Razones y proporciones
|
|
|
- Óscar Medina Alarcón
- hace 8 años
- Vistas:
Transcripción
1 Razones y proporciones Por: Oliverio Ramírez Juárez Razones La razón es el número que resulta de comparar por cociente dos magnitudes de la misma especie, diferentes de cero (Velázquez, Scherzer & Albe, 2010). Una razón se puede expresar de dos formas: 1. Como una división entre dos magnitudes (, ): a b 2. O como la correspondencia entre dos números í: a: b Lo cual se lee de la siguiente forma: a es a b, significa que a un número a le corresponde un número b. Por ejemplo: Dada la razón, encuentra lo que se te pide. 1. En un aula por cada 4 alumnos hay 7 alumnas. Si el número de alumnos es 16, entonces cuántas alumnas hay el aula? Primero tenemos que plantear la razón, recordando que una razón se expresa como: 1
2 Por lo que podemos escribir la razón de este problema de la siguiente forma: Y se lee cuatro es a siete, por lo que si ahora el número de alumnos se cuadruplica y es de 16, entonces: = 4 (4) 7 (4) = Podemos concluir que el número de alumnas ahora es de Si en un laboratorio te indican que para hacer un jabón tienes que mezclar 2 litros de la sustancia A por cada litros de la sustancia B, entonces si tenemos 20 litros de la sustancia A, cuántos litros de la sustancia B necesitamos? Podemos expresar la razón de este problema de la siguiente forma: Y se lee dos es a cinco, por lo que si tenemos 20 litros de A, entonces: (2) = 10 () = 20 0 Podemos concluir que si tenemos 20 litros de A, necesitamos 0 litros de B. Proporciones La proporción es la igualdad de dos razones geométricas, y se expresa de la siguiente forma (Baldwin, 2010): La proporción es la igualdad de dos razones geométricas, y se expresa de la siguiente forma (Baldwin, 2010): 2
3 !! =!! Se lee a es a b como c es a d (Baldwin, 2010, p. 17). Como menciona Rees (1980) una proporción es en realidad una ecuación fraccionaria o una ecuación que incluye fracciones (p. 23). Por ejemplo: La proporción! =!" se lee cinco es a nueve como 40 es a 72.!!" Si no nos dan un valor de la proporción, por ejemplo: 9 = Podemos encontrar el valor faltante haciendo un despeje: 9 = 40 x x = 9 40 Por lo que el valor de x es Cantidades proporcionales Dos cantidades que dependen entre sí se dice que son: Directamente proporcionales, si a un aumento de una corresponde un aumento de la otra o a una disminución de una corresponde una disminución de la otra (Velázquez, Scherzer & Albe, 2010, p. 106). 3
4 Por ejemplo: Las horas de trabajo y los productos elaborados por un trabajador son cantidades mente proporcionales. Horas trabajadas Productos elaborados Tabla 1. Tabla y gráfica de las horas trabajadas y los productos elaborados por un trabajador. Inversamente proporcionales: Dadas dos cantidades puede ocurrir, que, a todo aumento de una, corresponda una disminución para la otra, o que a toda disminución de una, corresponda un aumento para la otra. Entonces se dice que las dos cantidades son inversamente proporcionales (Velázquez, Scherzer, & Albe, 2010, p. 108). Por ejemplo: El número de trabajadores que construyen una casa y los días que tardan: Número de trabajadores Días que tardan
5 Tabla 2. Tabla y Gráfica de los días que unos trabajadores tardan en construir una casa. Regla de tres simple La regla de tres simple es una operación aritmética que consiste en calcular el valor que le corresponde a una variable en uno de los términos en una proporción. Cuando necesites resolver un problema utilizando la de regla de tres, es necesario indagar primero si las cantidades involucradas son mente proporcionales o son inversamente proporcionales, ya que si no investigas qué tipo de proporcionalidad tienen las variables, puedes aplicar un procedimiento erróneo en la resolución del problema. Dependiendo de la relación que guardan las variables hay dos tipos de regla de tres (Baldwin, 2010): 1. La regla de tres simple.- Se emplea cuando dos variables (V1 y V2) son mente proporcionales. 2. La regla de tres simple inversa.- Se emplea cuando las variables V1 y V2 son inversamente proporcionales. Los pasos para resolver la regla de tres simple son: Identificar las variables Identificar los datos del problema V1, V2 a, b, c Directa
6 V1 V2 Hacer una tabla de datos Escribir la proporción que represente el problema Escribir el resultado en las unidades correspondientes a c b x a b = c x x = bc a Interpretar el valor de x Tabla 3. Regla de tres simple. Los pasos para resolver la regla de tres simple inversa son: Identificar las variables Identificar los datos del problema Hacer una tabla de datos Escribir la proporción que represente el problema Escribir el resultado en las unidades correspondientes V1, V2 a, b, c Inversa V1 V2 a c b x a b = x c (Nota: La proporción se forma invirtiendo los datos en una columna) x = ac b Interpretar el valor de x Tabla 4. Regla de tres simple inversa. 6
7 Por ejemplo: Observa los siguientes ejemplos de aplicación de la regla de tres simple inversa. Ejemplo 1 Seis manzanas cuestan 49 pesos, cuánto costarán 1 manzanas? Variables Cantidad, Precio Directa por que a más manzanas mayor precio Cantidad Precio Tabla de datos $ x Proporción 6 1 = 49 x x = (1)(49) 6 Resultado x = pesos Tabla. Aplicación de la regla de tres simple. Ejemplo 2 Regla de tres simple Una persona cuyo peso es de 67.2 Kg desea reducirlo a 62 kg, qué porcentaje de su peso quiere bajar? Variables Peso, Porcentaje Directa, a menos peso menos porcentaje Peso Porcentaje 7
8 Tabla de datos 67.2 Kg % 62 Kg x Proporción = 100 x x = (62)(100) 67.2 Resultado x = 92% por lo tanto el porcentaje que quiere bajar es: 100% - 92% = 8% Tabla 6. Aplicación de la regla de tres simple Ejemplo 3 Si tres kilogramos de huevo cuestan $0, cuánto costarán 12 kilos de huevo? Variables Tabla de datos Kilogramos, Precio Directa por que a más kilogramos, mayor precio kilogramos Precio $ x Proporción 3 12 = $0 x x = (12)(0) 3 Resultado x = 200 pesos Tabla 7. Aplicación de la regla de tres simple. Ahora observa un ejemplo de regla de tres simple inversa. Ejemplo 4 Un hombre recorre en dos horas 180 km, manejando a una velocidad de 90 km/h, cuánto tiempo tardará en recorrer la misma distancia con una velocidad de 120 km/h? 8
9 Variables Tabla de datos Tiempo, velocidad Inversa, por que a más velocidad, menos tiempo tarda en llegar Tiempo Velocidad km/h x km/h Proporción 2 x = Resultado Observa que los valores de la segunda columna están invertidos x = (2)(90) 120 x = 1. horas 1 hora con 30 minutos Tabla 8. Aplicación de la regla de tres simple Inversa. Como puedes observar, el uso de razones y proporciones es muy importante, ya que éstas nos permiten resolver problemas cotidianos en los cuales dos variables tienen alguna relación, ya sea o inversamente proporcional. Te invito a que pienses en dos variables que se encuentren relacionadas, y veas si su relación es mente proporcional o inversamente proporcional. 9
10 Referencias Baldwin, C. (2010). Matemáticas y contabilidad empresariales. USA: Firmas Press. [Versión en línea]. Recuperado el 27 de junio del 2012, de la base de datos e-libro de la Biblioteca Digital UVEG. García, A. E. (1996). Álgebra. Matemáticas I. México: Pearson. [Versión en línea]. Recuperada el 31 de mayo de 2012, de la base de datos Bibliotechnia de la Biblioteca Digital UVEG. Instituto Politécnico Nacional. (s.f.). Álgebra. México: Autor. [Versión en línea]. Recuperado el 31 de mayo de 2012, de la base de datos Bibliotechnia de la Biblioteca Digital UVEG. Rees, P. (1980). Álgebra contemporánea. México: McGraw-Hill Interamericana. [Versión en línea]. Recuperado el 27 de junio del 2012, de la base de datos e-libro de la Biblioteca Digital de la UVEG. Velázquez, C., Scherzer, J., & Albe, R. (2010). Razones y Proporciones. En Matemáticas II: área: ingeniería y ciencias, físico-matemáticas, ciencias médico-biológicas. México: Instituto Politécnico Nacional. [Versión en línea]. Recuperado el 27 de junio del 2012, de la base de datos e-libro de la Biblioteca Digital UVEG. 10
IES CINCO VILLAS TEMA 6 PROPORCIONALIDAD Página 1
SOLUCIONES MÍNIMOS CURSO 1º ESO TEMA 6 PROPORCIONALIDAD Ejercicio nº 1.- Indica los pares de magnitudes que son directamente proporcionales (D.P.), los que son inversamente proporcionales (I.P.) y los
Entonces la regla de tres simple se utiliza para calcular magnitudes o cantidades proporcionales.
REGLA DE TRES SIMPLE La regla de tres simple es una herramienta muy útil y a la vez muy fácil de usar. La utilizamos diariamente, por ejemplo, cuando deseamos saber cuánto costarán 3 kg de naranjas, si
ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO
Pág. ENUNCIADOS Indica si los siguientes pares de magnitudes son directa o inversamente proporcionales: a) La distancia recorrida por un caminante, a velocidad constante, y la duración del paseo. b) El
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA El éxito no se logra sólo con cualidades especiales. Es sobre todo un trabajo de constancia, de método y de organización. J.P.
Examen de Matemáticas (1º E.S.O) UNIDAD 9: PROPORCIONALIDAD Y PORCENTAJES. Grupo: 1ºB Fecha: 21/04/2009
I.E.S SAN JOSÉ (CORTEGANA) DEPARTAMENTO DE MATEMÁTICAS Examen de Matemáticas (1º E.S.O) UNIDAD 9: PROPORCIONALIDAD Y PORCENTAJES Nombre y Apellidos: Grupo: 1ºB Fecha: 21/04/2009 CALIFICACIÓN: Ejercicio
COLEGIO ALEXANDER DUL
PRIMER BIMESTRE CICLO ESCOLAR 2016 2017 MATEMÁTICAS ESTRUCTURA DEL APRENDIZAJES ESPERADOS PROGRAMA REALIZACIÓN 1-8 TEMA 1 2. Tema: Problemas aditivos. Tema: Problemas multiplicativos. impliquen sumar o
IDENTIFICAR LA RELACIÓN DE PROPORCIONALIDAD ENTRE MAGNITUDES
OBJETIVO IDENTIICAR LA RELACIÓN DE PROPORCIONALIDAD ENTRE MAGNITUDES NOMBRE: CURSO: ECHA: Para multiplicar un número por 0, 00,.000... se desplaza la coma a la derecha tantos lugares como ceros tenga la
4.- Realiza las siguientes operaciones: a) 3,25 (8,23 4,2)
MATEMÁTICAS.- PRIMER CURSO ESO. Repasa durante el verano estos objetivos, realiza estos ejercicios y preséntalos el día del examen de recuperación en Septiembre. La prueba de Septiembre serán ejercicios
SOLUCIONES MINIMOS 2º ESO TEMA 3 PROPORCIONALIDAD
SOLUCIONES MINIMOS 2º ESO TEMA 3 PROPORCIONALIDAD Ejercicio nº 1.- Subraya los pares de magnitudes que sean proporcionales: a) El peso de las naranjas compradas y el precio pagado por ellas. b) La estatura
Plan de clase (1/2) Escuela: Fecha: Profesor (a): Contenido: Análisis de la regla de tres, empleando valores enteros o fraccionarios.
Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 7 Eje temático: MI Contenido: 7.4.4 Análisis de la regla de tres, empleando valores enteros o fraccionarios. Intenciones didácticas:
Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra.
Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Resolver expresiones con números naturales con paréntesis y operaciones combinadas. 2. Reducir expresiones aritméticas y algebraicas
Razón y proporción (I)
Matemáticas 2.º ESO Unidad 5 Ficha 1 Razón y proporción (I) Una razón es la división entre dos cantidades comparables. Se representa a b y se lee «a es a b». 1. Calcula mentalmente las razones entre las
Qué entiendes por razón? Las razones son lo mismo que las fracciones?
I.E.T.I. COMUNA 17 AREA MATEMÁTICAS RAZONES Y PROPORCIONES Docente: Esmeralda Bocanegra Grado Séptimo IVPERIODO Actividad. 1.- Suponga que en un curso hay 13 hombres y 25 mujeres. Entonces la razón entre
Estrategias didácticas para la resolución de problemas en Matemática de I y II ciclos
Estrategias didácticas para la resolución de problemas en Matemática de I y II ciclos Segundo Ciclo, Relaciones y Álgebra Abril, 2014 En el Segundo ciclo se busca la profundización en los aprendizajes
Para calcular el valor desconocido, bastará con multiplicar el peso de una caja por el número de cajas que tenemos, luego
Apuntes de Matemáticas Proporcionalidad y porcentajes Fecha: MAGNITUD: Llamaremos magnitud a todo aquello que se puede pesar, contar o medir de alguna manera. Por tanto, son magnitudes el tiempo, el peso,
E. P. E. T. N 20 MATEMÁTICA 2 TRABAJO PRÁCTICO: PROPORCIONALIDAD. PROFESORES: Carlos Pavesio. Mauro Candellero. María Angélica Netto.
E. P. E. T. N 0 MATEMÁTICA TRABAJO PRÁCTICO: PROPORCIONALIDAD PROFESORES: Carlos Pavesio Mauro Candellero María Angélica Netto Sergio Garcia Contenidos Conceptuales - Matemática - año - Año 01 Unidad Nº
Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA
Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA * Se distinguen con negrita en el texto. ESTÁNDAR DE CONTENIDO Y DESEMPEÑO Nº 1 Conocer la estructura
ASIGNATURA: MATEMATICAS NOTA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA N DURACION 3 7 JUNIO 07 DE UNIDADES
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS NOTA DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA N DURACION 3
Sesión No. 1. Contextualización. Nombre: Fundamentos del Álgebra MATEMÁTICAS
Matemáticas 1 Sesión No. 1 Nombre: Fundamentos del Álgebra Contextualización Esta sesión está diseñada para ofrecer una breve explicación de los principios aritméticos y algebraicos que se requieren para
Triángulos rectángulos
Triángulos rectángulos Por: Oliverio Ramírez Juárez Trigonometría La trigonometría es la rama de las Matemáticas que estudia la resolución de triángulos, es decir, la relación métrica entre los ángulos
REGLA DE TRES SIMPLE Y COMPUESTA
1 REGLA DE TRES SIMPLE Y COMPUESTA Actividad Especial de Recuperación CONCEPTOS BÁSICOS Regla de tres directa: se aplica cuando entre las magnitudes se establecen las relaciones: A más A menos más. menos.
COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍODO DESCRIPCIÓN DE CONTENIDOS
GRADO: 7º ASIGNATURA: Matemática PERIODO: 2 PROFESORA: Carina Candelario UNIDAD Nº 3 NOMBRE DE LA UNIDAD: Operemos con números Racionales Aplicar las operaciones de números fraccionarios comunes y decimales,
La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación.
La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación. Los contenidos mínimos de la materia son los que aparecen con un * UNIDAD 1: LOS NÚMEROS NATURALES
1. El concepto de número natural. 2. Adición y sustracción de números naturales. 3. Multiplicación y división de números naturales.
ESTRUCTURA CONCEPTUAL DEL AREA DE: EJES ARTICULADORES Y PRODUCTIVOS DEL AREA CONOCIMIENTOS REPÚBLICA DE COLOMBIA DEPARTAMENTO DE CÓRDOBA MUNICIPIO DE VALENCIA INSTITUCIÓN EDUCATIVA CATALINO GULFO RESOLUCIÓN
Matemáticas financieras
Matemáticas financieras MATEMÁTICAS FINANCIERAS 1 Sesión No. 2 Nombre: Fundamentos matemáticos Contextualización Para concluir con la unidad introductoria a las matemáticas financieras, en la que estamos
CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS
CONTENIDOS Y CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 1º DE ESO. Bloque 1: Contenidos Comunes Este bloque de contenidos será desarrollado junto con los otros bloques a lo largo de todas y cada una de las
SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE
Pág. 1 PÁGINA 14 REFLEXIONA En esta unidad vas a estudiar las relaciones de proporcionalidad, que te ayudarán a superar muchos problemas aritméticos de los que se presentan todos los días. Completa la
Guía del estudiante. Clase 36 Tema: Magnitudes directamente proporcionales y regla de tres simple directa
MATEMÁTICAS Grado Séptimo Bimestre I Semana 8 Número de clases 36-39 Clase 36 Tema: Magnitudes directamente proporcionales regla de tres simple directa Actividad 1 A partir de la tabla, determine si las
Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño
1. Razón. Proporción numérica La razón de los números a y b es la fracción b a Una proporción numérica es una igualdad entre dos razones numéricas. En cualquier proporción el producto de los etremos es
TABLA DE CONTENIDOS MATEMÁTICAS QUINTO GRADO EDUCACIÓN PRIMARIA
TABLA DE ESPECIFICACIONES PARA CONSTRUIR REACTIOS I aditivos Resolución de problemas que impliquen sumar o restar fracciones cuyos denomina dores son múltiplos uno de otro. A partir de un planteamiento
Números. 1. Definir e identificar números primos y números compuestos.
MINIMOS DE MATEMÁTICAS DE 2º DE E.S.O. 1. Divisibilidad Números 1. Definir e identificar números primos y números compuestos. 2. Manejar con soltura el vocabulario propio de la divisibilidad: a es múltiplo/divisor
MATEMÁTICAS 6 GRADO. Código de Contenido El alumno empleará la lectura, escritura y comparación de diferentes cantidades de cifras numéricas.
MATEMÁTICAS 6 GRADO Código Materia: Matemáticas (Español) = MSP Eje 1= Sentido numérico y pensamiento algebraico. Eje 2= Forma, espacio y medida. Eje 3= Manejo de la información. Código: Materia. Grado.
INSTITUTO CHAPULTEPEC MIDDLE SCHOOL
MATEMÁTICAS VII. (1er BIMESTRE) INSTITUTO CHAPULTEPEC MIDDLE SCHOOL. 2009-2010 1) SIGNIFICADO Y USO DE LOS NÚMEROS a) Lectura y escritura de números naturales. - Operaciones con números naturales. - Problemas
CRITERIOS DE EVALUACIÓN
DEPARTAMENTO DE MATEMATICAS IES ROSA CHACEL (Colmenar Viejo) Criterios de evaluación y criterios de calificación Recuperación de Matemáticas. 2º de E.S.O. CRITERIOS DE EVALUACIÓN RESOLUCIÓN DE PROBLEMAS
13. Utilizar la fórmula del término general y de la suma de n términos consecutivos
Contenidos mínimos 3º ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Utilizar las reglas de jerarquía de paréntesis y operaciones, para efectuar cálculos con números racionales, expresados en forma
Nombre y apellidos:... Curso:... Fecha:... PROPORCIONALIDAD. Una proporción es la igualdad de... a. b c a. = c. d 21 EJEMPLO: EJERCICIO: = 8 x =...
Proporcionalidad y porcentajes Esquema de la unidad Curso:... Fecha:... PROPORCIONALIDAD PROPORCIÓN Una proporción es la igualdad de...... a b = Los términos a y d se llaman... Los términos b y c se llaman...
relacionados con la vida cotidiana en los que intervenga la proporcionalidad directa o inversa.
OBJETIVOS MÍNIMOS 1. Identificar los múltiplos y divisores de un número. 2. Descomponer un número en factores primos. Calcular el M.C.D. y el M.C.M. 3. Realizar operaciones aritméticas con números enteros.
1. Definir e identificar números primos y números compuestos.
1. Divisibilidad 1. Definir e identificar números primos y números compuestos. 2. Manejar con soltura el vocabulario propio de la divisibilidad: a es múltiplo/ divisor de b, a es divisible por b, a divide
CENTRO UNIVERSITARIO MONTEJO A.C. SECUNDARIA Temario Matemáticas 1
BLOQUE 1 Convierte números fraccionarios a decimales y viceversa. Conoce y utiliza las convenciones para representar números fraccionarios y decimales en la recta numérica. Representa sucesiones de números
REGLA DE TRES SIMPLE Y COMPUESTA
FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS REGLA DE TRES SIMPLE Y COMPUESTA GRADO: 6 TALLER 6 SEMESTRE II RESEÑA HISTÓRICA Aunque griegos y romanos conocían las proporciones no llegaron
Por qué expresar de manera algebraica?
Álgebra 1 Sesión No. 2 Nombre: Fundamentos de álgebra. Parte II. Objetivo: al finalizar la sesión, el estudiante conocerá e identificará las expresiones racionales, las diferentes formas de representar
MATERIA: MATEMÁTICAS CURSO: CONTENIDOS MÍNIMOS EXTRACTO DE LA PROGRAMACIÓN DIDÁCTICA IES VEGA DEL TÁDER 2º ESO
MATERIA: MATEMÁTICAS CURSO: 2º ESO CONTENIDOS MÍNIMOS NÚMEROS. Relación de divisibilidad. Descomposición de un número natural en factores primos y cálculo del máximo común divisor y del mínimo común múltiplo
6 Proporcionalidad numérica
85 _ 0-0.qxd 7//07 :7 Página Proporcionalidad numérica INTRODUCCIÓN Es muy importante que los alumnos sean capaces de discernir si dos magnitudes son proporcionales. A veces cometen el error de pensar
Preparatoria Sor Juana Inés de la Cruz Cálculo Diferencial Tutorial: Optimización Ing. Jonathan Quiroga Tinoco
Preparatoria Sor Juana Inés de la Cruz 1 Cálculo Diferencial Tutorial: Optimización Ing. Jonathan Quiroga Tinoco Grupo: Físico Matemático, Químico Biológico y Económico Administrativo Diciembre de 2014
4º E.S.O. Matemáticas A
4º E.S.O. Matemáticas A Objetivos 1. Incorporar, al lenguaje y formas habituales de argumentación, las distintas formas de expresión matemática (numérica, algebraica, de funciones, geométrica...), con
Criterios de Evaluación MÍNIMOS
s 2º ESO / 2ºPAB Concreción : CE.1 Utilizar números enteros, fracciones, decimales y porcentajes sencillos, sus operaciones y propiedades, para recoger, transformar e intercambiar información y resolver
COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA III PERÍODO DESCRIPCIÓN DE CONTENIDOS
GRADO: 6º ASIGNATURA: Matemática PERIODO: 3 PROFESORA: Carina Candelario NOMBRE DE LA UNIDAD: IDENTIFIQUEMOS RAZONES Y ESTUDIEMOS UNIDAD Nº 4 PROPORCIONALIDADES Encuentra el cuarto término de una proporción
Materia: Matemáticas Curso 2015-2016. Alumno/a Curso: 4º ESO
Materia: Matemáticas Curso 015-016 Alumno/a Curso: º ESO A continuación se describen los aprendizajes no adquiridos, así como las actividades programadas, las estrategias y los criterios de evaluación
El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así:
b) Distribución temporal de las unidades didácticas El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así: 1ª EVALUACIÓN Tema 1 Tema 2 Tema
3º ESO GUÍA DEL BLOQUE ÁLGEBRA
Lenguaje Ecuaciones Sistemas C ontenidos E jercicios C ompetencias Expresiones algebraicas. Monomios, polinomios, identidades y ecuaciones. Valor numérico de un polinomio. Operaciones con monomios. Polinomios.
41 EJERCICIOS de MATRICES y GRAFOS 2º BACH. 3 ; k) B )
41 EJERCICIOS de MTRICES y GRFOS 2º BCH. 1 2 x 3 0 1 2 7 3 0 1. Hallar x e y para que ambas matrices sean iguales: = 3 2 1 0 3 y 2 1 0 3 2. Indicar tres ejemplos de matriz simétrica de orden 3 Operaciones
Costeo directo y costeo absorbente
Costeo directo y costeo absorbente por Alma Ruth Cortés Los costos de pueden determinarse independientemente del comportamiento que éstos tengan, si son fijos o son variables. Es importante destacar que
Rige a partir de la convocatoria
TABLA DE ESPECIFICACIONES DE HABILIDADES Y CONOCIMIENTOS QUE SE MEDIRÁN EN LAS PRUEBAS DE CERTIFICACIÓN DEL PROGRAMA: I y II Ciclo de la Educación General Básica Abierta Este documento está elaborado con
OPORTUNIDADES PARA APRENDER- FORMA A PROFESORES DE MATEMÁTICA 5TO GRADO DE EDUCACIÓN SECUNDARIA
OPORTUNIDADES PARA APRENDER- FORMA A PROFESORES DE MATEMÁTICA 5TO GRADO DE EDUCACIÓN SECUNDARIA (Información que debe llenar el examinador aquí y en la hoja de respuestas) Código Modular del Centro Educativo
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS. o Los números de siete y
FUNCIONES Y GRÁFICAS
FUNCIONES Y GRÁFICAS Material de clase INTRODUCCIÓN: EJEMPLOS Una función es una correspondencia (relación) entre dos conjuntos (magnitudes ), de forma que a cada elemento (objeto) del primer conjunto
proporcionalidad numérica
IES Mata Jove tema 9: proporcionalidad curso 2009/2010 nombre: apellidos: proporcionalidad numérica Lee el texto siguiente y realiza las actividades propuestas Los griegos ya conocían las proporciones
MATEMÁTICAS 4. º CURSO UNIDAD 7: DIVISIÓN
MATEMÁTICAS 4. º CURSO UNIDAD 7: DIVISIÓN OBJETIVOS Calcular divisiones cuyo divisor es un número dígito. Reconocer si una división es exacta o entera. Conocer y aplicar la relación entre los términos
Unidad #1: DESIGUALDAD o inecuaciones COLEGIO BENIGNO TOMÁS ARGOTE UNIDAD # 1
ÁREA: Algebra COLEGIO BENIGNO TOMÁS ARGOTE UNIDAD # 1 ASIGNATURA: Matemática. NIVEL: Duodécimo grado ( CIENCIAS ) PROFESOR: José Alexander Echeverría Ruiz TRIMESTRE: I TÍTULO DE LA UNIDAD DIDÁCTICA: 1.
Programa Igualdad de Oportunidades. Matemáticas
Regla de tres Es una forma práctica de plantear un problema de proporciones cuando se conocen tres términos (o más) y se requiere calcular el cuarto término (el quinto, etc). La regla de tres puede ser
COMPROMISO DIDÁCTICO IES PINTOR ANTONIO LÓPEZ CURSO MATERIA MATEMÁTICAS NIVEL: 2º E.S.O.
COMPROMISO DIDÁCTICO NOMBRE DEL CENTRO IES PINTOR ANTONIO LÓPEZ CURSO 2015-2016 MATERIA MATEMÁTICAS NIVEL: 2º E.S.O. CRITERIOS DE EVALUACIÓN 1. Utilizar estrategias y técnicas de resolución de problemas,
II. Guía de evaluación del módulo Manejo espacios cantidades
II. Guía de evaluación del módulo Manejo espacios cantidades Modelo Académico de Calidad para la Competitividad MAEC-04 110/135 10. Matriz de valoración ó rúbrica Siglema:-MAEC-04 módulo: alumno: Docente
PROGRAMACIÓN DIDÁCTICA
PROGRAMACIÓN DIDÁCTICA Materia Período FBPI Tramo II Ámbito Científico-Tecnológico Bloque I Los números enteros y fraccionarios. Créditos 3 (30 horas) Bloque II Proporcionalidad y álgebra. Áreas y perímetros
FUNDAMENTOS NUMÉRICOS SEMANA 4
FUNDAMENTOS NUMÉRICOS SEMANA 4 ÍNDICE INECUACIONES Y DESIGUALDADES... 3 APRENDIZAJES ESPERADOS... 3 INTRODUCCIÓN... 3 INECUACIONES... 4 REGLAS DE LAS DESIGUALDADES... 4 INECUACIONES LINEALES... 5 INECUACIONES
Matemáticas Universitarias
Matemáticas Universitarias 1 Sesión No. 5 Nombre: Desigualdades lineales, cuadráticas y valor absoluto Objetivo de la asignatura: En esta sesión el estudiante conocerá las características y métodos de
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED.
. G r e d o s S a n D i e g o V a l l e c a s CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMERA EVALUACIÓN El Sistema de numeración decimal El sistema de numeración decimal. Lectura y escritura
Contenidos mínimos del área de matemáticas 1º ESO
1º ESO Unidad didáctica nº1: Los números naturales. Divisibilidad. Operaciones con números naturales: suma, resta, multiplicación y Calcular múltiplos y divisores de un número. Descomposición factorial
UNIDAD 2: SISTEMA DE NUMERACIÓN DECIMAL Y SEXAGESIMAL
UNIDAD 2: SISTEMA DE NUMERACIÓN DECIMAL Y SEXAGESIMAL OBJETIVOS Expresar, representar en la recta graduada y ordenar números decimales. Emplear los números decimales para estimar, cuantificar e interpretar
Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA
Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA * Se distinguen con negrita en el texto. ESTÁNDAR DE CONTENIDO Y DESEMPEÑO NO. 1 ÁREA: LOS NÚMEROS,
PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C)
PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C) I.E.S. Universidad Laboral de Málaga Curso 2015/2016 PROGRAMACIÓN DE LA
Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017.
Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017. Bloque 1. Procesos, métodos y actitudes en matemáticas. Los criterios correspondientes a este bloque son los marcador
CUADERNILLO DE VERANO MATEMÁTICAS 1º ESO
CUADERNILLO DE VERANO MATEMÁTICAS 1º ESO Potencias y raíces. Expresa en forma de potencia: a) 7 7 7 7 = b) 8 8 8 8 8 8 8 = c) 6 6 6 6 6 = d) 5 5 5 5 = e) 9 9 9 = f) 3 3 = Calcula las siguientes potencias:
ECUACIONES.
. ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,
001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ).
1.6 Criterios específicos de evaluación. 001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ). 002. Calcula el total de elementos que se puedan codificar con una determinada clave. 003.
CAPÍTULO II SISTEMAS NUMÉRICOS. Este método de representar los números se llama sistema de numeración decimal, donde 10 es la base del sistema.
CIENCIAS DE LA COMPUTACIÓN MAT 1104 12 CAPÍTULO II SISTEMAS NUMÉRICOS 2.1 INTRODUCCIÓN Los números usados en Aritmética están expresados por medio de múltiplos o potencias de 10; por ejemplo: 8654= 8*10
Toda cantidad física tiene unidades características. El reconocimiento de tales unidades y de sus combinaciones se conoce como análisis dimensional.
Análisis dimensional Toda cantidad física tiene unidades características. El reconocimiento de tales unidades y de sus combinaciones se conoce como análisis dimensional. Se consideran siete cantidades
TEMA 7: MAGNITUDES PROPORCIONALES. PORCENTAJES. Primer Curso de Educación Secundaria Obligatoria. I.e.s de Fuentesaúco.
2009 TEMA 7: MAGNITUDES PROPORCIONALES. PORCENTAJES. Primer Curso de Educación Secundaria Obligatoria. I.e.s de Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 07: MAGNITUDES PROPORCIONALES.
C Capítulo 1. Capítulo 3. Capítulo 2. Adición y sustracción: resultados hasta 18. Suma y resta de números con 2, 3 y 4 dígitos
C Capítulo 1 Adición y sustracción: resultados hasta 18 Adición: resultados hasta 18... 1 escoge una estrategia...2 Adición de tres o cuatro números... 3 Oraciones matemáticas - conjunto solución... 4
001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ).
3.2.4 Criterios específicos de evaluación. 001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ). 002. Calcula el total de elementos que se puedan codificar con una determinada clave. 003.
INSTITUTO ESPAÑOL DE EDUCACIÓN SECUNDARIA "SEVERO OCHOA" Departamento de Matemáticas Curso Programación Didáctica EVALUACIÓN
INSTITUTO ESPAÑOL DE EDUCACIÓN SECUNDARIA "SEVERO OCHOA" Departamento de Matemáticas Curso 2013-2014 Programación Didáctica EVALUACIÓN Criterios de evaluación GEOMETRÍA 1. Conoce y utiliza procedimientos
GUÍA No.1 REGLA DE TRES SIMPLE Y COMPUESTA CONCEPTOS BÁSICOS
1 GUÍA No.1 REGLA DE TRES SIMPLE Y COMPUESTA CONCEPTOS BÁSICOS Regla de tres directa: se aplica cuando entre las magnitudes se establecen las relaciones: A más A menos más. menos. Ejemplos Un automóvil
ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. DESARROLLO
ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. CONTENIDOS: 1. Operaciones con números fraccionarios. 2. Resolución de problemas aritméticos. DESARROLLO Ejercicio Reto
UNIDAD III. EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES.
UNIDAD III. EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. Ley asociativa El producto de tres o más números, es el mismo sin importar la manera en que se agrupan al multiplicarlos. abc=(ac)b=c(ab)
Actividades para preparar el examen de Proporcionalidad.
Actividades para preparar el examen de Proporcionalidad. Departamento de Matemáticas del I.E.S. Salvador Serrano Segundo de ESO - Curso.0 -.0.- Contesta si son ciertas las siguientes afirmaciones:. a n
MATEMÁTICAS 2º ESO ENTEROS Y DIVISIBILIDAD. Ejercicio nº 1.- Rodea con un círculo los números enteros: Ejercicio nº 2.-
MATEMÁTICAS º ESO ENTEROS Y DIVISIBILIDAD. Ejercicio nº 1.- Rodea con un círculo los números enteros: 5 6 1, 45 7 19 4 5, 5 1 4 9 Ejercicio nº.- Sitúa cada número (entero o natural) en el conjunto que
Matemáticas Propedéutico para Bachillerato. Introducción
Actividad 11. Expresiones y operaciones algebraicas. Introducción Qué es el lenguaje algebraico? Así como aprendimos a estructurar letras, sílabas, palabras, oraciones para expresarnos, en las matemáticas
DISEÑO CURRICULAR ALGEBRA LINEAL
DISEÑO CURRICULAR ALGEBRA LINEAL FACULTAD (ES) CARRERA (S) Ingeniería Computación y Sistemas CÓDIGO HORAS TEÓRICAS HORAS PRÁCTICAS UNIDADES DE CRÉDITO SEMESTRE 122443 02 02 03 II PRE-REQUISITO ELABORADO
Descripciones de los niveles de logro modificados (ALD, siglas en inglés) de la prueba de evaluación MCA en matemáticas Grados 5 a 8
Descripciones de los niveles de logro modificados (ALD, siglas en inglés) de la prueba de evaluación MCA en matemáticas Grados 5 a 8 Grado 5 No cumple los estándares de logro modificados (Grado 5) Los
CONTENIDOS MÍNIMOS 1ºESO. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos tradicionales.
DEPARTAMENTO DE: MATERIA: CONTENIDOS MÍNIMOS Matemáticas Matemáticas 1ºESO Números naturales y enteros: -Comparar y ordenar números. -Representar en la recta. -Realización de las cuatro operaciones (suma,
PRÁCTICA No. 2 FORMA POLAR DE UN NUMERO COMPLEJO. Otra forma de expresar un número complejo es la forma polar o forma módulo-argumento,
OBJETIVO EDUCACIONAL PRÁCTICA No. 2 FORMA POLAR DE UN NUMERO COMPLEJO Resolver problemas de aplicación e interpretar las soluciones utilizando matrices y sistemas de ecuaciones lineales para las diferentes
Guía del estudiante. Clase 31 Tema: Aplicaciones de la proporcionalidad. La escala
MATEMÁTICAS Grado Séptimo Bimestre I Semana 7 Número de clases 31-34 Clase 31 Tema: Aplicaciones de la proporcionalidad. La escala Actividad 1 En el mapa de esta isla, determine la distancia real entre
VERÓNICA GRIMALDI HÉCTOR PONCE
Matemática CLAUDIA BROITMAN VERÓNICA GRIMALDI HÉCTOR PONCE Índice Capítulo I el sistema de numeración... 7 Escribir, leer y comparar números naturales... 8 Relaciones entre sistema de numeración y operaciones...
EJEMPLOS DE PREGUNTAS Y ORIENTACIONES GENERALES SEGUNDO CICLO DE EDUCACIÓN MEDIA PRUEBA MATEMÁTICA 2013
Coordinación Nacional de Normalización de Estudios / División de Educación General EJEMPLOS DE PREGUNTAS Y ORIENTACIONES GENERALES SEGUNDO CICLO DE EDUCACIÓN MEDIA PRUEBA MATEMÁTICA 2013 DESCRIPCIÓN DE
Primaria Sexto Grado Matemáticas (con QuickTables)
Primaria Sexto Grado Matemáticas (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios
SECRETARIA DE EDUCACIÓN DE TAMAULIPAS SUBSECRETARIA DE PLANEACIÓN DIRECCIÓN DE EVALUACIÓN TABLA DE ESPECIFICACIONES PARA CONSTRUIR REACTIVOS
DRECCÓN DE EALUACÓN TABLA DE ESPECFCACONES PARA CONSTRUR REACTOS ECUACO NES Convierte números fraccionarios a decimales y viceversa. Conoce y utiliza las con venciones para repre sentar números fraccio
UNIDAD 1: DIVISIBILIDAD Y NÚMEROS ENTEROS
UNIDAD 1: DIVISIBILIDAD Y NÚMEROS ENTEROS 1. *Representar números enteros sobre la recta numérica, compararlos y ordenarlos. 2. *Sumar y restar números enteros teniendo en cuenta el signo que presentan.
Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado
Actualizado en febrero del 2013 Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado CONTENIDOS OBJETIVOS ESPECÍFICOS HABILIDADES CRITERIOS DE EVALUACIÓN
TRABAJO DE RECUPERACIÓN MATEMÁTICAS 1º ESO TEMA 1 : LOS NÚMEROS NATURALES. 1. Escribe en números romanos las siguientes cantidades: a) 42.
TRABAJO DE RECUPERACIÓN MATEMÁTICAS 1º ESO NOMBRE: GRUPO: TEMA 1 : LOS NÚMEROS NATURALES 1. Escribe en números romanos las siguientes cantidades: a) 42 b) 159 c) 520 2. Escribe como se leen estas cantidades:
Si 55 turistas tienen comida para 18 días, para cuántos días habrá comida si se marchan 12 turistas?
010 Si 55 turistas tienen comida para 18 días, para cuántos días habrá comida si se marchan 12 turistas? 55 Turistas ----------------------- 18 días 43 Turistas ----------------------- x (menos turistas,
