Soluciones de los problemas de álgebra lineal

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Soluciones de los problemas de álgebra lineal"

Transcripción

1 Soluciones de los problemas de álgebra lineal HOJA :. a. a. b,d 4. b,c. b. (a) 4A +C t = 6 6 µ , (b) (BA) t C = µ (c) B + AC = 0 9 4, (d) CA =, 0 µ (e) (B I) =, (f) (CA) = / /4 /4. tr (A) =4, tr (B) =6, tr (D) =4ylasmatricesC, E y F no tienen traza.. Las matrices A +B y E 4F no tienen traza y tr (A +D) =6. α α 4α 4. αa = α 0 α, tr(a) = 4, tr(αa) = 4α = α tr(a). α α α. tr(ab) =7= tr(ba). 6. I = I I = , = tr(i ) 6= tr(i )tr(i )=9,portanto tr(a ) 6= tr(a)tr(a) ElrangodelamatrizA es, el de B es yeldec es. 8. a = y b =. 9. Las matrices A, C y D no poseen inversa. B =, B es triangular inferior, C es triangular superior, D es simétrica y E es antisimétrica. µ 0 0. A =. 0. A es idempotente, B es ortogonal, C es unipotente y D es nilpotente.. A =, B =, C =, D =0. 4. A =60, B = 8, C =4.. Los menores complementarios son M =, M =0, M =. Los adjuntos de los elementos de la segunda fila son A =0, A =0, A =. A =. 6. A + B = 4 4 6= A + B = 7 = 9..

2 7. A = B = a b+ c b c+ a c a+ b = a + b + c b+ c a + b + c c+ a a + b + c a+ b = a F a F a F a F = =0. 8. ElrangodelamatrizA es. 9. La matriz A tiene rango completo si a 6= 0y a 6=.Paraa = 0. A =, B = 44, C = 8. A = / / / 0 / / / / / / 0 0

3 HOJA :. b. b,c. c,d 4. b. x =4, y =46.. i) x =, y =. ii) x =0,y=. iii) Incompatible.. i) Sistema compatible indeterminado (x, y, z) =( z 6, z 6,z). ii)sistema compatible indeterminado (x, y, z, t) =( t z, z t,z,t). 4. k =.. i) W = {(x, y, z) R x = 8z, y = 8 z}, dim(w )=. ii) W = {(x, y, z, t) R 4 x =z t, y =t z}, dim(w )=. 6. i) Sistema compatible determinado (x, y, z, t) =(0, 0, 0, 0). ii) Sistema compatible indeterminado (x, y, z, t) =( 9z 9t 7, 9z 0t 7,z,t). iii) Sistema compatible determinado (x, y, z, t) =(,,, 4). iv) Sistema Incompatible. 7. i) (x, y, z) =(,, ). ii) (x, y, z) =(,, ). 8. i) Si k =entonces el sistema es compatible indeterminado. Si k = entonces el sistema es incompatible. Si k 6= y k 6= entonces el sistema es compatible determinado. ii) Si k = 4 entonces el sistema es compatible determinado. Si k 6= 4 entonces el sistema es incompatible. 9. i) Si c a +b =0 entonces el sistema es compatible indeterminado. Si c a +b 6= 0 entonces el sistema es incompatible. ii) Si a 6= 4 y b cualquiera entonces el sistema es compatible determinado. ½ b = 7 el sistema es compatible indeterminado. Si a = 4 entonces si b 6= 7 el sistema es incompatible. 0. Solución de la primera cuestión es : x = x, x = x 000, 000 x Solución de la segunda cuestión es : x =0.000 x, x = x 000, 000 x 6000.

4 HOJA :. a,b. b,c. b 4.b.a,b,d 6. a 7. b 8.a,c.. α = arccos( ) = π ; β =arccos(0)= π.. El módulo de v es 6.. H no es subespacio vectorial de R [x]. 4. Sólo los conjuntos A, B y F son subespacios vectoriales de R 4.. W W = {(x, y, z) R x =0,y = z} = W, W + W = {(x, y, z) R x =0} = W. 6. El sistema de vectores {(,, ), (,, ), (0, 0, )} no genera R. 7. {(, 0,, 0), (0,, 0, 0), (0, 0, 0, )} es un sistema de generadores del subespacio A. {(,, 0, 0), (0, 0,, )} es un sistema de generadores del subespacio B. {(0, 0,, )} es un sistema de generadores del subespacio F. 8. (,, ) no es combinación lineal de los vectores del sistema S y tampoco lo es el vector (,, ). 9. (a), (b), (e) linealmente dependientes; (c), (d) linealmente independientes. 0. (a) (, ), (, ) (b) (,, ), (, 0, ) (c) (,, )(,, )(, 0, ) (d) (,,, ), (, 0,, ), (0, 4,, ) (e) (,,, 0), (, 0, 0, ), (, 0, 0, ). (a) R (b) {(x, y, z) R :4z =7y x} (c) R (d) {(x, y, z, t) R 4 :8x y z t =0} (e) {(x, y, z, t) R 4 :y z =0}. (a) No Si. (b) Si.. {(0,, 0, 0), (0, 0, 0, ), (, 0,, 0)} es una base del subespacio A; dim A =. {(0, 0,, ), (,, 0, 0)} es una base del subespacio B; dim B =. {(0, 0,, )} es una base del subespacio F ; dim F =. 4. (a) u u = u u = u u 4 = u u = u u 4 = u u 4 =0. (b) v =(,,, 6) = 9 4 u 4 u + 4 u + 4 u 4. (c) v =(a, b, c, d) = a+b+c+d 4 u + a+b c d 4 u + a b c+d 4 u + a b+c d 4 u 4. (d) B 0 = { u u =(,,, ), u u =(,,, ), u u =(,,, ), u 4 u 4 =(,,, )}.. dim U =. {(, 0, 0, 0), (0,, 0, ), (0, 0,, )} es una base de U. dim V =. {(0,,, 0), (, 0, 0, )} es una base de V. U V = {(x, y, z, t) R 4 x = t =0,y=z}; dim(u V )=; {(0,,, 0)} es una base de U V. U + V = L((, 0, 0, 0), (0,, 0, ), (0, 0,, ), (0,,, 0), (, 0, 0, )) = R 4 ; dim(u + V )=4; {(, 0, 0, 0), (0,, 0, ), (0, 0,, ), (0,,, 0)} es una base de U + V. 6. (a) (, ) y (, ) (b) (, ) y (, ) 7. (, 0,, ) / V. (, 0,, ) V ;(, 0,, ) = (, 0,, 0) + 0(0,,, 0) (0, 0, 0, ). Coordenadas = (, 0, ). (, 0,, ) V ;(, 0,, ) = (,, 0, )+(, 0, 0, 0)+(0,,, 0) (0, 0, 0, ). Coordenadas = (,,, ).

5 8. Los vectores (4, 0, ), (,, ), (7,, ) son linealmente dependientes, W = L{(4, 0, ), (,, ), (7,, )} = {(x, y, z) R :x =0z y} y dim W =. 9. (a) {(,, 0, 0), (0, 0,, )} es una base de H y dim H =. (b) dim L =; L = {(x, y, z, t) :x = y + z + t}. H L = {(x, y, z, t) :x = y =0,z+ t =0}; dim(h L) =; {(0, 0,, }} es una base de H L dim(h + L) =4; {(,, 0, 0), (, 0,, 0), (, 0, 0, ), (,, 0, 0)} es una base de H + L.

6 HOJA 4:. a. e. a 4. a,d. b,d 6. d.. Sólo las aplicaciones de los apartados (b) y (d) son aplicaciones lineales.. Expresión matricial (en las bases canónicas): µ 4 0 (a) f(x, y, z) = x y (d) f(u 0,u,u )= z 0 0 µ µ µ (b) f(u,u )= 0 u 0 x (e) f(x, y) = u 0 y (c) f(u, v, w) = u µ v (f) f(x, y) = 0 x. y 0 w 0 u u u. (a) ker(f) ={(x, y, z) R :4x +y =0,z= x}. dim ker(f) = =. dim Im(f) =, Im(f) =R. (b) ker(f) ={(0, 0)}. dim ker(f) =0. dim Im(f) =, Im(f) ={(x, y, z) R : z =x 4y}. (c) ker(f) ={(0, 0, 0)}. dim ker(f) =0. dim Im(f) =, Im(f) =R. (d) ker(f) ={(x, y, z) R : z =0,x= y}. dim ker(f) =. dim Im(f) =, Im(f) ={(x, y, z) R : y =0}. (e) ker(f) ={(0, 0)}. dim ker(f) =0. dim Im(f) =, Im(f) =R. (f) ker(f) ={(0, 0)}. dim ker(f) =0. dim Im(f) =, Im(f) ={(x, y, z, t) R 4 : x =y z, t =y +z}. 4. f(x, y, z) =(x + y, x + z).. No existe ninguna aplicación lineal f : R R tal que f(, ) = (0, ), f(, ) = (, 0). Pues toda aplicación lineal tal que f(, ) = (0, ) debe verificar también que f(, ) = f(, ) = (0, ). 6. A = a 4 a 0. Si a {0,, } entonces dim Im f =. Por tanto Im f 6= R. Si a/ {0,, } entonces 4 0 a dim Im f =. Por tanto Im f = R. 7. Si, f(0,, )=(,, 0). 8. Se tiene: (f + g)(x, y, z) =(4x, 4x +z,x + z), (f g)(x, y, z) =(4x y, x z,x z) (f g)(x, y, z) =(4y z x, z + y,y) (g f)(x, y, z) =(z + x, 4x y,x). M(f) = 4 0 0,M(g) = 0 0 0,M(f g) =M(f) M(g) = 4 0 0, M(f g) =M(f)M(g) = 0,M(g f) =M(g)M(f) = µ 9. (a) M B B (f) = (d) M B B (f) = 0 0 0

7 µ (b) M BB (f) = (c) M B B (f) = µ (e) M BB (f) = 0 (f) M B B (f) = (a) f(x, y, z) =(x y, x y, y + z), (b) f(x, y, z) = 80x+y+0z 4, x+y 0z 4, 8x y+0z, (c) f(x, y) =(x + 7 y, 6x + 4 y, x + y), (d) f(x, y, z) =(4x y + z, 6x + y z), (e) f(x, y, z) = 7x 9y+9z, x y+z, 8x y +z. (a) f (x, y) =(x, y) (c) f (x, y, z) =( x y, x+y,z) (b) f no posee inversa. (d) f (x, y, z, t) =( x+y 4,y,z+ t, t ).

8 HOJA :. a,c. b. b 4. b,c. c 6. b 7. b,d 8. d. (a) B = {(, 0, 0), (0, 0, ), (0,, )} ; D = (b) B = {(, 0, ), (, 0, ), (0,, )} ; D = (c) f no es diagonalizable.. (a) Sí, pues f (0,, ) = (0,, 4). (b) No, ya que f (4, 0, ) = (0, 0, ) 6= (, 0, 9). (b) Sí, pues f (, 0, 0) = (, 0, 0).. (a) Autovalores: λ =0, λ =y λ =. Además V (λ = 0) = {(x, y, z) R /x= y =0} V (λ = ) = {(x, y, z) R /x+y =0,z=0} V (λ = ) = {(x, y, z) R /x= z, x = y}. (b) ker(f) =V (λ =0)={(x, y, z) R /x= y =0}; Im(f) ={(x, y, z) R /x+y + z =0}. µ µ (a) D = ; P 0 = (b) La matriz A no es diagonalizable (c) D = ; P = 0 0 (d) D 4 = ; P 4 = (e) D = ; P = (f) La matriz A 6 no es diagonalizable (g) D 7 = ; P 7 = (g) D 8 = ; P 7 = (a) det A =detd = ; tr A =trd = (b) La matriz A no es diagonalizable (c) det A =detd =6; tr A =trd = (d) det A 4 =detd 4 = ; tr A 4 =trd 4 = (e) det A =detd =8; tr A =trd =8 (f) La matriz A 6 no es diagonalizable (g) det A 7 =detd 7 =4; tr A 7 =trd 7 =6 (g) det A 8 =detd 8 =0; tr A =trd =4 µ (a) a =, b=7. (b) a =4,b=. 8. a =0,b=,c=; a =,b=,c= ; a =, b= 7,c= a =, b=

9 . (a) a 6=. (b) a =0. (c) a 6= 0y b 6=.. (a) D = ; P = (b) D = ; P = (a) λ = doble (m =); λ = 4. (b) λ =; λ = ; λ = (a) A n = n 4 n n+ n n n+ n ( ) n n ( ) n n + ( ) n 7 6 n 7 0 (b) A n = 0 n 4( n 6 n ) n Si denotamos por x(t) e y(t) respectivamente los porcentajes de telespectadores de los informativos de las cadenas WW y R7 al pasar t días, entonces x(t +)=0.6x(t)+0.y(t) y(t +)=0.4x(t)+0.7y(t) o equivalente en notación matricial z(t +)=A z(t) µ donde z(t) =(x(t),y(t)), z(0) = (0., 0.) y A =. Así pues z(7) = Az(6) = A z() =... = A 7 z(0) = Ã +4 (0.) (0.) 7 7 (0.) (0.) 7 7! µ = µ por lo que al cabo de una semana el informativo nocturno de la cadena WW tendrá una audiencia del 4.8% frente a un 7.4% para R7

10 HOJA 6:. c. a,b. a 4. b. b. A = 0 0, A = 4, A = (a) Se deja al lector. (b) Q =. Q = A+At = A+At = A+At.. (a) q es semidefinida positiva. (b) q es indefinida. (c) q es indefinida. (d) q 4 es definida positiva. (e) q es indefinida. (f) q 6 es semidefinida positiva. (g) q 7 es semidefinida negativa. (h) q 8 es definida negativa. definida negativa si a< semidefinida negativa si a = 4. (a) q es indefinida si <a< semidefinida positiva si a = definida positiva si a> (b) q es semidefinida positiva cuando a y b =. definida negativa si a< semidefinida negativa si a = (c) q es indefinida si <a< semidefinida positiva si a = definida positiva si a>. En el resto de casos es indefinida.

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5 Matemáticas II Prácticas: Matrices y Determinantes. Sean las matrices cuadradas siguientes: 4 5 6 B = 9 8 7 6 5 4 C = 5 7 9 0 7 8 9 Se pide calcular: a A B + C. b A AB + AC. c A B AB + ACB.. Sean las matrices:

Más detalles

Ejercicios de Algebra Lineal. Curso 2010/2011

Ejercicios de Algebra Lineal. Curso 2010/2011 Ejercicios de Algebra Lineal Curso 2010/2011 Versión 31-1-2011 Índice general 1. Espacios vectoriales 2 1.1. Cuestionestest........................................ 2 1.2. Problemas...........................................

Más detalles

Resumen de Teoría de Matrices

Resumen de Teoría de Matrices Resumen de Teoría de Matrices Rubén Alexis Sáez Morcillo Ana Isabel Martínez Domínguez 1 de Octubre de 2004 1. Matrices. Generalidades. Definición 1.1. Se llama matriz de orden m n sobre un cuerpo K a

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

Expresa en lenguaje matemático los siguientes conjuntos:

Expresa en lenguaje matemático los siguientes conjuntos: universidad de valladolid facultad de cc ee y ee matemáticas 1 1. Expresa en lenguaje matemático los siguientes conjuntos: (a) El conjunto S 1 de los vectores de IR 3 que tienen las dos primeras componentes

Más detalles

Matrices. Operaciones con matrices.

Matrices. Operaciones con matrices. Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =

Más detalles

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A.

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A. ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; A = A. 2. La inversa de A 1 es A; A 1 1 = A. 3. AB = B A. 4. Las matrices A A y AA son simétricas. 5. AB 1 = B 1 A 1, si A y B son no singulares. 6. Los escalares

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que

Más detalles

Francisco Cabo García Bonifacio Llamazares Rodríguez

Francisco Cabo García Bonifacio Llamazares Rodríguez ÁLGEBRA LINEAL CON DERIVE 5 Francisco Cabo García Bonifacio Llamazares Rodríguez María Teresa Peña García Dpto. de Economía Aplicada (Matemáticas) Universidad de Valladolid Página 1 de 34 Ventana de Álgebra

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE E.T.S. DE INGENIERÍA INFORMÁTICA BOLETÍN DE PROBLEMAS DE ÁLGEBRA LINEAL para las titulaciones de INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN 1. Matrices y determinantes Ejercicio 1.1 Demostrar

Más detalles

1 Autovalores y autovectores asociados a un endomor smo f. Diagonalización.

1 Autovalores y autovectores asociados a un endomor smo f. Diagonalización. utovalores y autovectores asociados a un endomor smo f Diagonalización Dado un endomor smo f de un espacio vectorial real V y jada una base B de V obtenemos una única matriz asociada a f respecto de la

Más detalles

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D.

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. 102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. Tema 1. Espacios Vectoriales. 1. Dar la definición de cuerpo. Dar tres ejemplos de cuerpos. Dar un ejemplo de un cuerpo finito 2. Defina

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A

Más detalles

APÉNDICE A. Algebra matricial

APÉNDICE A. Algebra matricial APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos

Más detalles

Cuestiones de Álgebra Lineal

Cuestiones de Álgebra Lineal Cuestiones de Álgebra Lineal Algunas de las cuestiones que aparecen en esta relación están pensadas para ser introducidas en un plataforma interactiva de aprendizaje de modo que los parámetros a, b que

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

INGENÍERIA INFORMÁTICA. PROBLEMAS DE ALGEBRA

INGENÍERIA INFORMÁTICA. PROBLEMAS DE ALGEBRA INGENÍERIA INFORMÁTICA. PROBLEMAS DE ALGEBRA C. Galindo 1. Resolver el siguiente sistema de ecuaciones x 1 + 3x 2 2x 3 + 2x 5 = 0 2x 1 + 6x 2 5x 3 2x 4 + 4x 5 3x 6 = 1 5x 3 + 10x 4 + 15x 6 = 5 2x 1 + 6x

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales Grado en Óptica y Optometría Curso 00-0 Hoja de ejercicios n o Matrices, determinantes y sistemas lineales 0. Dadas las matrices A y B siguientes, calcule A + B, A B, AB, BA, AA, BB. 0 0 A = 3 0 0 B =

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina

Más detalles

Matrices Particionadas Traza de una Matriz

Matrices Particionadas Traza de una Matriz CAPÍTULO Matrices Particionadas Traza de una Matriz Este capítulo consta de tres secciones Las dos primeras versan sobre matrices particionadas La tercera sección trata sobre la traza de una matriz En

Más detalles

Tema 3: MATRICES. Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada

Tema 3: MATRICES. Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Tema 3: MATRICES Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura: Matemáticas

Más detalles

Problemas de exámenes de Aplicaciones Lineales y Matrices

Problemas de exámenes de Aplicaciones Lineales y Matrices 1 Problemas de exámenes de Aplicaciones Lineales y Matrices 1. Consideramos f End(R n ), que tiene matriz A respecto la base canónica. Cuál de las siguientes afirmaciones es incorrecta? a) Si v es un vector

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

Capítulo 2 Soluciones de ejercicios seleccionados

Capítulo 2 Soluciones de ejercicios seleccionados Capítulo Soluciones de ejercicios seleccionados Sección..4. (a) Sí. (b) No. (c) Sí.. (a) x = si α, pero si α = todo número real es solución de la ecuación. (b) (x, y) = (λ 7/, λ) para todo λ R.. Si k 6

Más detalles

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando ÁLGEBRA LINEAL EXAMEN FINAL 8 de Enero de Apellidos y Nombre: Duración del examen: 3 horas Publicación de notas: enero Revisión de Examen: feb Ejercicio. ( puntos a (, puntos Estudia si la siguiente afirmación

Más detalles

3a b 6a + 2b = 5. Calcula el valor de 3c d 6c + 2d. a + 2b a a + b a + b a + 2b a a a + b a + 2b. = 9b 2 (a + b)

3a b 6a + 2b = 5. Calcula el valor de 3c d 6c + 2d. a + 2b a a + b a + b a + 2b a a a + b a + 2b. = 9b 2 (a + b) PROBLEMAS RESUELTOS DE DETERMINANTES Determinantes de la selectividad de Andalucía. Determinantes de órdenes, y. Determinantes de orden n. ENUNCIADOS Determinantes de selectividad Antes del.. Se sabe que

Más detalles

UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA

UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA AL GEBRA III UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA ALGEBRA III DEFINICION : Sea L : V V un operador lineal sobre el espacio vectorial

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 7 Curso 008-009 Matrices, determinantes y sistemas lineales 0. Dadas las matrices A y B siguientes, calcule

Más detalles

Tema 4: FORMAS BILINEALES Y CUADRÁTICAS

Tema 4: FORMAS BILINEALES Y CUADRÁTICAS Tema 4: FORMAS BILINEALES Y CUADRÁTICAS Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura:

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 5 Curso 006-007 Matrices, determinantes y sistemas lineales 8. Dadas las matrices A y B siguientes, calcule

Más detalles

ÁLGEBRA LINEAL I Práctica 5

ÁLGEBRA LINEAL I Práctica 5 ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2

Más detalles

UTN FRBA Final de Álgebra y Geometría Analítica 21/05/2013. Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:...

UTN FRBA Final de Álgebra y Geometría Analítica 21/05/2013. Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:... UTN FRBA Final de Álgebra y Geometría Analítica 1/05/01 Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:... La condición para aprobar esta evaluación es tener bien resueltos como mínimo tres ejercicios.

Más detalles

TEMA 4. APLICACIONES LINEALES

TEMA 4. APLICACIONES LINEALES TEMA 4. APLICACIONES LINEALES 1.- Definición y propiedades. 2.- Aplicaciones lineales inyectivas y Suprayectivas. 3.- Núcleo, imagen, matriz asociada y rango de una aplicación lineal. 4.- Operaciones con

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 2 APLICACIONES LINEALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 2 APLICACIONES LINEALES EJERCICIOS DE TEMA APLICACIONES LINEALES APLICACIONES LINEALES ) Estudiar cuáles de las siguientes aplicaciones son lineales entre los espacios vectoriales dados: x y a) f: f(x, y) = x y x b) f: x f(x)

Más detalles

Tema 2: Espacios vectoriales

Tema 2: Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 Tema 2: Espacios vectoriales Ejercicios 1. En R 2 se definen las siguientes operaciones: (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 +

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios y subespacios vectoriales Espacios Vectoriales 1. Demuestre que con la suma y multiplicación habituales es un espacio vectorial real.. Considere el conjunto C de los números complejos con la suma

Más detalles

vectoriales N(f) e Im(f) N(f) = (5,1,0),( 3,0,1) y f(1,0,0)=(2,-1,1). Se pide:

vectoriales N(f) e Im(f) N(f) = (5,1,0),( 3,0,1) y f(1,0,0)=(2,-1,1). Se pide: .- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax, así como los subespacios vectoriales N(f) e Im(f) a) f(x,y) = (x,-y) b) f(x,y)

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES

Trabajo Práctico N 5: ESPACIOS VECTORIALES Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

APLICACIONES LINEALES CON MATHEMATICA

APLICACIONES LINEALES CON MATHEMATICA APLICACIONES LINEALES CON MATHEMATICA Sea la aplicación lineal cuya matriz asociada es a. Encontrar una base de su núcleo b. Calcular la imagen mediante la aplicación de los vectores H1, 2, 1, 0, 3L y

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que

Más detalles

Aplicaciones Lineales. S1

Aplicaciones Lineales. S1 Aplicaciones Lineales. S1 Leandro Marín 6 de Noviembre de 2009 Definición Definición Sea K un cuerpo y sean V y W dos espacios vectoriales sobre K. Una aplicación lineal f : V W es una aplicación entre

Más detalles

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean

Más detalles

Bases y dimensión. Problemas teóricos. En todos los problemas se supone que V es un espacio vectorial sobre un campo F. p=1

Bases y dimensión. Problemas teóricos. En todos los problemas se supone que V es un espacio vectorial sobre un campo F. p=1 Bases y dimensión Problemas teóricos Bases de un espacio vectorial En todos los problemas se supone que V es un espacio vectorial sobre un campo F. Definición de base. Sean b 1,..., b n V. Se dice que

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

Ejercicios del Tema 2: Estructuras algebraicas básicas

Ejercicios del Tema 2: Estructuras algebraicas básicas Ejercicios del Tema 2: Estructuras algebraicas básicas En los ejercicios 1, 2, 8 y 9 se utilizará que si G = {g 1,...,g n } es un conjunto finito y * una operación interna definida en G, podemos utilizar

Más detalles

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v EJERCICIOS BLOQUE III: GEOMETRÍA (04-M;Jun-A-4) Considera la recta r que pasa por los puntos A (,0, ) y (,,0 ) a) ( punto) Halla la ecuación de la recta s paralela a r que pasa por C (,,) b) (5 puntos)

Más detalles

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3 1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (05-M4;Jun-B-4) Sea el plano π x + y z + 8 a) (5 puntos) Calcula el punto, P simétrico del punto (,,5 ) b) ( punto) Calcula la recta r, simétrica de la recta plano π P

Más detalles

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas.

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas. Tema II Capítulo 5 Aplicaciones bilineales y formas cuadráticas Álgebra Departamento de Métodos Matemáticos y de Representación UDC 5 Aplicaciones bilineales y formas cuadráticas o simplemente f( x, ȳ)

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aplicaciones Lineales 1 / 47 Objetivos Al finalizar este tema tendrás que: Saber si una aplicación es

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Intersección y suma de subespacios

Intersección y suma de subespacios Intersección y suma de subespacios Objetivos Demostrar que la intersección y la suma de dos subespacios de un espacio vectorial también son sus subespaicios Requisitos Espacio vectorial, subespacio vectorial

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Luisa Martín Horcajo U.P.M. Definición: Vector libre. Operaciones Un vector fijo es una segmento orientado, que queda caracterizado por su origen A y su extremo B y se representa por

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Práctica 1. Espacios vectoriales

Práctica 1. Espacios vectoriales Práctica 1. Espacios vectoriales 1. Demuestre que R n (C n ) es un espacio vectorial sobre R (C) con la suma y el producto por un escalar usuales. Es C n un R-espacio vectorial con la suma y el producto

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles

Aquella que tiene nulos los elementos nos situados en la diagonal principal. Los elementos situados por encima de la diagonal principal son nulos.

Aquella que tiene nulos los elementos nos situados en la diagonal principal. Los elementos situados por encima de la diagonal principal son nulos. Álgebra lineal Matrices Rango de una matriz Orden del mayor menor complementario no nulo. Matriz regular det A Diagonal principal Elementos a ii de la matriz. Si la matriz es cuadrado son los elementos

Más detalles

MATEMÁTICAS II TEMA 4 Vectores en el espacio Problemas resueltos

MATEMÁTICAS II TEMA 4 Vectores en el espacio Problemas resueltos Geometría del espacio: Vectores; producto escalar, vectorial y mixto Aplicaciones MATEMÁTICAS II TEMA 4 Vectores en el espacio Problemas resueltos Vectores Para a = (,, ) y b = (,, 4), halla: a) a + b

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 3 Curso 005-006 Matrices, determinantes y sistemas lineales 54. Dadas las matrices A y B siguientes, calcule

Más detalles

TEMA 4. Vectores en el espacio Problemas Resueltos

TEMA 4. Vectores en el espacio Problemas Resueltos Matemáticas II (Bachillerato de Ciencias) Soluciones de los problemas propuestos Tema 4 5 Vectores TEMA 4 Vectores en el espacio Problemas Resueltos Para a = (,, ) y b = (,, 4), halla: a) a + b b) a b

Más detalles

Tema 4. Vectores en el espacio (Productos escalar, vectorial y mixto)

Tema 4. Vectores en el espacio (Productos escalar, vectorial y mixto) Matemáticas II (Bachillerato de Ciencias) Geometría del espacio: Vectores 75 Espacios vectoriales Tema 4 Vectores en el espacio (Productos escalar, vectorial y mixto) Definición de espacio vectorial Un

Más detalles

Tema 1. 1 Álgebra lineal. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. 1.1 Vectores de R n. 1. Vectores. 2.

Tema 1. 1 Álgebra lineal. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. 1.1 Vectores de R n. 1. Vectores. 2. Aurea Grané. Máster en Estadística. Universidade Pedagógica. 1 Aurea Grané. Máster en Estadística. Universidade Pedagógica. 2 Tema 1 Álgebra lineal 1. Vectores 2. Matrices 1 Álgebra lineal Aurea Grané

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2004 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para :

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2004 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para : V 1 / 8 Ejercicios sugeridos para : los temas de las clases del 18 y 20 de mayo de 2004. Temas : Rectas y planos en el espacio. Espacios vectoriales. Subespacios. Secciones 3.5, 4.2, 4.3, del texto. Observación

Más detalles

MATEMÁTICAS I 13 de junio de 2007

MATEMÁTICAS I 13 de junio de 2007 MATEMÁTICAS I 13 de junio de 2007 2º EXAMEN PARCIAL Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0.2 puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Si

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

6. DIAGONALIZACIÓN DE ENDOMORFISMOS

6. DIAGONALIZACIÓN DE ENDOMORFISMOS Diagonalización de endomorfismos 6. DIAGONALIZACIÓN DE ENDOMORFISMOS SUMARIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRICA.- Autovalores y vectores propios. Propiedades..- Multiplicidad algebraica y geométrica

Más detalles

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano. CAPÍTULO 1 El plano vectorial Consideremos P como el plano intuitivo de puntos: A,,C... 1.1. El espacio vectorial de los vectores Definición 1.1 Vectores fijos Dado dos puntos cualesquiera A e del espacio

Más detalles

ALGEBRA LINEAL Y GEOMETRÍA I

ALGEBRA LINEAL Y GEOMETRÍA I ALGEBRA LINEAL Y GEOMETRÍA I TEMA 3: Autovalores y Autovectores. Introducción Ya conoces que las aplicaciones lineales entre espacios vectoriales, al elegir bases en ellos, las puedes representar por matrices.

Más detalles

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL. Tema 5. Operadores Lineales en Espacios con Producto Interno OPERADOR ADJUNTO. ; donde: F(z)=α z ( )

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL. Tema 5. Operadores Lineales en Espacios con Producto Interno OPERADOR ADJUNTO. ; donde: F(z)=α z ( ) OPERDOR DJUNO Problema : Sea el espacio vectorial con producto interno complejo definido por z w, en donde w es el conjugado de w. Obtener el adjunto del operador lineal ( zw) = F : cua regla de correspondencia

Más detalles

Matrices 1 (Problemas). c

Matrices 1 (Problemas). c º Bachillerato Matrices 1 (Problemas) 1.- Efectúa las siguientes operaciones con matrices: a) 1 4 5 6 + b) 5 7 9 11 1 1 1 1 1 1 c). 4 d) 6. 1 6 1 18 1 g) 0 0 0 0 a 0 b 0. 0 b 0 0 0 c c 0 0.- Siendo A =

Más detalles

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 4: Aplicaciones lineales Ejercicios 1 Estudia la linealidad de las siguientes aplicaciones: (a) f : R R 3, definida por f(x, y) =

Más detalles

TALLER III Profesor: H. Fabian Ramirez TRANSFORMACIONES LINEALES Y VECTORES PROPIOS. 0 0 λ λ 2 λ λ

TALLER III Profesor: H. Fabian Ramirez TRANSFORMACIONES LINEALES Y VECTORES PROPIOS. 0 0 λ λ 2 λ λ UNIVERSIDAD NACIONAL Facultad de Ciencias Departamento de Matemáticas TALLER III Profesor: H. Fabian Ramire TRANSFORMACIONES LINEALES Y VECTORES PROPIOS OBSERVACIÓN: N.A significa Ninguna de las Anteriores..

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica Industrial, Especialidad de Electricidad

ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica Industrial, Especialidad de Electricidad ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica Industrial, Especialidad de Electricidad Fundamentos Matemáticos de la Ingeniería Diciembre de 5. Primera parte Tiempo: horas. Se recuerda

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación

Más detalles

Fundamentos Matemáticos. Tijani Pakhrou

Fundamentos Matemáticos. Tijani Pakhrou Fundamentos Matemáticos Tijani Pakhrou Índice general. Matrices y determinantes.. Definiciones básicas.............................2. Suma de Matrices............................. 3.3. Producto de un

Más detalles

Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero

Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero 11 de Diciembre de 2008 2 B.G.O. 104.- Determina si los siguientes subconjuntos del espacio vectorial correspondiente son subvariedades afines:

Más detalles

Aplicaciones lineales.

Aplicaciones lineales. Tema 4 Aplicaciones lineales. Definición 4. Sea f: V W una aplicación entre los espacios vectoriales reales V y W. Se dice que f es una aplicación lineal si: a f(u + v = f(u + f(v; u, v V, b f(ku = kf(u;

Más detalles

Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0).

Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0). Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0). a) Demostrad que (1,3,4), (1,1,1) i (0,1,1) son una base de R³. b) Decid

Más detalles

Núcleo e Imagen de una aplicación lineal.

Núcleo e Imagen de una aplicación lineal. PRÁCTICA Nº 8 Núcleo e Imagen de una aplicación lineal. Con esta práctica se pretende utilizar el cálculo de la expresión matricial de una aplicación lineal respecto de las bases del dominio y codominio

Más detalles

Problemas y Ejercicios Resueltos. Tema 4: Sistemas de ecuaciones lineales.

Problemas y Ejercicios Resueltos. Tema 4: Sistemas de ecuaciones lineales. Problemas y Ejercicios Resueltos. Tema 4: Sistemas de ecuaciones lineales. Ejercicios 1.- Determinar el rango de la siguiente matriz: 0 1 3 4 1 3 5. Solución. 0 1 3 4 1 3 5 AT 1( 1) AT 1 ( 1)T 14 ( 1 )

Más detalles

Matrices y Determinantes.

Matrices y Determinantes. Tema II Capítulo 1 Matrices Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC Tema II Matrices y Determinantes 1 Matrices 1 Definiciones básicas Definición 11 Una matriz A de

Más detalles

1 Vectores de R n. Tema 1. Álgebra matricial. 1.2 Dependencia lineal

1 Vectores de R n. Tema 1. Álgebra matricial. 1.2 Dependencia lineal Diplomatura en Estadística 1 Tema 1. Álgebra matricial 1. Vectores 1.1 Definiciones básicas 1.2 Dependencia lineal 2. Matrices 2.1 Rango de una matriz 2.2 Matrices cuadradas 3. Vectores y valores propios

Más detalles

1 Isometrías vectoriales.

1 Isometrías vectoriales. Eugenia Rosado ETSM Curso 9-. Isometrías vectoriales. Sea E un espacio vectorial euclídeo. De nición Una aplicación f : E! E se dice transformación ortogonal o isometría vectorial si conserva el producto

Más detalles

EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO

EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO ESPACIO AFIN 1.Hallar la ecuación del plano que contenga al punto P(1, 1, 1) y sea paralelo a las rectas: r x 2y = 0 ; y 2z + 4 = 0; s

Más detalles

Ejercicios de MATRICES y SISTEMAS DE ECUACIONES LINEALES.

Ejercicios de MATRICES y SISTEMAS DE ECUACIONES LINEALES. Ejercicios de MATRICES y SISTEMAS DE ECUACIONES LINEALES. 1. a) Hallar números Α y Β tales que b) Idem para que Α Β 2 Α Β Α Β 2 Β 1 Α Β 0 1 1 Β 3 5 Α 0 10 19 8 2 2. a) Sean A 2 1 3 2, B 1 1 4 2, C 2 3

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA EJERCICIOS DE GEOMETRÍA MATEMÁTICAS II LOGSE Antonio López García Juan Fernández Maese Angeles Juárez Martín GEOMETRÍA GEOMETRÍA Índice Temático.- VECTORES... 5..- VECTORES. OPERACIONES CON VECTORES...

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

MATEMÁTICAS I, Grado en Ingeniería Eléctrica, Electrónica Industrial y Mecánica.

MATEMÁTICAS I, Grado en Ingeniería Eléctrica, Electrónica Industrial y Mecánica. MATEMÁTICAS I, Grado en Ingeniería Eléctrica, Electrónica Industrial y Mecánica. Departamento de Matemática Aplicada II. Escuela Politécnica Superior de Sevilla Curso - Boletín n o. Sistemas de ecuaciones

Más detalles

ALGEBRA y ALGEBRA LINEAL

ALGEBRA y ALGEBRA LINEAL 520142 ALGEBRA y ALGEBRA LINEAL Primer Semestre, Universidad de Concepción CAPITULO 7. MATRICES DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Matriz Sean

Más detalles

ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales

ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales Espacios vectoriales 1. Sea V un espacio vectorial

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x

Más detalles

TEST DE ÁLGEBRA. 6.- Sea el subespacio de R 3 S = { (x,,y,z) / x +y+z = 0} a) es de dimensión 1 b) es de dimensión 2 c) es R 3 d) NDLA

TEST DE ÁLGEBRA. 6.- Sea el subespacio de R 3 S = { (x,,y,z) / x +y+z = 0} a) es de dimensión 1 b) es de dimensión 2 c) es R 3 d) NDLA TEST DE ÁLGEBRA 1.- Sea f:r 4 -----> R 5 una apli. lineal a) Dim ker(f) tiene que ser 3 b) Dim ker(f) será 4 c) Dim ker(f) es 5 2.- El sistema homogéneo 3 x % 8 y % ð z 0 y & z 0 a) tiene soluciones no

Más detalles

EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA

EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean linealmente

Más detalles