El problema del Aprendizaje Automático (Machine Learning)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El problema del Aprendizaje Automático (Machine Learning)"

Transcripción

1 Universidad TELESUP Ingeniería de Sistemas Ciclo 2017-I El problema del Aprendizaje Automático (Machine Learning) 1. Introducción Arthur Samuel (1959) define machine learning como el campo de estudio que le da a las computadoras la capacidad de aprender sin tener que programarlas explícitamente. Más tarde Tom Mitchell (1998) define un problema de aprendizaje automático bien abordable como que un programa de computador se dice que aprende de la experiencia E respecto a una tarea T y una medida de eficacia P, si su eficacia en T, tal y como se mide por P, mejora con la experiencia E. Pedro Domingos (2012) define los sistemas de aprendizaje automático como sistemas que aprenden programas automáticamente a partir de datos. Por ejemplo en el caso de que la tarea T sea clasificar un mail como spam o no spam, la experiencia E es que el programa observe qué mails marco yo como spam y cuales no y la medida de eficacia P sería el número de mensajes marcados correctamente como spam o no spam. El objetivo del aprendizaje automático es utilizar una serie de datos para descubrir un proceso encubierto del sistema. Este es un objetivo compartido por muchas disciplinas. Lo característicos para este caso es que para poder aplicar aprendizaje automático a un problema este tiene satisfacer tres requerimientos: Existe un patrón en los datos que tenemos que descubrir. El patrón no se puede describir matemáticamente utilizando una expresión analítica. Si existe una expresión matemática, entonces no tiene sentido utilizar machine learning porque la expresión matemática da mejores resultados. Tenemos que tener datos para descubrir el patrón. La existencia del patrón no tiene por qué ser demostrable matemáticamente y en muchos casos la aseveración de si existe o no se basa más bien en una intuición o tras observar el fenómeno durante un tiempo. Tampoco es necesario saber de antemano si existe un patrón o no. Se pueden explorar los datos y determinar si el patrón existe o no y si por lo tanto podremos extraer la información que necesitamos. 2. Machine Learning vs. Estadística Tanto la estadística como el aprendizaje automático intentan hacer lo mismo, encontrar las correspondencias que existen en la naturaleza entre entradas y salidas. La estadística aborda este problema intentando modelar el mundo con procesos estocásticos. Una vez que se tiene el modelo se pueden extraer más muestras de ese modelo y hacer razonamientos sobre la población en su totalidad.

2 Mientras que el aprendizaje automático intenta encontrar una función que prediga y a partir de x sin necesidad de asumir un cierto modelo de la naturaleza 3. Componentes del problema de aprendizaje En general podemos dividir un problema de aprendizaje automático en tres bloques: Representación: cómo es mi clasificador? Es un árbol de decisiones? Es una red neuronal? Evaluación: Qué métricas uso para distinguir una buena solución de una mala? Optimización: Cómo voy a buscar entre todas estas las posibles instancias de mi representación? Siendo más específicos y utilizando como ejemplo un sistema automático de aprobación/denegación de crédito: - Tenemos una entrada: x que es un vector d-dimensional con una dimensión por campo de información que componga la entrada. En nuestro ejemplo x representa la ficha de cada cliente con los campos correspondientes (features). - Tenemos una salida: y que es una decisión, una clasificación, un dato, etc. En nuestro ejemplo es la decisión de dar o denegar el crédito. - Función objetivo f: X -> Y es una función en el dominio X que incluye todos los x posibles al dominio Y con todos los posibles valores de y. En aprendizaje automático esta función nunca se conoce, de lo contrario se podría formular matemáticamente y no sería necesario aplicar aprendizaje automático. En nuestro ejemplo esta es la fórmula ideal para decidir si se le da un crédito a un cliente o no. - Datos: son pares x, y que son ejemplos de la relación entre la entrada y la salida: (x1,y1), (x2,y2),, (xn,yn). En nuestro ejemplo esto es el registro histórico de clientes y decisiones que tiene un banco. - Hipótesis: la fórmula que vamos a utilizar para aproximar la función objetivo. Al igual que f va de X a Y. g: X->Y. Esta es la fórmula que vamos a aplicar en la práctica en la decisión de si dar el crédito o no. Estos elementos están relacionados entre sí de la siguiente forma: la función ideal genera los datos, que es lo que nosotros vemos. Tenemos por otro lado un conjunto de funciones hipótesis (también llamadas representación) de las que tenemos que seleccionar una. El algoritmo de aprendizaje se va a encargar de hace esa selección a partir de los datos de forma que la función hipótesis seleccionada aproxime a la función ideal lo más posible.

3 La restricción de seleccionar la hipótesis final de un conjunto no es en realidad una restricción porque nosotros podemos hacer ese conjunto tan grande o tan pequeño como queramos, todo depende del tiempo y la capacidad de cálculo de la que dispongamos. Sin embargo es un elemento clave en la teoría del aprendizaje ya que nos va a decir qué podemos aprender, cuando podemos aprender, etc. 4. Componentes de la solución (modelo de aprendizaje) Dentro del sistema que hemos visto solo podemos controlar dos de los elementos: el algoritmo de aprendizaje y el conjunto de hipótesis. Estos son los dos elementos de la solución. - El conjunto de hipótesis es un conjunto de funciones candidatas H= {h} con g H - El algoritmo de aprendizaje. En conjunto forman el modelo de aprendizaje. Por ejemplo si el conjunto de hipótesis son las redes neuronales, entonces el algoritmo es backpropagation. Nunca vamos a aprender la función objetivo, esto significa que, una vez aprendido un modelo no podemos saber a ciencia cierta si va a ser válido para otros datos diferentes de aquellos que hemos utilizado para obtenerlo. 5. Cuándo es posible el aprendizaje? (BIN and MARBLES) Supongamos una urna transparente con bolas rojas y verdes. Hacemos el siguiente experimento.

4 Tomamos una bola, la probabilidad de que cojamos una bola roja va a ser µ siempre (suponemos una fuente infinita de bolas en la que la proporción de bolas rojas es µ). Por lo tanto la probabilidad de que cojamos una bola verde es 1-µ. El valor de µ es desconocido. Tomamos N bolas de forma independiente (con reemplazo). La fracción de bolas rojas en la muestra va a ser. Esta fracción va a cambiar de muestra a muestra. Esta fracción no nos dice nada sobre µ porque es posible que, siendo la mayor parte de las bolas de color rojo en la urna, nos salgan la mayor parte de las bolas en la muestra de color verde. Sin embargo, si la muestra es lo suficientemente grande, la frecuencia de la muestra es probablemente parecida a µ. Por lo tanto tenemos aquí una distinción entre lo que es posible y es probable. En una muestra grande (N grande) probablemente estará cerca de µ (dentro de una tolerancia ). Formalmente podemos expresar la probabilidad de que la diferencia entre la fracción en la muestra y en el sistema sea mayor que la tolerancia como una función exponencial negativa del tamaño de la muestra y de la tolerancia al cuadrado. Esto significa que tener una muestra grande ayuda a que la fracción en la muestra sea representativa del sistema, pero una disminución de la tolerancia tiene un impacto negativo de orden cuadrático en la representatividad. A esta desigualdad se le denomina desigualdad de Hoeffding y hace que decir que la fracción en la muestra y en el sistema son iguales sea una afirmación probablemente aproximadamente correcta. Es cierta en el límite cuando N o la tolerancia tienden a infinito. La desigualdad es válida para cualquier tamaño de muestra que sea un número natural positivo y para cualquier épsilon mayor que 0, es decir, no es asintótica. Es una de las leyes de números grandes. A pesar de que la probabilidad exacta depende de µ, la inecuación nos da un límite por arriba de su valor y no depende de µ. Esta es una gran propiedad porque no conocemos µ y no lo podemos determinar. La desigualdad además plantea la necesidad de llegar a un compromiso entre la acotación de la probabilidad, el tamaño de la muestra y la tolerancia. 6. Conexión con el aprendizaje En una situación de aprendizaje, el parámetro µ desconocido en la urna se convierte en la función objetivo f: X->Y

5 Para ver esto consideremos cada uno de los datos x en el espacio de entrada X como una de las bolas en la urna. Por lo tanto la urna en sí es el espacio de entrada X. El color verde de las bolas son aquellos casos en los que mi hipótesis se corresponde con la función objetivo y el color rojo se corresponde con aquellos casos en los que la hipótesis no coincide con la función objetivo. Como la función objetivo no se conoce, el color de los puntos es algo que no puedo saber. Cuando selecciono una hipótesis h, inmediatamente tiene asociada una fracción de puntos en el espacio de entrada que coinciden con la función objetivo f. Estas son las bolas verdes. El resto no coinciden, estas son las bolas rojas. Nosotros, todo lo que podemos hacer es seleccionar una h buscando que la fracción de puntos en los que no coincide con f sea lo más pequeño posible en la muestra, y la desigualdad de Hoeffding nos acota cómo de lejos de la fracción real en el sistema µ estamos en función del número de datos y de la tolerancia. De esta forma mediante la tolerancia y mediante el número de datos yo NO controlo µ (es desconocida), pero sí como de cerca está su estimación de ella cuando aplico h. Ahora vamos a tener una probabilidad P asociada a cada uno de los puntos del espacio de entrada que es la que me va a dar cual de los puntos me va a aparecer en mis datos. Esta distribución de probabilidad puede ser cualquiera y además no tengo por qué conocerla, solo sé que va a estar acotada por la desigualdad de Hoeffding. Esta probabilidad es la que se utiliza para generar los puntos x1 a xn en nuestros datos, estos puntos se generan de forma independiente entre sí y en algunos de ellos nuestra función hipótesis va a coincidir con la función objetivo y en otros no. El problema es que aquí estamos asumiendo que la función de hipótesis h es una función fija. Que en un dato h coincida con f no va a depender de f, sino que va a depender exclusivamente de h. Tal y como se ha planteado hasta ahora, lo que está ocurriendo es que para esta función hipótesis generaliza en µ y lo que hemos hecho es verificar h, no aprender (es decir, no modificar para hacerlo más pequeño en función de la h escogida). Es decir, estoy tomando muestras generadas por la función objetivo y viendo si lo que sale

6 de h se corresponde con ello, no buscando h. Y puesto que no tengo ninguna garantía de que sea pequeño, puedo escoger una h cualquier y acotar todo lo que quiera su grado de éxito, pero no mejorarlo. 7. Múltiples hipótesis Para generalizar el modelo de la urna a una situación en la que tengo más de una hipótesis. Para ello voy a tener múltiples urnas, cada una representando una hipótesis y unas van a funcionar mejor que otras. En el ejemplo por ejemplo la hipótesis 1 funciona mucho peor que la hipótesis 2, y las muestras de las urnas reflejan este hecho hasta cierto punto. Por el momento vamos a considerar una serie finita de M hipótesis. Por lo tanto el aprendizaje consistiría en examinar las diferentes muestras y gracias a la acotación que nos da la desigualdad de Hoeffding, ver cuál de ellas tiene un menor (y por lo tanto, al generalizar, un µ menor) y determinar de esta forma cual de las hipótesis está más de acuerdo con la función objetivo. El valor de µ y va a depender de la hipótesis que escoja. A le vamos a dar el nombre de error "in sample" (error porque representa la fracción de puntos en los que la hipótesis falla) y se va a denotar por Ein(h). A µ le vamos a dar el nombre de error "out of sample" y lo vamos a denotar por Eout(h). Ambos errores dependen de la hipótesis sobre la que estemos trabajando. Con esta notación la desigualdad de Hoeffding queda: El problema es que la desigualdad de Hoeffding no es aplicable a múltiples hipótesis (urnas). No hay garantía de que el error "in sample" que obtengo con una hipótesis sea realmente mejor que el de otra

7 porque simplemente puedo tener suerte con los datos y que resulte que para una hipótesis concreta esos datos den un error "in sample" bajo, cuando en realidad no es mejor o es incluso peor que para otra hipótesis que realmente si está más de acuerdo con la función objetivo. Cada vez que tomo una muestra o cambio de hipótesis para una misma muestra estoy tomando una muestra al azar de la misma urna/diferentes urnas, y simplemente por probabilidad, si tomo las suficientes muestras, alguna de ellas va a resultar ser una muestra perfecta. Para resolver esto haremos lo siguiente, supongamos que hemos escogido la hipótesis final g seleccionando de entre M hipótesis. La probabilidad de que la diferencia entre el error in sample y el error outsample sea mayor de la tolerancia para esta función va a ser menor o igual a la probabilidad de que alguna esa diferencia en alguna de las hipótesis sea mayor que la tolerancia. Esto es igual al sumario de todas las probabilidades para las hipótesis (este es el peor caso porque las consideramos que no se superponen) y por tanto: donde cada uno de estos términos de la sumatoria se refiere a una hipótesis fija, por lo que la desigualdad de Hoeffding se aplica a cada uno de ellos y tenemos que:

8 Por lo tanto ahora tenemos acotada la probabilidad de que el error in sample generalice al error out sample con una tolerancia dada y para un número de muestras dada, pero fijémonos que esta probabilidad depende del número de hipótesis que yo haya utilizado para seleccionar g, y cuanto mayor sea ese número de hipótesis, peor va a generalizar. Cuanto mayor sea M, más sofisticado será el modelo, y cuanto más sofisticado sea el modelo mayores son las posibilidades que memoricemos las muestras y no generalicen bien out of sample. Referencias [1] Machine Learning class lectures by Prof Andrew Ng (Stanford, EEUU) [2] Learning from Data lecture notes from class by Yaser S. Abu-Mostafa (Caltech, EEUU)

Técnicas de Clasificación Supervisada DRA. LETICIA FLORES PULIDO

Técnicas de Clasificación Supervisada DRA. LETICIA FLORES PULIDO Técnicas de Clasificación Supervisada DRA. LETICIA FLORES PULIDO 2 Objetivo El objetivo principal de las técnicas de clasificación supervisada es obtener un modelo clasificatorio válido para permitir tratar

Más detalles

Tareas de la minería de datos: clasificación. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR

Tareas de la minería de datos: clasificación. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Tareas de la minería de datos: clasificación CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Tareas de la minería de datos: clasificación Clasificación (discriminación) Empareja

Más detalles

07 Estimación puntual e introducción a la estadística inferencial

07 Estimación puntual e introducción a la estadística inferencial 07 Estimación puntual e introducción a la estadística inferencial Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Contenido Qué es la estadística inferencial?

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

Tareas de la minería de datos: clasificación. PF-5028 Minería de datos Prof. Braulio José Solano Rojas UCR

Tareas de la minería de datos: clasificación. PF-5028 Minería de datos Prof. Braulio José Solano Rojas UCR Tareas de la minería de datos: clasificación PF-5028 Minería de datos Prof. Braulio José Solano Rojas UCR Tareas de la minería de datos: clasificación Clasificación (discriminación) Empareja o asocia datos

Más detalles

Teoria de Errores. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingeniería. Hermes Pantoja Carhuavilca 1 de 31

Teoria de Errores. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingeniería. Hermes Pantoja Carhuavilca 1 de 31 Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingeniería Métodos Numérico Hermes Pantoja Carhuavilca 1 de 31 CONTENIDO Introducción Hermes Pantoja Carhuavilca 2 de

Más detalles

MATEMÁTICAS APLICADAS A LAS CCSS I (1º BACHILLERATO)

MATEMÁTICAS APLICADAS A LAS CCSS I (1º BACHILLERATO) MATEMÁTICAS APLICADAS A LAS CCSS I (1º BACHILLERATO) 1.1.1 Contenidos Matemáticas Aplicadas a las Ciencias Sociales I 1.1.1.1 Bloque 1. Aritmética y álgebra (Total: 34 sesiones) Números racionales e irracionales.

Más detalles

PLANES CURRICULARES GRADO9º/ 01 PERIODO

PLANES CURRICULARES GRADO9º/ 01 PERIODO PLANES CURRICULARES GRADO9º/ 01 PERIODO Grado: 9º Periodo: 01 PRIMERO Aprobado por: G. Watson - Jefe Sección Asignatura: MATEMATICAS Profesor: Gloria rueda y Jesús Vargas ESTANDARES P.A.I. I.B. A. Conocimiento

Más detalles

1. Los números racionales. 2. Operaciones con racionales. 3. Clasificación de los decimales. 4. Irracionales. (representación, orden).

1. Los números racionales. 2. Operaciones con racionales. 3. Clasificación de los decimales. 4. Irracionales. (representación, orden). EJES ARTICULADORES Y PRODUCTIVOS DEL AREA SISTEMA DE CONOCIMIENTOS GRADO: 8 9 1. Los números racionales. 2. Operaciones con racionales. 3. Clasificación de los decimales. 1. Los números reales. 2. Notación

Más detalles

La eficiencia de los programas

La eficiencia de los programas La eficiencia de los programas Jordi Linares Pellicer EPSA-DSIC Índice General 1 Introducción... 2 2 El coste temporal y espacial de los programas... 2 2.1 El coste temporal medido en función de tiempos

Más detalles

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado.

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Teresa Pérez P DíazD Profesora de matemática tica Conceptos Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Ejemplos: E : Lanzar un dado,

Más detalles

NOTACIÓN O GRANDE. El análisis de algoritmos estima el consumo de recursos de un algoritmo.

NOTACIÓN O GRANDE. El análisis de algoritmos estima el consumo de recursos de un algoritmo. NOTACIÓN O GRANDE El análisis de algoritmos estima el consumo de recursos de un algoritmo. Esto nos permite comparar los costos relativos de dos o más algoritmos para resolver el mismo problema. El análisis

Más detalles

La reordenación aleatoria de un conjunto finito

La reordenación aleatoria de un conjunto finito La reordenación aleatoria de un conjunto finito Pérez Cadenas J. I. 0.06.2003 Resumen Al desordenar y, a continuación, reordenar aleatoriamente un conjunto finito es posible que algunos de sus elementos

Más detalles

Algunos conceptos de Combinatoria

Algunos conceptos de Combinatoria Algunos conceptos de Combinatoria 1. Principio básico del conteo Supongamos que se realizan dos experimentos. Si el primero puede tener m resultados diferentes y por cada resultado del primero hay n resultados

Más detalles

4.12 Ciertos teoremas fundamentales del cálculo de probabilidades

4.12 Ciertos teoremas fundamentales del cálculo de probabilidades 1 de 9 15/10/2006 05:57 a.m. Nodo Raíz: 4. Cálculo de probabilidades y variables Siguiente: 4.14 Tests diagnósticos Previo: 4.10 Probabilidad condicionada e independencia de 4.12 Ciertos teoremas fundamentales

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS B. SUCESIONES B.1 Diversos conjuntos numéricos. En

Más detalles

Complejidad computacional (Análisis de Algoritmos)

Complejidad computacional (Análisis de Algoritmos) Definición. Complejidad computacional (Análisis de Algoritmos) Es la rama de las ciencias de la computación que estudia, de manera teórica, la optimización de los recursos requeridos durante la ejecución

Más detalles

Bloque 1. Contenidos comunes. (Total: 3 sesiones)

Bloque 1. Contenidos comunes. (Total: 3 sesiones) 4º E.S.O. OPCIÓN A 1.1.1 Contenidos 1.1.1.1 Bloque 1. Contenidos comunes. (Total: 3 sesiones) Planificación y utilización de procesos de razonamiento y estrategias de resolución de problemas, tales como

Más detalles

Tema 7 Intervalos de confianza Hugo S. Salinas

Tema 7 Intervalos de confianza Hugo S. Salinas Intervalos de confianza Hugo S. Salinas 1 Introducción Hemos definido la inferencia estadística como un proceso que usa información proveniente de la muestra para generalizar y tomar decisiones acerca

Más detalles

Aprendizaje Automatizado

Aprendizaje Automatizado Aprendizaje Automatizado Aprendizaje Automatizado Programas que mejoran su comportamiento con la experiencia. Dos formas de adquirir experiencia: A partir de ejemplos suministrados por un usuario (un conjunto

Más detalles

INTRODUCCIÓN A LAS DISTRIBUCIONES CONTINUAS Y EL TEOREMA CENTRAL DEL LÍMITE (10 MINUTOS)

INTRODUCCIÓN A LAS DISTRIBUCIONES CONTINUAS Y EL TEOREMA CENTRAL DEL LÍMITE (10 MINUTOS) INTRODUCCIÓN A LAS DISTRIBUCIONES CONTINUAS Y EL TEOREMA CENTRAL DEL LÍMITE (10 MINUTOS) Hemos aprendido a identificar distribuciones discretas y también a reconocer algunas de sus características más

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

APRENDIZAJE Y ENTRENAMIENTO. (Neural Nets Capt. 8; Hilera Capt. 3)

APRENDIZAJE Y ENTRENAMIENTO. (Neural Nets Capt. 8; Hilera Capt. 3) Tema 2: Aprendizaje y Entrenamiento Sistemas Conexionistas 1 2.- Aprendizaje o Entrenamiento. 2.1.- Aprendizaje Automático. 2.2.- Tipos de aprendizaje. APRENDIZAJE Y ENTRENAMIENTO. (Neural Nets Capt. 8;

Más detalles

Función de dos variables

Función de dos variables Funciones de dos y más variables, dominio y rango, y curva de nivel Marlon Fajardo Molinares - fenix.75@hotmail.com 1. Función de dos variables 2. Funciones de varias variables 3. Método para hallar el

Más detalles

Muestreo de variables aleatorias

Muestreo de variables aleatorias Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como

Más detalles

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Probabilidad Conceptos como probabilidad, azar, aleatorio son tan viejos como la misma civilización. Y es que a diario utilizamos el concepto de probabilidad: Quizá llueva mañana

Más detalles

MODULARIDAD Y ESTRUCTURA DE COMUNIDADES EN REDES MATI

MODULARIDAD Y ESTRUCTURA DE COMUNIDADES EN REDES MATI MODULARIDAD Y ESTRUCTURA DE COMUNIDADES EN REDES MATI María Isabel Cardeñosa Sánchez Abraham Peña Hoyos 1 Modularidad y estructura de comunidades en redes Introducción Muchos sistemas de interés científico

Más detalles

Estadística. Generalmente se considera que las variables son obtenidas independientemente de la misma población. De esta forma: con

Estadística. Generalmente se considera que las variables son obtenidas independientemente de la misma población. De esta forma: con Hasta ahora hemos supuesto que conocemos o podemos calcular la función/densidad de probabilidad (distribución) de las variables aleatorias. En general, esto no es así. Más bien se tiene una muestra experimental

Más detalles

CRITERIOS DE EVALUACIÓN DEPARTAMENTO DE MATEMÁTICAS

CRITERIOS DE EVALUACIÓN DEPARTAMENTO DE MATEMÁTICAS 1º ESO CRITERIOS DE EVALUACIÓN DEPARTAMENTO DE MATEMÁTICAS 1. Utilizar numeros naturales, enteros, fracciones y decimales sencillos, sus operaciones y propiedades, para recoger, transformar e intercambiar

Más detalles

3.º ESO. Matemáticas orientadas a las enseñanzas aplicadas

3.º ESO. Matemáticas orientadas a las enseñanzas aplicadas 3.º ESO. Matemáticas orientadas a las enseñanzas aplicadas BLOQUE DE APRENDIZAJE I: PROCESOS, MÉTODOS Y ACTITUDES EN MATEMÁTICAS 1. Identificar, formular y resolver problemas numéricos, geométricos, funcionales

Más detalles

ESTADÍSTICA Y PROBABILIDAD

ESTADÍSTICA Y PROBABILIDAD III ESTADÍSTICA Y PROBABILIDAD Página La gráfica es el polígono de porcentajes acumulados correspondiente a la distribución de las edades, en meses, de los niños de una guardería (repartidos en 7 intervalos

Más detalles

Estrategias didácticas para la resolución de problemas en Matemática de I y II ciclos

Estrategias didácticas para la resolución de problemas en Matemática de I y II ciclos Estrategias didácticas para la resolución de problemas en Matemática de I y II ciclos Segundo Ciclo, Relaciones y Álgebra Abril, 2014 En el Segundo ciclo se busca la profundización en los aprendizajes

Más detalles

Distribución normal. Resumen. Estadística Aplicada a la Investigación en Salud Medwave. Año XI, No. 5, Mayo Open Access, Creative Commons.

Distribución normal. Resumen. Estadística Aplicada a la Investigación en Salud Medwave. Año XI, No. 5, Mayo Open Access, Creative Commons. Estadística Aplicada a la Investigación en Salud Medwave. Año XI, No. 5, Mayo 2011. Open Access, Creative Commons. Distribución normal Autor: Fernando Quevedo Ricardi (1) Filiación: (1) Departamento de

Más detalles

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M.

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la Estimación Puntual, que es uno de los tres grandes conjuntos de técnicas que

Más detalles

Conceptos básicos estadísticos

Conceptos básicos estadísticos Conceptos básicos estadísticos Población Población, en estadística, también llamada universo o colectivo, es el conjunto de elementos de referencia sobre el que se realizan las observaciones. El concepto

Más detalles

Prof. Evy Andreina Guerrero

Prof. Evy Andreina Guerrero Prof. Evy Andreina Guerrero Son Son las entidades : personas, instituciones, documentos, regiones, objetos, plantas, animales, productos, entre otros, que poseen el evento de estudio. POBLACIÓN MUESTRA

Más detalles

Tema 9: Contraste de hipótesis.

Tema 9: Contraste de hipótesis. Estadística 84 Tema 9: Contraste de hipótesis. 9.1 Introducción. El objetivo de este tema es proporcionar métodos que permiten decidir si una hipótesis estadística debe o no ser rechazada, en base a los

Más detalles

Variables aleatorias discretas

Variables aleatorias discretas Variables aleatorias discretas Considere el espacio de probabilidad Ω, F, P) y la función X : Ω R. La imagen de Ω bajo X se define como sigue ImgX) = x R ω Ω : Xω) = x}. Si ImgX) es un conjunto contable,

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 8 - Polinomio de Taylor

Teóricas de Análisis Matemático (28) - Práctica 8 - Polinomio de Taylor Práctica 8 Polinomio de Taylor. Polinomio de Taylor El análisis completo de una función puede resultar muy difícil. Una forma de abordar este problema es aproximar la función por una más sencilla. En este

Más detalles

Aprendizaje basado en ejemplos.

Aprendizaje basado en ejemplos. Aprendizaje basado en ejemplos. In whitch we describe agents that can improve their behavior through diligent study of their own experiences. Porqué queremos que un agente aprenda? Si es posible un mejor

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 6 (A partir de tema 5.9)

PROBABILIDAD Y ESTADÍSTICA. Sesión 6 (A partir de tema 5.9) PROBABILIDAD Y ESTADÍSTICA Sesión 6 (A partir de tema 5.9) 5.9 Muestreo: 5.9.1 Introducción al muestreo 5.9.2 Tipos de muestreo 5.10 Teorema del límite central 5.11 Distribución muestral de la media 5.12

Más detalles

Matemáticas I - Grupo 2 Tema 7: Optimización con restricciones. Extremos condicionados

Matemáticas I - Grupo 2 Tema 7: Optimización con restricciones. Extremos condicionados Matemáticas I - Grupo 2 Tema 7: Optimización con restricciones. Extremos condicionados Motivación Supongamos que f : Ω R 2 R es la función que nos proporciona la altura de cada punto con respecto al nivel

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio PLANIFICACIÓN ANUAL MATEMÁTICA 2015 CURSO: 4º Año Profesora: Celia Raquel Sánchez EXPECTATIVAS DE LOGRO AL FINALIZAR EL 4to. AÑO DEL NIVEL SECUNDARIO Al finalizar el tercer año del secundario los alumnos

Más detalles

Breve sobre Kuhn-Tucker

Breve sobre Kuhn-Tucker Breve sobre Kuhn-Tucker Alejandro Lugon 20 de agosto de 2010 Resumen Se presentan a manera de manual de referencia los resultados relevantes para la solución de problemas de maximización usando los resultados

Más detalles

Curso: Métodos de Monte Carlo Unidad 3, Sesión 7: Problemas de conteo

Curso: Métodos de Monte Carlo Unidad 3, Sesión 7: Problemas de conteo Curso: Métodos de Monte Carlo Unidad 3, Sesión 7: Problemas de conteo Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay

Más detalles

SOLUCIÓN A PROBLEMAS DE VISUALIZACIÓN DE FICHEROS SWF (Flash)

SOLUCIÓN A PROBLEMAS DE VISUALIZACIÓN DE FICHEROS SWF (Flash) SOLUCIÓN A PROBLEMAS DE VISUALIZACIÓN DE FICHEROS SWF (Flash) MEC-2007 (22/02/2007) 1 1. Por qué no puedo ver los ficheros swf? Origen del problema Cuando utilizamos los recursos desde una copia en local

Más detalles

Solución Control #1. 6 P (C O M i )P (M i ). P (C O ) = i=1. Alternativamente podemos trabajar a partir del siguiente espacio muestral

Solución Control #1. 6 P (C O M i )P (M i ). P (C O ) = i=1. Alternativamente podemos trabajar a partir del siguiente espacio muestral Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Probabilidad MA 343, 18/4/11, Prof. R. Gouet. Solución Control #1 1. Una persona dispone de 6 monedas equilibradas,

Más detalles

1 Control Óptimo. 1.1 Introducción Problema típico de control óptimo

1 Control Óptimo. 1.1 Introducción Problema típico de control óptimo 1 Control Óptimo 1.1 Introducción El control óptimo es una rama del control moderno que se relaciona con el diseño de controladores para sistemas dinámicos tal que se minimice una función de medición que

Más detalles

Espacios Vectoriales

Espacios Vectoriales Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido

Más detalles

Unidad IV. La sucesión de sumas parciales asociada a una sucesión está definida para cada como la suma de la sucesión desde hasta :

Unidad IV. La sucesión de sumas parciales asociada a una sucesión está definida para cada como la suma de la sucesión desde hasta : Unidad IV Series. 4.1 Definición de seria. Una serie es la generalización de la noción de suma a los términos de una sucesión infinita. Informalmente, es el resultado de sumar los términos: a 1 + a 2 +

Más detalles

4º E.S.O. Matemáticas A

4º E.S.O. Matemáticas A 4º E.S.O. Matemáticas A Objetivos 1. Incorporar, al lenguaje y formas habituales de argumentación, las distintas formas de expresión matemática (numérica, algebraica, de funciones, geométrica...), con

Más detalles

Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción

Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción Curso 0: Matemáticas y sus Aplicaciones Tema 5. Lógica y Formalismo Matemático Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Proposiciones y Conectores Lógicos 2 Tablas de Verdad

Más detalles

RECUPERACIÓN DE MATEMÁTICAS DE SEGUNDO DE E.S.O.

RECUPERACIÓN DE MATEMÁTICAS DE SEGUNDO DE E.S.O. RECUPERACIÓN DE MATEMÁTICAS DE SEGUNDO DE E.S.O. Se considera necesario, que el alumno al término de la enseñanza secundaria, obtenga una formación matemática básica, que le permita comprender, analizar

Más detalles

Procesos estocásticos Cadenas de Márkov

Procesos estocásticos Cadenas de Márkov Procesos estocásticos Cadenas de Márkov Curso: Investigación de Operaciones Ing. Javier Villatoro PROCESOS ESTOCASTICOS Procesos estocásticos Es un proceso o sucesión de eventos que se desarrolla en el

Más detalles

Teoría de las decisiones y de los juegos Asignatura: Profesores: Sjaak Hurkens y Flip Klijn Examen: 6 de febrero de 2008

Teoría de las decisiones y de los juegos Asignatura: Profesores: Sjaak Hurkens y Flip Klijn Examen: 6 de febrero de 2008 Teoría de las decisiones y de los juegos Asignatura: 50 Profesores: Sjaak Hurkens y Flip Klijn Examen: 6 de febrero de 008 Observaciones: Versión: Duración: 3 horas Documentos autorizados: ninguno Teléfonos

Más detalles

RECOPILACIÓN DE LA INFORMACIÓN

RECOPILACIÓN DE LA INFORMACIÓN RECOPILACIÓN DE LA INFORMACIÓN CONCEPTOS DE ESTADÍSTICA Y SU CLASIFICACIÓN ESTADÍSTICA. Es la ciencia que estudia los medios para derivar información válida a partir de un conjunto de datos. Es decir,

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 5 Simulación

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 5 Simulación OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 5 Simulación ORGANIZACIÓN DEL TEMA Sesiones: Introducción Ejemplos prácticos Procedimiento y evaluación de resultados INTRODUCCIÓN Simulación: Procedimiento

Más detalles

SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente.

SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. ANÁLISIS MATEMÁTICO BÁSICO. SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. Ejemplo.. Sea la sucesión (x n

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

CONTENIDOS MÍNIMOS MATEMÁTICAS 2º Y 4º E.S.O.

CONTENIDOS MÍNIMOS MATEMÁTICAS 2º Y 4º E.S.O. CONTENIDOS MÍNIMOS MATEMÁTICAS 2º Y 4º E.S.O. Matemáticas 2º E.S.O. a) Contenidos comunes. Utilizar estrategias y técnicas sencillas en la resolución de problemas. b) Números. Conocer los conceptos de

Más detalles

Sucesiones. Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como

Sucesiones. Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como Universidad de la República Facultad de Ingeniería IMERL Sucesiones Curso Cálculo 1 2008 Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como a 1, a

Más detalles

USO ACADÉMICO DE HOJAS ELECTRÓNICAS. Primera Sesión

USO ACADÉMICO DE HOJAS ELECTRÓNICAS. Primera Sesión USO ACADÉMICO DE HOJAS ELECTRÓNICAS Primera Sesión Las hojas electrónicas nos permiten realizar cálculos matemáticos y estadísticos. Existe variedad de hojas electrónicas, pero cuando trabajamos en Microsoft

Más detalles

2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo.

2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo. 2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo. 2.1 Formas cuadráticas. Expresión matricial y analítica. Expresiones diagonales. Definición 2.1 (Expresión matricial) Una

Más detalles

Universidad de San Buenaventura - Facultad de Ingeniería

Universidad de San Buenaventura - Facultad de Ingeniería Aproximaciones Para trabajar con números decimales que tienen muchas cifras decimales, o infinitas, hacemos aproximaciones. Decimos que la aproximación de un número es por defecto cuando es menor que el

Más detalles

Tema 4: Introducción al Aprendizaje Automático

Tema 4: Introducción al Aprendizaje Automático Introducción a la Ingeniería del Conocimiento Curso 2004 2005 Tema 4: Introducción al Aprendizaje Automático Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad

Más detalles

4. Prueba de Hipótesis

4. Prueba de Hipótesis 4. Prueba de Hipótesis Como se ha indicado anteriormente, nuestro objetivo al tomar una muestra es extraer alguna conclusión o inferencia sobre una población. En nuestro interés es conocer acerca de los

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS 1. PRIMER CURSO 1.1. CONTENIDOS - Números naturales. - Múltiplos y divisores. Máximo común divisor y Mínimo común múltiplo. - Números enteros. - Números decimales. Aproximación

Más detalles

Ideas básicas del diseño experimental

Ideas básicas del diseño experimental Ideas básicas del diseño experimental Capítulo 4 de Analysis of Messy Data. Milliken y Johnson (1992) Diseño de experimentos p. 1/23 Ideas básicas del diseño experimental Antes de llevar a cabo un experimento,

Más detalles

T7. PROGRAMACIÓN LINEAL

T7. PROGRAMACIÓN LINEAL T7. PROGRAMACIÓN LINEAL MATEMÁTICAS PARA 4º ESO MATH GRADE 10 (=1º BACHILLERATO EN ATLANTIC CANADA) CURRÍCULUM MATEMÁTICAS NOVA SCOTIA ATLANTIC CANADA TRADUCCIÓN: MAURICIO CONTRERAS PROGRAMACIÓN LINEAL

Más detalles

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia 1.. De una manera informal, una sucesión es una familia de elementos de un conjunto, ordenada según el índice de los números naturales. Los elementos pueden estar repetidos o no. Por ejemplo la familia

Más detalles

Tema 8: Árboles de decisión

Tema 8: Árboles de decisión Introducción a la Ingeniería del Conocimiento Curso 2004 2005 Tema 8: Árboles de decisión Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Más detalles

ADMINISTRACION DE OPERACIONES

ADMINISTRACION DE OPERACIONES Sesión4: Métodos cuantitativos ADMINISTRACION DE OPERACIONES Objetivo específico 1: El alumno conocerá y aplicara adecuadamente los métodos de pronóstico de la demanda para planear la actividad futura

Más detalles

Probabilidad Condicional

Probabilidad Condicional Probabilidad Condicional Algunas veces la ocurrencia de un evento A puede afectar la ocurrencia posterior de otro evento B; por lo tanto, la probabilidad del evento B se verá afectada por el hecho de que

Más detalles

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS. UNIDAD DIDÁCTICA 13: Nociones elementales de probabilidad

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS. UNIDAD DIDÁCTICA 13: Nociones elementales de probabilidad UNIDAD DIDÁCTICA 3: Nociones elementales de probabilidad. ÍNDICE. ÍNDICE 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y ORIENTACIONES PARA EL ESTUDIO 3. OBJETIVOS ESPECÍFICOS 4. CONTENIDOS Sucesos equiprobables

Más detalles

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM UNIDAD I: NÚMEROS (6 Horas) 1.- Repasar el cálculo con números racionales y potencias de exponente entero. 2.- Resolver problemas de la vida cotidiana en los que intervengan los números racionales. 1.-

Más detalles

Inteligencia Artificial

Inteligencia Artificial Algoritmos genéticos Bases En la naturaleza todos los seres vivos se enfrentan a problemas que deben resolver con éxito, como conseguir más luz solar o conseguir comida. La Computación Evolutiva interpreta

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

Introducción a Investigación de Operaciones. UCR ECCI CI-1453 Investigación de Operaciones III Prof. Bach. Kryscia Daviana Ramírez Benavides

Introducción a Investigación de Operaciones. UCR ECCI CI-1453 Investigación de Operaciones III Prof. Bach. Kryscia Daviana Ramírez Benavides Introducción a Investigación de Operaciones UCR ECCI CI-1453 Investigación de Operaciones III Prof. Bach. Kryscia Daviana Ramírez Benavides Qué es la Investigación de Operaciones? Es una herramienta dominante

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

2. Distribuciones de Muestreo

2. Distribuciones de Muestreo 2. Distribuciones de Muestreo Conceptos básicos Para introducir los conceptos básicos consideremos el siguiente ejemplo: Supongamos que estamos interesados en determinar el número medio de televisores

Más detalles

Matemáticas Currículum Universal

Matemáticas Currículum Universal Matemáticas Currículum Universal Índice de contenidos 08-11 años 2013-2014 Matemáticas 08-11 años USOS DE LOS NÚMEROS NATURALES Reconocer la utilidad de los números naturales para contar y ordenar elementos.

Más detalles

Bloque 4. Cálculo Tema 1 Valor absoluto Ejercicios resueltos

Bloque 4. Cálculo Tema 1 Valor absoluto Ejercicios resueltos Bloque 4. Cálculo Tema 1 Valor absoluto Ejercicios resueltos 4.1-1 Resolver las siguientes desigualdades: a) 57; b) 41; c) 10; d) 431; e) 5; 3 f) 434 a) 5 7 1 S / 1 1, b) 1 1 1 4 1 S /, 1 1 1 c) 10 S /,

Más detalles

1. Medida Exterior. Medida de Lebesgue en R n

1. Medida Exterior. Medida de Lebesgue en R n 1. La integral de Lebesgue surge del desarrollo de la integral de Riemann, ante las dificultades encontradas en las propiedades de paso al ĺımite para calcular la integral de una función definida como

Más detalles

Ejemplo: Los miembros del Colegio de Ingenieros del Estado Cojedes.

Ejemplo: Los miembros del Colegio de Ingenieros del Estado Cojedes. Qué es la Estadística? En el lenguaje común, la palabra se emplea para denotar un conjunto de calificaciones o de números, por ejemplo: una persona puede preguntar has visto las últimas estadísticas acerca

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

APRENDIZAJE PROBABILÍSTICO NAIVE BAYES

APRENDIZAJE PROBABILÍSTICO NAIVE BAYES 1 APRENDIZAJE PROBABILÍSTICO NAIVE BAYES Bases de Datos Masivas 9 de Noviembre de 2016 2 Razonamiento Probabilístico Es una herramienta de aprendizaje estadístico. Se trata de razonar en un contexto incierto;

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.

Más detalles

Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.

Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 Técnicas de conteo En muchos problemas de probabilidad, el reto mayor es encontrar

Más detalles

La distribución normal

La distribución normal La Distribución Normal Es una distribución continua que posee, entre otras, las propiedades siguientes: Su representación gráfica tiene forma de campana ( campana de Gauss ) -6-4 -2 0 2 4 6 2 4 6 8 10

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos Coordinación de Matemática I (MAT0) er Semestre de 0 Semana : Lunes 8 Viernes de Marzo Complemento Contenidos Clase : Cuantificadores, Producto cartesiano y Cardinalidad. Clase : Trigonometría: Identidades

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

Aprendizaje Computacional y Extracción de Información

Aprendizaje Computacional y Extracción de Información Aprendizaje Computacional y Extracción de Información Inferencia Gramatical Jose Oncina oncina@dlsi.ua.es Dep. Lenguajes y Sistemas Informáticos Universidad de Alicante 26 de septiembre de 2007 J. Oncina

Más detalles

Triángulo de las Bermudas

Triángulo de las Bermudas Triángulo de las Bermudas Modelización n matemática tica de un problema utilizando sistemas de inecuaciones lineales, sistemas de ecuaciones lineales y DERIVE Metodología a Matemática tica Facultad de

Más detalles

Complejidad de los Algoritmos

Complejidad de los Algoritmos Que es un Algoritmo? Complejidad de los Algoritmos Webster: cualquier método especial para resolver cierta clase de problemas. Horowitz: método preciso utilizable en una computadora para la solución de

Más detalles

Máster en comunicaciones. Clase 2. Modelos predictores.

Máster en comunicaciones. Clase 2. Modelos predictores. Máster en comunicaciones. Clase 2. Modelos predictores. 1. Introducción Uno de los cometidos más importantes de la estadística es la explotación de los datos observados de una o más características de

Más detalles

COMPETENCIA MATEMÁTICA 2º CURSO DE EDUCACIÓN SECUNDARIA OBLIGATORIA

COMPETENCIA MATEMÁTICA 2º CURSO DE EDUCACIÓN SECUNDARIA OBLIGATORIA 2º CURSO DE EDUCACIÓN SECUNDARIA OBLIGATORIA 1. DESCRIPCIÓN DE LA COMPETENCIA La competencia matemática consiste en la habilidad para utilizar y relacionar los números, sus operaciones básicas, los símbolos

Más detalles

Intervalo para la media si se conoce la varianza

Intervalo para la media si se conoce la varianza 178 Bioestadística: Métodos y Aplicaciones nza para la media (caso general): Este se trata del caso con verdadero interés práctico. Por ejemplo sirve para estimar intervalos que contenga la media del colesterol

Más detalles

Muestreo y Distribuciones en el Muestreo

Muestreo y Distribuciones en el Muestreo Muestreo y Distribuciones en el Muestreo Departamento de Estadística-FACES-ULA 03 de Abril de 2013 Introducción al Muestreo En algunas ocaciones es posible y práctico examinar a cada individuo en el Universo

Más detalles