EJERCICIO COMPUTACIONAL N o 4. MÉTODOS ITERATIVOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIO COMPUTACIONAL N o 4. MÉTODOS ITERATIVOS"

Transcripción

1 EJERCICIO COMPUTACIONAL N o 4. MÉTODOS ITERATIVOS Ángel Durán Departamento de Matemática Aplicada Universidad de Valladolid 23 de abril de 2011

2 Contenidos 1 Métodos iterativos para sistemas lineales Técnicas de descomposición Análisis de convergencia 2 Métodos iterativos para ecuaciones no lineales Técnicas clásicas Ejemplo 3 Sistemas de ecuaciones no lineales Métodos de punto fijo y de Newton Ejemplo comparativo

3 Técnicas de descomposición Métodos de descomposición A = Q (Q A) Ax = b Qx = (Q A)x + b (1) Qx (ν) = (Q A)x (ν 1) + b, ν = 1, 2,... (2) x (0) arbitrario Elección de Q: la resolución de los sistemas (2) debe ser más sencillo que resolver (1)

4 Técnicas de descomposición Técnicas clásicas A = D E F, D = diag(a 11,..., a nn ), a E =....., a n 1,1 a n 1,2 a n 1,3 0 0 a n,1 a n,2 a n,3 a n,n 1 0 F = D E A.

5 Técnicas de descomposición Técnicas clásicas Jacobi: Q = D, Dx (ν) = b + Ex (ν 1) + Fx (ν 1). Gauss-Seidel: Q = D E, Dx (ν) = b + Ex (ν) + Fx (ν 1). SOR(ω): Q = 1 ω (D ωe), (D ωe)x (ν) = ((1 ω)d + ωf)x (ν 1) + ωb,

6 Técnicas de descomposición Estructura general de la programación Control de iteración: maxit, tol En general, almacenamiento de sólo dos iterantes consecutivos XV = x (0), NITER = 0, ERRORC = 1 function [XN]=método(A,b,XV) XV = x (0), NITER = 0, ERRORC = 1 while (NITER < maxit)&(errorc > tol) RESOLVER QXN = (Q A)XV + b ACTUALIZAR NITER = NITER + 1 ERRORC = XN XV / XN XV XN end endfunction

7 Análisis de convergencia Resultado general Los errores e ν = x (ν) x satisfacen la recurrencia e (ν) = Me (ν 1), ν = 1, 2,.... M = Q 1 (Q A): matriz de iteración del método M = D 1 (E + F) (Jacobi) M = (D E) 1 F (Gauss-Seidel) M = (D ωe) 1 ((1 ω)d + ωf). (SOR) Teorema: La iteración (2) converge para cualquier vector inicial x (0) si y sólo si ρ(m) < 1.

8 Análisis de convergencia Casos particulares si M < 1 para alguna norma matricial, entonces la iteración (2) converge. Si A es estrictamente diagonalmente dominante, entonces A es invertible y además: El método de Jacobi converge para cualquier elección del iterante inicial. Si 0 < ω 1, el método SOR con parámetro ω converge para cualquier elección del iterante inicial. En particular, el método de Gauss-Seidel (ω = 1) converge. Si A es simétrica y definida positiva, entonces: El método de Gauss-Seidel converge para cualquier elección del iterante inicial. El método SOR con parámetro ω converge para cualquier elección del iterante inicial si y sólo si 0 < ω < 2.

9 Análisis de convergencia Velocidad de convergencia e (ν) ρ(m) ν e (0). R (M) = log ρ(m) > 0 se llama velocidad asintótica de convergencia y controla la rapidez con la que converge la iteración. ( ) 2 1 Ejemplo: A = 1 2 ( ) 0 1/2 Jacobi: M = ρ(m) = 1/2 1/2 0 ( ) 0 1/2 Gauss-Seidel: M = ρ(m) = 1/4 0 1/4 Un solo paso del método G-S equivale a dos del método de Jacobi

10 Análisis de convergencia Estudio comparativo.distribución del potencial en un condensador N O C E S V C = 1 4 (V N + V S + V E + V O ).

11 Análisis de convergencia Estudio comparativo La aplicación de esta fórmula lleva a un sistema con matriz A = El término independiente contiene valores del potencial en los puntos de la malla que caen en las placas.

12 Análisis de convergencia Estudio comparativo.distribución del potencial en un condensador TOL NITER U u Método de Jacobi 1E E-06 1E E-08 1E E-10 1E E-12 EPS 52 EPS TOL NITER U u Método de Gauss-Seidel 1E E-06 1E E-08 1E E-10 1E E-12 EPS 34 EPS

13 Análisis de convergencia Comparación: algoritmos directos/iterativos

14 Técnicas clásicas Técnicas clásicas Bisección Secante Punto fijo Newton

15 Técnicas clásicas Iteración de punto fijo f (x) = 0 x = g(x)

16 Técnicas clásicas Iteración de punto fijo Elegida una aproximación inicial x 0 x n = g(x n 1 ), n = 1, 2,.... (3) Supongamos que g es de clase C 1 (r ɛ, r + ɛ), con ɛ > 0. Si g (r) < 1 Convergencia local lineal

17 Técnicas clásicas Método de Newton

18 Técnicas clásicas Método de Newton Elegida una aproximación inicial x 0 x n+1 = x n f (x n) f, n = 0, 1,.... (4) (x n ) Supongamos que f es de clase C 2 en un entorno de r con f (r) = 0, f (r) 0. Supongamos además que existe f (r) Convergencia local cuadrática.

19 Técnicas clásicas Estructura general de la programación Control de iteración: maxit, tol1, tol2 En general, almacenamiento de sólo dos iterantes consecutivos Evaluaciones de la función (y derivadas) a través de una función externa que contenga su expresión function [f1,f2]=fun(x) f 1 = x 4 x (x 2) 6 x 1 f 2 = 4 (x 3) 3 (x 2) + 6 x 6 endfunction

20 Técnicas clásicas Estructura general de la programación Dado XV = x (0) como entrada function [XN]=método NITER = 0, ERC = 1, ERR = 1 while (NITER < maxit)&(erc > tol1)&(err > tol2) EVALUAR [F1, F2] = fun(xv ) IMPLEMENTAR MÉTODO XN = ACTUALIZAR NITER = NITER + 1 ERRORC = XN XV / XN ERRORR = f (XN) XV XN end endfunction

21 Ejemplo Ecuación de Kepler u = g(u) = m + ɛ sin u f (u) = u m ɛ sin u = 0 0 < ɛ < 1: excentricidad de la órbita u: anomalía excéntrica: ángulo formado en el centro de la elipse por el planeta y el eje mayor m: anomalía media: duración del año planetario

22 Ejemplo Iteración de punto fijo n x n e n e n+1 /e n E E E E E E E E E E E Cuadro: Iteración de punto fijo para f (x) = x 0,5 sin x 0,6 = 0, con g(x) = 0,5 sin x + 0,6.

23 Ejemplo Iteración de punto fijo

24 Ejemplo Método de Newton n x n e n e n+1 /en E E E E Cuadro: Método de Newton para f (x) = x 0,5 sin x 0,6 = 0.

25 Ejemplo Método de Newton

26 Formulación Sistema de ecuaciones f ( x) = 0, x = (x 1,..., x m ) o bien f 1 (x 1,..., x m ) = 0, f 2 (x 1,..., x m ) = 0,. (5) f m (x 1,..., x m ) = 0.

27 Métodos de punto fijo y de Newton Métodos Iteración de punto fijo: Se reescribe el sistema (5) en la forma x = g( x), para cierta g = (g 1,..., g m ). Dado un iterante inicial x 0, se genera la sucesión x n = g( x n 1 ), n = 1, 2,... g (r) < 1 convergencia local lineal en la norma matricial.

28 Métodos de punto fijo y de Newton Métodos Método de Newton: Dado un iterante inicial x 0,x n+1 es solución del sistema es decir 0 = f (x n ) + f (x n )(x n+1 x n ), f (x n ) x n = f (x n ) x n+1 = x n + x n f C 3 en un entorno de r, f (r) es invertible convergencia local cuadrática en la norma matricial.

29 Ejemplo comparativo Ejemplo f 1 (x, y) = x 2 2x y + 0,5 = 0, f 2 (x, y) = x 2 + 4y 2 4 = y=x 2 2x x 2 +4y 2 =

30 Ejemplo comparativo Ejemplo Punto fijo: x = g 1 (x, y) = x 2 y + 0,5, y = g 2 (x, y) = x 2 4y 2 + 8y n x n y n n x n y n

31 Ejemplo comparativo Ejemplo g (x, y) = ( x ) 1/2 x/4 y + 1 Un cero en ( 0,5, 0,5) (0,5, 1,5) y el otro cerca de (1,9, 0,3). Si (x, y) ( 0,5, 0,5) (0,5, 1,5) g (x, y) < 1 g (1,9, 0,3) > 1

32 Ejemplo comparativo Ejemplo Punto fijo: Nuevo sistema x = x 2 + 4x + y 0,5, y = x 2 4y y n x n y n

33 Ejemplo comparativo Ejemplo Método de Newton f 1 (x, y) = x 2 2x y + 0,5 = 0 ( ) f 2 (x, y) = x 2 + 4y 2 4 = 0, f 2x 2 1 (x, y) = 2x 8y f (x n, y n ) ( ) xn+1 = y n+1 ( xn y n ( xn y n ) = f (x n, y n ) ) ( ) xn + y n

34 Ejemplo comparativo Ejemplo ( ) ( ) ( ) xn xn xn+1 ( y n ) ( ) ( y n ) ( ) ( y n+1 ) 2,00 2,0 1,0 0, ,25 1,9063 = ( 0,25 ) ( 4,0 2,0 ) ( 0,0625 ) ( 0,25 ) ( 0,3125 ) 1,9063 1,8125 1,0 0, , , = ( 0,3125 ) ( 3,8125 2,5 ) 0, ( ) 0, ( ) ( 0, ) 1, , ,0 0, , , = 0, , , , , ,311219

I. Métodos directos para resolución de SEL. Se dice que una matriz A admite una factorización LU indirecta A = LU

I. Métodos directos para resolución de SEL. Se dice que una matriz A admite una factorización LU indirecta A = LU I. Métodos directos para resolución de SEL 1. Factorización LU Se dice que una matriz A admite una factorización LU si dicha matriz puede escribirse como el producto de una matriz triangular inferior,

Más detalles

Métodos iterativos para sistemas de ecuaciones lineales

Métodos iterativos para sistemas de ecuaciones lineales Métodos iterativos para sistemas de ecuaciones lineales Natalia Boal - Manuel Palacios - Sergio Serrano Departamento de Matemática Aplicada Obetivos Trabaar con los métodos iterativos habituales (Jacobi,

Más detalles

Clase. 1. Resolución de sistemas de ecuaciones lineales: preliminares

Clase. 1. Resolución de sistemas de ecuaciones lineales: preliminares Clase 1. Resolución de sistemas de ecuaciones lineales: preliminares 2. Método directo y exacto: Gauss 3. Método directo y exacto (II): descomposición LU 4. Métodos indirectos: Jacobi, Gauss-Seidel 2 Sistemas

Más detalles

Ejercicios Propuestos Tema 2

Ejercicios Propuestos Tema 2 Ejercicios Propuestos Tema 2 1 Programar la función: fx, A, X = a 0 + a 1 x x 1 + a 2 x x 1 x x 2 + + a n x x 1 x x 2 x x n, donde A = [a 0, a 1,, a n ], X = [x 1, x 2,, x n ], con x R Calcular todas las

Más detalles

5 Métodos iterativos para resolver sistemas de ecuaciones lineales

5 Métodos iterativos para resolver sistemas de ecuaciones lineales 94 5 Métodos iterativos para resolver sistemas de ecuaciones lineales La resolución de sistemas de ecuaciones lineales también puede hacerse con fórmulas iterativas que permiten acercarse a la respuesta

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Métodos Iterativos para Resolver Sistemas Lineales Departamento de Matemáticas ITESM Métodos Iterativos para Resolver Sistemas Lineales Álgebra Lineal - p. 1/30 En esta lectura veremos

Más detalles

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II)

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II) Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte II) Métodos numéricos para sistemas lineales Solución numérica de EDPs requiere resolver sistemas de ecuaciones lineales

Más detalles

Práctica IV: Métodos de Newton-Raphson y de la secante, para encontrar las raíces de una función.

Práctica IV: Métodos de Newton-Raphson y de la secante, para encontrar las raíces de una función. Práctica IV: Métodos de Newton-Raphson y de la secante, para encontrar las raíces de una función. Se suele llamar método de Newton-Raphson al método de Newton cuando se utiliza para calcular los ceros

Más detalles

Sistemas de ecuaciones no lineales

Sistemas de ecuaciones no lineales Práctica 6 Sistemas de ecuaciones no lineales En esta práctica revisaremos algunos métodos básicos para la resolución numérica de sistemas de ecuaciones no lineales 61 Método iterativo del punto fijo Partimos

Más detalles

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.

Más detalles

Tema 2 Resolución de EcuacionesNo Lineales

Tema 2 Resolución de EcuacionesNo Lineales Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación

Más detalles

EXAMEN PARCIAL DE METODOS NUMERICOS (MB536)

EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) UNIVERSIDAD NACIONAL DE INGENIERIA P.A. - FACULTAD DE INGENIERIA MECANICA // EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) DURACION: MINUTOS SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO ESCRIBA CLARAMENTE

Más detalles

Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación

Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación Tema 8 Ceros de funciones Versión: 23 de abril de 2009 8.1 Introducción Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación f(x) = 0. (8.1) La

Más detalles

Métodos Numéricos (SC 854) Solución de ecuaciones no lineales. 1. Definición del problema: raíces de ecuaciones no lineales

Métodos Numéricos (SC 854) Solución de ecuaciones no lineales. 1. Definición del problema: raíces de ecuaciones no lineales Solución de ecuaciones no lineales c M. Valenzuela 007 008 (5 de mayo de 008) 1. Definición del problema: raíces de ecuaciones no lineales Dada una ecuación de una variable independiente x, f(x) =0, (1)

Más detalles

Clase 9 Programación No Lineal

Clase 9 Programación No Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Introducción Métodos de punto fijo Complementos de Matemáticas, ITT Telemática Tema 1. Solución numérica de ecuaciones no lineales Departamento de Matemáticas, Universidad de Alcalá Introducción Métodos

Más detalles

Resolución numérica de sistemas de ecuaciones. Introducción

Resolución numérica de sistemas de ecuaciones. Introducción Resolución numérica de sistemas de ecuaciones. Introducción Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Spain) http://www-lacan.upc.es

Más detalles

Métodos iterativos para sistemas lineales de ecuaciones

Métodos iterativos para sistemas lineales de ecuaciones Métodos iterativos para sistemas lineales de ecuaciones Laboratori de Càlcul Numèric (LaCàN) 23 de septiembre de 2010 Se desea resolver el sistema lineal de ecuaciones Ax = b, con A R n n regular, x R

Más detalles

CURSO DE METODOS NUMERICOS INDICE

CURSO DE METODOS NUMERICOS INDICE CURSO DE METODOS NUMERICOS INDICE PRIMERA PART E: INTRODUCCION AL ANALISIS NUMERICO Y A LA COMPUTACION Capítulo I. Introducción al Análisis Numérico. 1. Algoritmos y diagramas de flujo. pg. 1 2. Origen

Más detalles

Tema 6: Resolución aproximada de sistemas de ecuaciones lineales

Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Métodos Numéricos: Resumen y ejemplos Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Sistemas de ecuaciones lineales. Métodos iterativos

Sistemas de ecuaciones lineales. Métodos iterativos Lección F Sistemas de ecuaciones lineales. Métodos iterativos Los métodos iterativos tienen la desventaja de que no se pueden aplicar, por lo menos de forma elemental, a cualquier sistema de ecuaciones

Más detalles

Resolución numérica de sistemas de ecuaciones lineales

Resolución numérica de sistemas de ecuaciones lineales Resolución numérica de sistemas de ecuaciones lineales María González Taboada Departamento de Matemáticas Febrero de 2008 Esquema: 1 Descripción del problema 2 Algunas definiciones y propiedades 3 Condicionamiento

Más detalles

Métodos Numéricos: Ejercicios resueltos

Métodos Numéricos: Ejercicios resueltos Métodos Numéricos: Ejercicios resueltos Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica

Más detalles

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación EJERCICIOS RESUELTOS DE ECUACIONES NO LINEALES Profesor: Jaime Álvarez Maldonado Ayudante: Rodrigo

Más detalles

Modelación y Simulación en Física. Guia 3(v1): Raíces.

Modelación y Simulación en Física. Guia 3(v1): Raíces. Modelación y Simulación en Física. Guia 3(v1): Raíces. Prof. Francisco Santibáñez Calderón. francisco.santibanez@ucv.cl Laboratorio de Mecanica de Materiales Complejos. 3 de octubre de 2013 Metodos Numericos

Más detalles

Proyectos de trabajos para Matemáticas

Proyectos de trabajos para Matemáticas Proyectos de trabajos para Matemáticas 14 de julio de 2011 Resumen En cada uno de los Proyectos elegidos, los estudiantes deberán completar las etapas siguientes: Comprender el problema. Tomarse el tiempo

Más detalles

Práctica 2ª : OPERADORES LÓGICOS Y RELACIONALES. CICLOS Y ESTRUCTURAS DE CONTROL. MÉTODOS DE RESOLUCIÓN DE UNA ECUACIÓN NO LINEAL.

Práctica 2ª : OPERADORES LÓGICOS Y RELACIONALES. CICLOS Y ESTRUCTURAS DE CONTROL. MÉTODOS DE RESOLUCIÓN DE UNA ECUACIÓN NO LINEAL. practica2sr.nb 1 Apellidos y Nombre: Práctica 2ª : OPERADORES LÓGICOS Y RELACIONALES. CICLOS Y ESTRUCTURAS DE CONTROL. MÉTODOS DE RESOLUCIÓN DE UNA ECUACIÓN NO LINEAL. Operadores lógicos y relacionales

Más detalles

SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES

SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES EL PROBLEMA DE OBTENER LOS CEROS O RAÍCES DE UNA ECUACIÓN ALGEBRAICA O TRASCENDENTE, ES UNO DE LOS REQUERIDOS MAS FRECUENTEMENTE, DEBIDO A ELLO

Más detalles

Al considerar varios polígonos regulares inscritos resulta: perímetro del cuadrado < π. perímetro del 96 gono < π

Al considerar varios polígonos regulares inscritos resulta: perímetro del cuadrado < π. perímetro del 96 gono < π AMPLIACIÓN DE MATEMÁTICAS INTRODUCCIÓN Método Constructivo: Conjunto de instrucciones que permiten calcular la solución de un problema, bien en un número finito de pasos, bien en un proceso de paso al

Más detalles

Supongamos que el planeta da una vuelta al Sol en un tiempo denominado periodo T.

Supongamos que el planeta da una vuelta al Sol en un tiempo denominado periodo T. Ecuación de Kepler De Wikipedia, la enciclopedia libre Kepler descubrió las leyes que rigen el movimiento de los planetas alrededor del Sol. Los planetas giran en una órbita elíptica, uno de cuyos focos

Más detalles

Primero se triangulariza la matriz: Multiplicando la primera fila por (-1/3) y sumando a la segunda fila: ( ) ( )=( ) ( ) ( )

Primero se triangulariza la matriz: Multiplicando la primera fila por (-1/3) y sumando a la segunda fila: ( ) ( )=( ) ( ) ( ) MAT 115 B EJERCICIOS RESUELTOS Resolver el siguiente sistema de ecuaciones: a) Por el método de eliminación de Gauss La matriz aumentada del sistema es: 3 2 6 1 5 Primero se triangulariza la matriz: Multiplicando

Más detalles

SOLUCIÓN A LA ECUACIÓN EN DIFERENCIAS FINITAS. Hernández Cruz G. Berenice.

SOLUCIÓN A LA ECUACIÓN EN DIFERENCIAS FINITAS. Hernández Cruz G. Berenice. SOLUCIÓN A LA ECUACIÓN EN DIFERENCIAS FINITAS Hernández Cruz G. Berenice. SOLUCIÓN A LA ECUACIÓN EN DIFERENCIAS FINITAS La solución de diferencias finitas es ocupada en los análisis numéricos, por ejemplo:

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Solución de ecuaciones no lineales y aplicaciones a la cuadratura numérica

Solución de ecuaciones no lineales y aplicaciones a la cuadratura numérica Solución de ecuaciones no lineales y aplicaciones a la cuadratura numérica Javier Segura Departamento de Matemáticas, Estadística y Computación Universidad de Cantabria, Spain Fundamentos de Matemática

Más detalles

Solución de ecuaciones diferenciales por el método de elementos finitos

Solución de ecuaciones diferenciales por el método de elementos finitos Solución de ecuaciones diferenciales por el método de elementos finitos Departamento de Matemáticas Método de elemento finito Un problema del método de diferencias finitas es que al aplicarlo obtenemos

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS SUCESIONES DE FUNCIONES En primer curso estudiamos el concepto de convergencia de una sucesión de números. Decíamos que dada una sucesión de números reales (x n ) n=1 R, ésta

Más detalles

Raices de ECUACIONES NO LINEALES PRIMER PARCIAL TEMA 2

Raices de ECUACIONES NO LINEALES PRIMER PARCIAL TEMA 2 Raices de ECUACIONES NO LINEALES PRIMER PARCIAL TEMA 2 introducción MÉTODO GRÁFICO PARA ENCONTRAR LAS RAICES DE SISTEMAS DE ECUACIONES EJEMPLO: f(x)= e x x A)LA RAIZ ES DONDE LA GRAFICA INTERSECTA EL EJE

Más detalles

Métodos Numéricos para Sistemas de Ecuaciones Lineales

Métodos Numéricos para Sistemas de Ecuaciones Lineales Universidad de Chile Departamento de Ingeniería Matemática Cálculo Numérico MA-33A Métodos Numéricos para Sistemas de Ecuaciones Lineales Gonzalo Hernández Oliva GHO SEL - MA33A 1 MN para SEL: Temario

Más detalles

TEMA 3: RESOLUCION DE SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES

TEMA 3: RESOLUCION DE SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 3: RESOLUCION DE SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES Abordaremos en este tema la resolución de Sistemas de Ecuaciones Lineales (por diferentes

Más detalles

Tema 3 Resolución de Sistemas de Ecuaciones Lineales

Tema 3 Resolución de Sistemas de Ecuaciones Lineales Tema Resolución de Sistemas de Ecuaciones Lineales Índice Introducción 2 Método de Gauss 2 Resolución de sistemas triangulares 22 Triangulación por el método de Gauss 2 Variante Gauss-Jordan 24 Comentarios

Más detalles

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Dr. Gonzalo Hernández Oliva UChile - Departamento de Ingeniería Matemática 07 de Mayo 2006 Abstract En este apunte veremos

Más detalles

FUNCIONES Angel Prieto Benito Matemáticas Aplicadas CS I 1

FUNCIONES Angel Prieto Benito Matemáticas Aplicadas CS I 1 FUNCIONES LOGARITMICAS @ Angel Prieto Benito Matemáticas Aplicadas CS I 1 LOGARÍTMO DE UN NÚMERO Sabemos que 10 2 = 100 en una potencia de base 10. Sabemos que 10 3 = 1000 en una potencia de base 10. Decimos

Más detalles

Separar en intervalos de la forma [m, m + 1], con m Z, las raíces de la ecuación: F (x) = x 3 + 3x 2 1 = 0

Separar en intervalos de la forma [m, m + 1], con m Z, las raíces de la ecuación: F (x) = x 3 + 3x 2 1 = 0 METODOS NUMERICOS. E.T.S.I. Minas. Boletín de problemas propuestos. 1. Localizar las raíces de la ecuación F (x) = : (a) F (x) = x tg(x). (b) F (x) = sen(x) x +. (c) F (x) = x + e x. (d) F (x) =.5 x +.

Más detalles

Diagonalización de matrices

Diagonalización de matrices 7 Diagonalización de matrices 7.1. Matrices diagonalizables Existen diversos procesos en los que el estado en cada uno de sus pasos se puede representar por un determinado vector y en los que, además,

Más detalles

Métodos Iterativos para Ecuaciones no Lineales

Métodos Iterativos para Ecuaciones no Lineales This is page i Printer: Opaque this Métodos Iterativos para Ecuaciones no Lineales Dr. Oldemar Rodríguez Rojas Setiembre 001 ii This is page iii Printer: Opaque this Contents 1 Métodos iterativos para

Más detalles

Solución de sistemas de ecuaciones lineales: Métodos de Jácobi y Gauss-Seidel

Solución de sistemas de ecuaciones lineales: Métodos de Jácobi y Gauss-Seidel Solución de sistemas de ecuaciones lineales: Métodos de Jácobi y Gauss-Seidel Ing Jesús Javier Cortés Rosas M en A Miguel Eduardo González Cárdenas M en A Víctor D Pinilla Morán Facultad de Ingeniería,

Más detalles

Tema 3 Resolución de Sistemas deecuaciones Lineales

Tema 3 Resolución de Sistemas deecuaciones Lineales Tema 3 Resolución de Sistemas de Ecuaciones Lineales E.T.S.I. Informática Indice 1 Introducción 2 Resolución de Sistemas Triangulares Triangulación por el Método de Gauss Variante de Gauss-Jordan Comentarios

Más detalles

Unidad 5 Problemas de álgebra lineal numérica.

Unidad 5 Problemas de álgebra lineal numérica. Unidad 5 Problemas de álgebra lineal numérica. Eliminación gaussiana. Factorización LU. Sea Ax = b un sistema de n ecuaciones lineales con n incógnitas, donde A es una matriz cuadrada de orden n no singular

Más detalles

Análisis de Algoritmos

Análisis de Algoritmos Análisis de Algoritmos Amalia Duch Barcelona, marzo de 2007 Índice 1. Costes en tiempo y en espacio 1 2. Coste en los casos mejor, promedio y peor 3 3. Notación asintótica 4 4. Coste de los algoritmos

Más detalles

Análisis y Diseño de Algoritmos

Análisis y Diseño de Algoritmos Análisis y Diseño de Algoritmos Notación Asintótica DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Introducción Por qué el análisis de algoritmos? Determinar tiempos de respuesta (runtime)

Más detalles

Presentación del curso

Presentación del curso Análisis Numérico Presentación del curso CNM-425 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2010. Reproducción permitida bajo los términos

Más detalles

Métodos Numéricos Hoja 1 de 5

Métodos Numéricos Hoja 1 de 5 Métodos Numéricos Hoja 1 de 5 Programa de: Métodos Numéricos UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Código: 4011 Carrera: Ingeniería Biomédica

Más detalles

Carrera: QUM Participantes Representantes de las Academias de Ingeniería Química de los Institutos Tecnológicos. Academias de Ingeniería

Carrera: QUM Participantes Representantes de las Academias de Ingeniería Química de los Institutos Tecnológicos. Academias de Ingeniería 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Métodos numéricos Ingeniería Química QUM 0521 3 2 8 2.- HISTORIA DEL PROGRAMA

Más detalles

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012 Cálculo numérico Métodos de factorización para resolver sistemas de ecuaciones lineales 22 de agosto, 2012 1 Factorización LU Considera el siguiente ejemplo de factorización LU de una matriz en un sistema

Más detalles

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

Métodos Numéricos. Carrera: BQM Participantes. Representantes de las academias de Ingeniería Bioquímica. Academia de Ingeniería

Métodos Numéricos. Carrera: BQM Participantes. Representantes de las academias de Ingeniería Bioquímica. Academia de Ingeniería 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Métodos Numéricos Ingeniería Bioquímica BQM - 0524 3-2-8 2.- HISTORIA DEL PROGRAMA

Más detalles

Preliminares Métodos de Ajuste de Curvas AJUSTE DE CURVAS AJUSTE DE CURVAS

Preliminares Métodos de Ajuste de Curvas AJUSTE DE CURVAS AJUSTE DE CURVAS Contenido 1 Preliminares Definiciones 2 Definiciones Contenido 1 Preliminares Definiciones 2 Definiciones Definiciones En ciencias e ingeniería es frecuente que un experimento produzca un conjunto de datos

Más detalles

Métodos Numéricos: Guía de estudio Tema 5: Solución aproximada de ecuaciones

Métodos Numéricos: Guía de estudio Tema 5: Solución aproximada de ecuaciones Métodos Numéricos: Guía de estudio Tema 5: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 2009, versión

Más detalles

TEMARIO PARA EL EXAMEN DE ACCESO A LA ESPECIALIDAD MATEMÁTICAS PARA E.S.O. Y BACHILLERATO DEL MÁSTER DE SECUNDARIA

TEMARIO PARA EL EXAMEN DE ACCESO A LA ESPECIALIDAD MATEMÁTICAS PARA E.S.O. Y BACHILLERATO DEL MÁSTER DE SECUNDARIA TEMARIO PARA EL EXAMEN DE ACCESO A LA ESPECIALIDAD MATEMÁTICAS PARA E.S.O. Y BACHILLERATO DEL MÁSTER DE SECUNDARIA 1. Números naturales, enteros y racionales. Principio de inducción. Divisibilidad y algoritmo

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Examen-Modelo para el curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

Carrera: Ingeniería Civil CIE 0529

Carrera: Ingeniería Civil CIE 0529 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Métodos Numéricos Ingeniería Civil CIE 0529 2 2 6 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Contenido. Sistemas de ecuaciones no lineales. Enunciado del problema. Ejemplos. Ejemplos. Presentación geométrica. Normas CNM-425

Contenido. Sistemas de ecuaciones no lineales. Enunciado del problema. Ejemplos. Ejemplos. Presentación geométrica. Normas CNM-425 Contenido Análisis Numérico Sistemas de ecuaciones no lineales 1 Introducción CNM-45 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Método de Newton Copyleft

Más detalles

MÉTODOS NÚMERICOS SÍLABO

MÉTODOS NÚMERICOS SÍLABO MÉTODOS NÚMERICOS SÍLABO I. DATOS GENERALES CARRERA PROFESIONAL ASIGNATURA CÓDIGO DE ASIGNATURA PRE- REQUISITO N DE HORAS TOTALES N DE HORAS TEORÍA N DE HORAS PRÁCTICA N DE CRÉDITOS CICLO TIPO DE CURSO

Más detalles

Programación y Métodos Numéricos

Programación y Métodos Numéricos Programa de: UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Carrera: Ciencias Geológicas Escuela: Geología. Departamento: Computación. Programación

Más detalles

I.- DATOS DE IDENTIFICACIÓN Nombre de la asignatura Métodos Numéricos (465)

I.- DATOS DE IDENTIFICACIÓN Nombre de la asignatura Métodos Numéricos (465) UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA CIVIL SECRETARÍA ACADÉMICA Coordinación de Investigación, Innovación, Evaluación y Documentación Educativas. I.- DATOS DE IDENTIFICACIÓN Nombre

Más detalles

Matemáticas II, 2º BACH Fecha: 14 de noviembre de 2011 Sistemas de Ecuaciones Global 1ª evaluación Método de Gauss Álgebra de matrices Determinantes

Matemáticas II, 2º BACH Fecha: 14 de noviembre de 2011 Sistemas de Ecuaciones Global 1ª evaluación Método de Gauss Álgebra de matrices Determinantes Fecha: 14 de noviembre de 2011 Global 1ª evaluación Matemáticas II, 2º BACH Sistemas de Ecuaciones Método de Gauss Álgebra de matrices Determinantes El alumno contestará a los ejercicios 1, 2, 3 y 4, o

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS. Denominación:

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS. Denominación: 2005-2006 Hoja 1 de CENTRO: TITULACIÓN: ASIGNATURA: ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS LICENCIATURA MÁQUINAS NAVALES Código: 631311102 Curso: 1º Denominación: Grupo: 01 MÉTODOS NUMÉRICOS CRÉDITOS:

Más detalles

Profesor Francisco R. Villatoro 29 de Mayo de 2000 NO SE PERMITEN APUNTES, FORMULARIOS O CALCULADORA NO OLVIDE RACIONALIZAR TODOS LOS RESULTADOS

Profesor Francisco R. Villatoro 29 de Mayo de 2000 NO SE PERMITEN APUNTES, FORMULARIOS O CALCULADORA NO OLVIDE RACIONALIZAR TODOS LOS RESULTADOS Examen Segundo Parcial Técnicas Numéricas (Técn. Comp.) Profesor Francisco R. Villatoro 9 de Mayo de 000 NO SE PERMITEN APUNTES FORMULARIOS O CALCULADORA NO OLVIDE RACIONALIZAR TODOS LOS RESULTADOS 1.

Más detalles

GUÍA DE EXAMEN DE NUEVO INGRESO. Maestría en Optimización de Procesos

GUÍA DE EXAMEN DE NUEVO INGRESO. Maestría en Optimización de Procesos GUÍA DE EXAMEN DE NUEVO INGRESO Maestría en Optimización de Procesos ANTECEDENTES La presente guía de estudio tiene como objeto establecer los temas que serán evaluados en el proceso de selección de estudiantes

Más detalles

EJERCICIOS RESUELTOS TEMAS 2 y 3. Fco. Javier Cobos Gavala Carlos Botebol Benhamou Beatriz Silva Gallardo

EJERCICIOS RESUELTOS TEMAS 2 y 3. Fco. Javier Cobos Gavala Carlos Botebol Benhamou Beatriz Silva Gallardo INGENIERÍA TÉCNICA EN INFORMÁTICA DE SISTEMAS EJERCICIOS RESUELTOS TEMAS y 3 de CÁLCULO NUMÉRICO por Fco. Javier Cobos Gavala Carlos Botebol Benhamou Beatriz Silva Gallardo DEPARTAMENTO DE MATEMÁTICA APLICADA

Más detalles

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Grado en Matemáticas Curso 203-204 . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

Reporte de laboratorio Análisis numérico II

Reporte de laboratorio Análisis numérico II Reporte de laboratorio Análisis numérico II Alumno: Octavio Alberto Agustín Aquino Profesora: M. C. Graciela Castro Grupo: 605 Licenciatura en Matemáticas Aplicadas Universidad Tecnológica de la Mixteca

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Sistemas Lineales / 8 Contenidos Introducción Métodos directos Gauss Gauss

Más detalles

MÓDULO SE: SISTEMAS DE ECUACIONES

MÓDULO SE: SISTEMAS DE ECUACIONES LABORATORIO DE COMPUTACIÓN CIENTÍFICA (Prácticas) Curso 2009-10 1 MÓDULO SE: SISTEMAS DE ECUACIONES Alumno: Lee detenidamente los enunciados. Copia las funciones y scripts que crees a lo largo de la practica,

Más detalles

TEMA 2: RESOLUCION DE ECUACIONES DE UNA VARIABLE

TEMA 2: RESOLUCION DE ECUACIONES DE UNA VARIABLE Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 2: RESOLUCION DE ECUACIONES DE UNA VARIABLE 1 CONCEPTOS GENERALES Se llama ecuación escalar numérica a toda expresión formal F (x) = 0 donde F es una

Más detalles

E.T.S. DE INGENIERÍA INFORMÁTICA

E.T.S. DE INGENIERÍA INFORMÁTICA E.T.S. DE INGENIERÍA INFORMÁTICA PROGRAMA Y BOLETÍN DE PROBLEMAS de ÁLGEBRA NUMÉRICA para la titulación de INGENIERÍA INFORMÁTICA Programa Tema : Ecuaciones no lineales. Errores y condicionamiento en

Más detalles

Algebra lineal de dimensión finita

Algebra lineal de dimensión finita Algebra lineal de dimensión finita Métodos para calcular autovalores Pseudoinversa Algebra lineal númerica 1 Teorema:[Teorema 1.6] Sea A es una matriz real simétrica. Si Q(x) =< Ax, x > entonces: λ 1 =

Más detalles

Subrutinas en Fortran 95 para la resolución de ecuaciones no lineales de una variable

Subrutinas en Fortran 95 para la resolución de ecuaciones no lineales de una variable Subrutinas en Fortran 95 para la resolución de ecuaciones no lineales de una variable Pablo Santamaría v0.3.1 (Mayo 2014) 1. Introducción En general, las raíces de una ecuación no lineal f(x) = 0 no pueden

Más detalles

Introducción al Cálculo Numérico

Introducción al Cálculo Numérico Tema 1 Introducción al Cálculo Numérico 1.1 Introducción El Cálculo Numérico, o como también se le denomina, el Análisis numérico, es la rama de las Matemáticas que estudia los métodos numéricos de resolución

Más detalles

Tema 8: Aplicaciones. Ecuaciones en. diferencias: modelos en tiempo discreto. 1 Modelo de crecimiento exponencial. 2 Sucesión de Fibonacci

Tema 8: Aplicaciones. Ecuaciones en. diferencias: modelos en tiempo discreto. 1 Modelo de crecimiento exponencial. 2 Sucesión de Fibonacci 8 de diciembre de 20 Contexto: Bloque de Álgebra Lineal Tema 6. Sistemas de ecuaciones lineales y matrices. Tema 7. Valores y vectores propios. Tema 8. Aplicaciones del cálculo de los valores y vectores

Más detalles

Despejando, se tienen las siguientes ecuaciones de la forma : a) b)

Despejando, se tienen las siguientes ecuaciones de la forma : a) b) MAT 115 B EJERCICIOS RESUELTOS 1. De la siguiente ecuación: Despejando, se tienen las siguientes ecuaciones de la forma : a) b) Calcule la raíz por el método de punto fijo, tomando en cuenta el criterio

Más detalles

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias

Más detalles

GUIA MATLAB SOLUCION DE ECUACIONES NO LINEALES Y SISTEMAS LINEALES

GUIA MATLAB SOLUCION DE ECUACIONES NO LINEALES Y SISTEMAS LINEALES GUIA MATLAB SOLUCION DE ECUACIONES NO LINEALES Y SISTEMAS LINEALES En este taller usaremos el programa MATLAB con el fin de resolver ecuaciones no lineales y sistemas de ecuaciones lineales, de manera

Más detalles

Unidad 3. Ecuaciones lineales, ecuaciones cuadráticas, desigualdades y fracciones parciales.

Unidad 3. Ecuaciones lineales, ecuaciones cuadráticas, desigualdades y fracciones parciales. Part I Unidad. Ecuaciones lineales, ecuaciones cuadráticas, desigualdades y fracciones parciales. Ecuaciones lineales en una variable Una ecuación lineal en una variable puede de nirse como ax + b = 0

Más detalles

Sistemas Lineales. { 99 87x y = x y = que resolvemos por el método de eliminación de Gauss: Véase el ejemplo 19

Sistemas Lineales. { 99 87x y = x y = que resolvemos por el método de eliminación de Gauss: Véase el ejemplo 19 Sistemas Lineales En el curso de Álgebra Lineal hemos estudiado métodos eactos para resolver sistemas de ecuaciones lineales. Sin embargo ha dos raones para analiar numéricamente las soluciones. La primera

Más detalles

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c Programación lineal (+ extensiones). Objetivos y panorama del curso. Departamento de Matemáticas. ITAM. 2008. Introducción Programación lineal http://allman.rhon.itam.mx/ jmorales La programación lineal

Más detalles

1 Con juntos de Números: Axiomas 1

1 Con juntos de Números: Axiomas 1 ÍNDICE 1 Con juntos de Números: Axiomas 1 LOS CONJUNTOS EN EL ALGEBRA. 1-1 Los conjuntos y sus relaciones, 1.1-2 Conjuntos y variables, 6. AXIOMAS DE LOS NUMEROS REALES. 1-3 Orden en el conjunto de los

Más detalles

Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos.

Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. MATEMÁTICAS I Contenidos. Aritmética y álgebra: Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. Resolución e interpretación gráfica de ecuaciones e

Más detalles

Interp r o p la l c a ió i n seccio i nal a l (S ( pl p i l n i e) Val a o l re r s pr p e r scri r t i os N (x)

Interp r o p la l c a ió i n seccio i nal a l (S ( pl p i l n i e) Val a o l re r s pr p e r scri r t i os N (x) Introducción al método de los elementos finitos Métodos Numéricos 2 Laboratori de Càlcul Numèric (LaCàN) Dep. de Matemàtica Aplicada III Universitat Politècnica de Catalunya www-lacan.upc.es Ventajas del

Más detalles

OPTIMIZACIÓN VECTORIAL

OPTIMIZACIÓN VECTORIAL OPTIMIZACIÓN VECTORIAL Métodos de Búsqueda Directa Utilizan sólo valores de la función Métodos del Gradiente Métodos de Segundo Orden Requieren valores aproimados de la primera derivada de f) Además de

Más detalles

Método de potencia directo e inverso

Método de potencia directo e inverso Clase No. 12: Método de potencia directo e inverso MAT 251 Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) 26.09.2011 1 / 20 Método de la potencia Este método puede encontrar el eigenvalor más grande

Más detalles

Solución de ecuaciones algebraicas y trascendentes: Método de Newton Raphson

Solución de ecuaciones algebraicas y trascendentes: Método de Newton Raphson Solución de ecuaciones algebraicas y trascendentes: Método de Newton Raphson Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla Morán Facultad de Ingeniería,

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

OPERADORES LÓGICOS Y RELACIONALES. CICLOS Y ESTRUCTURAS DE CONTROL. MÉTODOS DE RESOLUCIÓN DE UNA ECUACIÓN NO LINEAL.

OPERADORES LÓGICOS Y RELACIONALES. CICLOS Y ESTRUCTURAS DE CONTROL. MÉTODOS DE RESOLUCIÓN DE UNA ECUACIÓN NO LINEAL. 2.1.-Resol.ec. no lineales.nb 126 OPERADORES LÓGICOS Y RELACIONALES. CICLOS Y ESTRUCTURAS DE CONTROL. MÉTODOS DE RESOLUCIÓN DE UNA ECUACIÓN NO LINEAL. Operadores lógicos y relacionales Los operadores lógicos

Más detalles

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada

Más detalles

LA FAMILIA DE LOS NÚMEROS METÁLICOS

LA FAMILIA DE LOS NÚMEROS METÁLICOS LA FAMILIA DE LOS NÚMEROS METÁLICOS Mat. Ménthor Urvina M Departamento de Matemáticas Escuela Politécnica Nacional El presente documento pretende divulgar los resultados interesantes de la matemática,

Más detalles

Derivada y diferencial

Derivada y diferencial Derivada y diferencial Una cuestión, que aparece en cualquier disciplina científica, es la necesidad de obtener información sobre el cambio o la variación de determinadas cantidades con respecto al tiempo

Más detalles