 ) es su derivada en x 0, entonces f(x) f(x 0 ) + f (x 0 )(x x 0 ) es una aproximación lineal de f cerca

Más detalles

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-) = f

Más detalles

Ecuaciones lineales de segundo orden

Ecuaciones lineales de segundo orden Ecuaciones lineales de segundo orden Considere la ecuación lineal general de segundo orden A( xy ) + Bxy ( ) + Cxy ( ) = Fx ( ) donde las funciones coeficientes A, B, C y abierto I. F son continuas en

Más detalles

LECCIÓN 8: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN EXACTAS

LECCIÓN 8: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN EXACTAS 195 LECCIÓN 8: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN EXACTAS JUSTIFICACIÓN En esta lección, basados en la teoría de diferenciales de funciones de dos variables, la cual involucra las derivadas

Más detalles

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 26 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A 5 a a) Discutir para qué valores de a R la matriz M = ( ) tiene inversa. Calcular M a para a =. ( 5 puntos) Para que exista inversa de una

Más detalles

Integrales dobles. Integrales dobles

Integrales dobles. Integrales dobles Integrales dobles Integrales iteradas b g2 (x) a g 1 (x) f(x, y) dydx ó d h2 (y) c h 1 (y) f(x, y) dxdy Los límites interiores de integración pueden ser variables respecto a la variable exterior de integración,

Más detalles

2.11. Diferencial de funciones vectoriales.

2.11. Diferencial de funciones vectoriales. 2 Diferencial de funciones vectoriales Definición 2 Una función vectorial es una aplicación f : D R n R m tal que a cada vector x = (x, x 2,, x n D R n le hace corresponder un vector y = (y, y 2,, y m

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

Ecuaciones Diferenciales Ordinarias Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Semestre de Otoño, 2012

Ecuaciones Diferenciales Ordinarias Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Semestre de Otoño, 2012 Universidad de Chile Ecuaciones Diferenciales Ordinarias Facultad de Ciencias Físicas y Matemáticas Profesora Salomé Martínez Departamento de Ingeniería Matemática Semestre de Otoño, 2012 Pauta: Auxiliar

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

todos los puntos de U, y las funciones df : U R m son continuas en x, entonces F es diferenciable en x.

todos los puntos de U, y las funciones df : U R m son continuas en x, entonces F es diferenciable en x. clase C 1 clase C p 1. clase C 1 Consideremos U un abierto de R n, y F : U R m. Si para cada x U existe df (x), podemos definir una función df : U R m df (x) = ( 1 (x),..., m (x)) y tiene sentido estudiar

Más detalles

Ecuaciones diferenciales en la Química. Modelos.

Ecuaciones diferenciales en la Química. Modelos. Capítulo 1 Ecuaciones diferenciales en la Química. Modelos. 1.1 Introducción. Muchos fenómenos naturales (físicos, químicos, biológicos, etc. ) responden, en sus resultados, a formulaciones matemáticas

Más detalles

Continuidad de funciones reales y vectoriales de variable vectorial

Continuidad de funciones reales y vectoriales de variable vectorial Capítulo 6 Continuidad de funciones reales y vectoriales de variable vectorial 6.1. Introducción Hasta el momento hemos estudiado funciones reales de variable real, es decir, funciones de la forma f :

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

La Diferencial de Fréchet

La Diferencial de Fréchet Capítulo 6 La Diferencial de Fréchet Es bien conocido que una función de una variable f es derivable en un punto a si y sólo si su gráfica admite una recta tangente (no vertical) en el punto (a, f(a)).

Más detalles

* e e Propiedades de la potenciación.

* e e Propiedades de la potenciación. ECUACIONES DIFERENCIALES 1 REPASO DE ALGUNOS CONCEPTOS PREVIOS AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES 1. Cuando hablamos de una función en una variable escribíamos esta relación como y = f(x), esta

Más detalles

APLICACIONES DEL DIFERENCIAL SECCIONES

APLICACIONES DEL DIFERENCIAL SECCIONES CAPÍTULO IV. APLICACIONES DEL CÁLCULO DIFERENCIAL SECCIONES 1. Teorema de la función implícita. 2. Teorema de la función inversa. 3. Cambio de variables. 4. Máximos y mínimos de funciones. 5. Extremos

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

Cálculo. Licenciatura en CC. Químicas Tema n o 5 Resultados teóricos. Ecuaciones diferenciales ordinarias

Cálculo. Licenciatura en CC. Químicas Tema n o 5 Resultados teóricos. Ecuaciones diferenciales ordinarias Cálculo. Licenciatura en CC. Químicas Tema n o 5 Resultados teóricos Ecuaciones diferenciales ordinarias 1. Ecuaciones diferenciales lineales de orden n Considera un número n de funcines de una variable

Más detalles

2 Deniciones y soluciones

2 Deniciones y soluciones Deniciones y soluciones Sabemos que la derivada de una función y(x) es otra función y (x) que se determina aplicando una regla adecuada. Por ejemplo, la derivada de y = e 3x es dx = 6xe3x. Si en la última

Más detalles

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009 ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas

Más detalles

Selectividad Matemáticas II junio 2012, Andalucía

Selectividad Matemáticas II junio 2012, Andalucía Selectividad Matemáticas II junio 0, Andalucía Pedro González Ruiz 0 de junio de 0. Opción A Problema. Sea la función f : R R definida por f(x) = e x (x ).. Calcular las asíntotas de f.. Hallar los extremos

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Definición 11.1 Sea f : A E F una aplicación r-veces diferenciable en un punto a A. o

Definición 11.1 Sea f : A E F una aplicación r-veces diferenciable en un punto a A. o Capítulo 11 Teoremas de Taylor Una vez más nos disponemos a extender a las funciones de varias variables resultados ya conocidos para funciones de una variable, los teoremas de aproximación de Taylor.

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4.1 Conceptos básicos En este capítulo trataremos sobre el procedimiento que debemos llevar a cabo para obtener la solución general de la ED lineal

Más detalles

3 Cálculo diferencial en varias variables

3 Cálculo diferencial en varias variables Introducción Derivadas parciales. Derivadas parciales de orden superior Función diferenciable. Diferencial total. Regla de la cadena. Derivadas de una función definida de manera implícita. (*) Derivación

Más detalles

Cambio de variables en la integral múltiple.

Cambio de variables en la integral múltiple. Cambio de variables en la integral múltiple. En este apartado vamos a generalizar la fórmula g(b) g(a) f(x) dx = b a f(g(t)) g (t) dt al caso de funciones de n variables. Como la región de integración

Más detalles

Análisis Dinámico: Ecuaciones diferenciales

Análisis Dinámico: Ecuaciones diferenciales Análisis Dinámico: Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Análisis Dinámico: 1 / 51 Introducción Solución genérica Solución de

Más detalles

TRABAJO EN GRUPO 04/2009 Permutación 1 Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.)

TRABAJO EN GRUPO 04/2009 Permutación 1 Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.) TRABAJO EN GRUPO 04/2009 Permutación 1 Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.) Problema 1 (i) Probar que el sistema { ln(x 2 + y 2 + 1) + z 2 = π sen(z 2 ) (x 2 + y 2 ) 3 2 + xz = 0, dene

Más detalles

Práctico Preparación del Examen

Práctico Preparación del Examen Cálculo Diferencial e Integral (Áreas Tecnológicas) Segundo Semestre 4 Universidad de la República Práctico Preparación del Examen Límites, funciones y continuidad Ejercicio Sea log(+x ) f(x) =, si x

Más detalles

EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I. 1. (2.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que

EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I. 1. (2.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I DEBE CONTESTAR ÚNICAMENTE A 4 DE LOS SIGUIENTES 5 EJERCICIOS 1. (.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que Sea

Más detalles

1. Sensibilidad en caso de restricciones de igualdad

1. Sensibilidad en caso de restricciones de igualdad FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA57B Optimización No Lineal. Semestre 2007-1 Profesor: Héctor Ramírez C. Auxiliar: Oscar Peredo. Clase Auxiliar #4 Análisis de Sensibilidad en Optimización

Más detalles

Topología en R n. Continuidad de funciones de varias variables

Topología en R n. Continuidad de funciones de varias variables . Continuidad de funciones de varias variables María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I (1 o Grado en Ingeniería Electrónica Industrial y Automática) M. Muñoz (U.P.C.T.) Continuidad

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1 Transformaciones conformes 1 Determinar donde son conformes las siguientes transformaciones: (a) w() = 2 + 2 (b) w() = 1 + i (c) w() = + 1 (d) w() = En cada

Más detalles

Derivación de funciones de varias variables.

Derivación de funciones de varias variables. Derivación de funciones de varias variables. En este apartado se presentan los conceptos básicos que aparecen en la derivación de funciones de varias variables. La idea es establecer un método para estudiar

Más detalles

Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy

Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy 1 Es aplicable el teorema de Rolle a la función f(x) = x 1 en el intervalo [0, 2]? 2 Estudiar si la función f(x) = x x 3 satisface las

Más detalles

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Análisis I Matemática I Análisis II (C) Cuat II - 2009 Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior 1. Calcular las derivadas

Más detalles

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009 Cálculo 2. Cálculo diferencial de funciones de varias variables Mayo, 2009 Definición IR 2 = {(x 1,x 2 )/x 1 IR,x 2 IR} Sean dos puntos a y b, de coordenadas respectivas (a 1,a 2 ) y (b 1,b 2 ). Definición

Más detalles

DERIVADAS DE FUNCIONES DE VARIAS VARIABLES

DERIVADAS DE FUNCIONES DE VARIAS VARIABLES DERIVADAS DE FUNCIONES DE VARIAS VARIABLES Definicion 1. Sea Ω R n un abierto f : Ω R n R m y a Ω. Se define la derivada direccional de f en el punto a y en la dirección u como D u f(a) h 0 f(a + hu) f(a)

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO 2 Métodos de solución de ED de primer orden 2.6 Ecuaciones diferenciales exactas Antes de abordar este tema, sugerimos al lector revise la última sección de este capítulo, la cual trata sobre

Más detalles

Campos Vectoriales y Operadores Diferenciales

Campos Vectoriales y Operadores Diferenciales Campos Vectoriales y Operadores Diferenciales 1 Campos Vectoriales y Operadores Diferenciales Opcional Un en R n es una función (continua) F : D R n R n. Una (línea de corriente o también curva integral)

Más detalles

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.

Más detalles

4 Ecuaciones diferenciales de orden superior

4 Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4. educción de orden allar un método para encontrar soluciones que formen un conjunto fundamental de la ED será nuestro trabajo en las siguientes secciones.

Más detalles

1. Introducción a las ecuaciones diferenciales. ( Chema Madoz, VEGAP, Madrid 2009)

1. Introducción a las ecuaciones diferenciales. ( Chema Madoz, VEGAP, Madrid 2009) 1. Introducción a las ecuaciones diferenciales ( Chema Madoz, VEGAP, Madrid 009) 1 Profesores: Manuel Abejón (grupos A y B) Bartolo Luque (grupos C y D) Página del departamento de Matemática Aplicada y

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-1) =

Más detalles

= f (a) R. f(x) f(a) x a. recta por (a, f(a)) de pendiente f(a+h2) f(a) recta tangente por (a, f(a)) de pendiente f (a)

= f (a) R. f(x) f(a) x a. recta por (a, f(a)) de pendiente f(a+h2) f(a) recta tangente por (a, f(a)) de pendiente f (a) 1 1. DERIVACIÓN 1.1. DEFINICIONES Y RESULTADOS PRINCIPALES Definición 1.1. Derivada. Sea f una función definida en un intervalo abierto I con a I. Decimos que f es derivable en a si existe y es real el

Más detalles