PyE_ EF2_TIPO1_
|
|
|
- Rodrigo de la Cruz Domínguez
- hace 8 años
- Vistas:
Transcripción
1 SEMESTE - TIPO DUACIÓN MÁ..5 HOAS MIÉCOLES 9 DE JUNIO DE NOMBE. De todas las fallas de un tipo especifico de unidad de disco duro de computadora, se determina que % de éstos tiene dañado sólo el sector que contiene la tabla de asignación de archivos, 7% sólo los sectores no esenciales están dañados y % tanto el sector de asignación como uno o más sectores no esenciales están dañados. Se selecciona aleatoriamente una unidad de disco dañada y se examina. a) Cuál es la probabilidad de que el sector de asignación esté dañado? b) Cuál es la probabilidad de que un sector no esencial esté dañado? c) Si se encuentra que la unidad de disco tiene un sector de asignación dañado, cuál es la probabilidad de que algunos sectores no esenciales también estén dañados? 5 Puntos esolución Sean los eventos A el cual representa daño en el sector que contiene la tabla de asignación. B el cual representa daño en los sectores no esenciales. Del enunciado P A B =, P( B A) =.7, P( A B) =.. a) P( A) = P( A B) + P( A B) =. +. =.3 b) P( B) = P( B A) + P( A B) =.7 +. =.8 c) P( B A) ( B) P( A) P A. =.3 3. Sea los gastos médicos totales (en miles de dólares) incurridos por un individuo particular durante un año dado. Aunque es una variable aleatoria discreta, supóngase que su distribución es bastante x bien aproximada por una distribución continua con función de densidad f ( x) = ke con x > a) Determinar el valor de k que hace una función de densidad válida. b) Cuáles son el valor esperado y la desviación estándar de los gastos médicos totales? c) Un individuo está cubierto por un plan de seguro que le impone una provisión deducible de $5 (así que los primeros $5 de gastos son pagados por el individuo). Luego el plan pagará 8% de cualquier gasto adicional que exceda de $5 y el pago máximo por parte del individuo (incluida la cantidad deducible) es de $5. Sea Y la cantidad de gastos médicos de este individuo pagados por la compañía de seguros. Cuál es el valor esperado de Y? Nota: = V + Y donde V es la variable aleatoria que representa la cantidad de gastos pagados por el individuo. Puntos esolución a) De la propiedad f ( x) dx= ke UNIVESIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIEÍA DIVISIÓN DE CIENCIAS BÁSICAS COODINACIÓN DE CIENCIAS APLICADAS DEPATAMENTO DE POBABILIDAD Y ESTADÍSTICA SEGUNDO EAMEN FINAL ESOLUCIÓN x dx =, se tiene PyE_ EF_TIPO_-
2 x x k k k = k lim e dx= lim e lim e e k = = = De otra forma, se observa que es una distribución exponencial, por lo tanto k = con función de densidad x e ; x> f ( x) = ; en otro caso b) El valor esperado y la desviación estándar de los gastos médicos totales, está dado por E( ) = x f ( x) dx sustituyendo x x x E ( ) = x ( e ) dx = lim xe dx = lim ( + x) e E( ) = lim ( ) e lim ( ) e + = + = La variancia está definida por el segundo momento con respecto a la media, entonces Var ( ) = ( x μ ) f ( x) dx sustituyendo x x x Var = x e dx = lim x e dx = lim ( + x ) e 8 x Var ( ) = lim ( + x ) e = lim e e + = Se verifica la media y variancia de las características de una función de densidad con distribución exponencial con λ =, entonces E( ) λ y Var ( ) λ c) Sea Y la cantidad de gastos pagados por la aseguradora y V la cantidad de gastos pagados por el individuo = V + Y de donde Y = V entonces los gastos pagados por el individuo están dados por x ; < x.5 V ( ) =.5 +.( x.5 ) ;.5 < x<.5.5 ; x.5 finalmente + E( Y) = y( x) f ( x) dx PyE_ EF_TIPO_-
3 x x ( ) E Y = x.5 +. x.5 e dx+ x.5 e dx x x = ( ) + ( ) E Y x e dx x e dx x x E Y =.8 xe lim x e.8.5 e.5 e = lim ( ) e (.5 ) e E( Y ) =.75 Por lo que la compañía aseguradora paga $7.5 dólares por asegurado. 3. Un estudio de la Secretaría de Transporte y Vialidad (SETAVI), estima que el número de horas prácticas necesarias para la obtención del permiso de conducir para menores de edad entre 6 y 7 años, sigue una distribución normal con media de [h] y variancia 9 [h ] a) Qué probabilidad hay de obtener el permiso de conducir con [h] de práctica o menos? b) Calcular la probabilidad de que la octava persona sea la tercera en obtener el permiso para conducir con máximo [h] de práctica. c) Determinar la probabilidad de que la quinta persona sea la primera en obtener el permiso para conducir con a lo más [h] de práctica. Puntos esolución Sea la variable aleatoria que representa las horas de práctica necesarias para la obtención del permiso para conducir. Normal ( μ [ ], 9 = h σ = h ) a) La probabilidad de obtener el permiso para conducir con máximo [h] de práctica P( ) = P( < ) P Z < = P Z < = P( Z <.33) = F Z (.33) 3 3 de la tabla de valores de la distribución acumulativa normal estándar P.98 b) La probabilidad de que la octava persona sea la tercera en obtener el permiso con a lo más [h] de práctica. Sea U la variable aleatoria que representa la octava persona es la tercera en obtener el permiso para conducir con máximo [h] de practica. U Pascal r = 3, p =.98 U 3 u PU ( = 8) = pq = (.98) (.98). r c) La probabilidad de que la quinta persona sea la primera en obtener el permiso con a lo más [h] de práctica. Sea Y la variable aleatoria que representa la quinta persona sea la primera en obtener el permiso para conducir con máximo [h] de practica. Y Geométrica p =.98 qp PY= Una caja contiene cuatro baterías defectuosas, tres baterías en estado regular y dos baterías aceptables. Se seleccionan dos baterías al azar. a) Calcular la probabilidad de seleccionar una batería defectuosa y una aceptable. PyE_ EF_TIPO_- 3
4 b) Determinar la distribución marginal g 5 Puntos esolución x, correspondiente al número de baterías defectuosas. a) Sea la variable aleatoria que representa el número de baterías defectuosas. = {,, } Sea Y la variable aleatoria que representa el número de baterías aceptables. Y = {,, } La función masa de probabilidad está dada por 3 x y x y ; x=,,, y =,,, - x- y f (, ) 9 Y x y = ; en otro caso sustituyendo para determinar la probabilidad 3 ( )( )( ) 8 fy ( =, Y = ) = = b) La función de probabilidad se define como g ( x) = fy ( x, y) sustituyendo en la función marginal 5 5 g ( = ) = g ( = ) = g ( = ) = la forma tabular está dada por y x g ( x ) Si la distribución del peso de los ingenieros que viajan del Distrito Federal a Chetumal, Quintana oo, tiene una media de 7 [kg] y una desviación estándar de 8.5 [kg]. Cuál es la probabilidad de que el peso total combinado de 36 de estos viajeros sea menor que 7 [kg]? PyE_ EF_TIPO_-
5 5 Puntos esolución Sea Y la variable aleatoria que representa el peso [en kg] de los ingenieros que viajan del D.F. a Chetumal, Quintana oo. Por el Teorema del Límite Central si n = 36, se conoce la media y desviación estándar, se puede aproximar por ( μ 7 [ ], ) 8.5 Y = σ Y = Y Normal kg kg entonces los parámetros del peso total combinado de los 36 ingenieros T Normal ( μt = nμy, σt = nσy) sustituyendo T Normal ( μt = 66, σt = 6) se determinará T μ PT PT P P Z PZ F σ T 6 5 de tablas de la distribución acumulada normal estándar PT 7 = PT< T ( 7) = ( < 7) < = < = ( <.) = (.) 6. Una gráfica que aparece en el artículo Thermal conductivity of polyethilenc: The effects of cristal size, density and orientation on the thermal conductivity sugiere que el valor esperado de conductividad térmica y es una función lineal de x donde x es el grosor laminar [en ångström]. x y a) Trazar el diagrama de dispersión. b) Estimar los parámetros de la función de regresión y su función de regresión. c) Pronosticar el valor de conductividad térmica cuando el grosor laminar es de 5 [Å ] 5 Puntos esolución a) El diagrama de dispersión es Diagrama de dispersión Z Conductividad térmica 5 5 y =.89x +. = Grosor laminar b) Los parámetros y el modelo, son ŷ = ˆ β + ˆ β x PyE_ EF_TIPO_- 5
6 8 8 x y ( 85)( 9) 8 i i i= i= xy i i 659 i= ˆ β.89 ( 85) xi i= 8 x i i= 8 ˆ β = y ˆ β x ˆ 9 85 β = (.89) El modelo está dado por yˆ = x c) Para obtener la estimación del valor de conductividad térmica cuando el grosor laminar es de 5 [Å], es y ˆ = PyE_ EF_TIPO_- 6
JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas
JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme
VARIABLES ALEATORIAS DISCRETAS
VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:
Variables aleatorias unidimensionales
Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen
Distribuciones de Probabilidad
Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica
Cálculo de Probabilidades II Preguntas Tema 1
Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga
Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:
Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz
FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro [email protected] T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de
Prof. Eliana Guzmán U. Semestre A-2015
Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
PROBABILIDAD Y ESTADÍSTICA
FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro [email protected] T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la
Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7.
Distribuciones Continuas de Probabilidad 1 Contenido 1. Ejemplo. 2. Diferencia entre variables aleatorias discretas y continuas. 3. Diferencia de f(x) entre variables aleatorias discretas y continuas.
Variables Aleatorias. Introducción
Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,
Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico
Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más
matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4
PS0401 - Probabilidad y Estadística DES: Ingeniería Programa(s) Educativo(s): Ingeniería de Software Tipo de materia: Obligatoria Clave de la materia: PS0401 Cuatrimestre: 4 UNIVERSIDAD AUTÓNOMA DE Área
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro
Tema 5. Muestreo y distribuciones muestrales
1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución
Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev
PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación
UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA
UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA NIVEL : LICENCIATURA CRÉDITOS : 7 CLAVE : ICAE13001731 HORAS TEORÍA : 3 SEMESTRE : QUINTO HORAS PRÁCTICA : 1 REQUISITOS
1. La Distribución Normal
1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando
Probabilidad, Variables aleatorias y Distribuciones
Prueba de evaluación continua Grupo D 7-XII-.- Se sabe que el 90% de los fumadores llegaron a padecer cáncer de pulmón, mientras que entre los no fumadores la proporción de los que sufrieron de cáncer
Tema 4: Variables aleatorias multidimensionales
1 Tema 4: Variables aleatorias multidimensionales En este tema: Distribución conjunta de probabilidad Probabilidad/densidad marginal Probabilidad/densidad condicionada Esperanza, varianza, desviación típica
VARIABLES ESTADÍSTICAS BIDIMENSIONALES
VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes
TEMA 3: Probabilidad. Modelos. Probabilidad
TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un
Grupo 23 Semestre Segundo examen parcial
Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige
Unidad Temática 3: Probabilidad y Variables Aleatorias
Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento
ESTADISTICA Y PROBABILIDAD. 1. Encuentra la media, moda, mediana, desviación estándar y varianza de la siguiente distribución de números
ESTADISTICA Y PROBABILIDAD 1. Encuentra la media, moda, mediana, desviación estándar y varianza de la siguiente distribución de números a. 22 24 25 27 32 45 65 34 23 23 23 12 42 34 23 23 18 34 23 12 34
Curso de Probabilidad y Estadística
Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola [email protected] Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica
Tema 4: Variables aleatorias multidimensionales
Tema 4: Variables aleatorias multidimensionales Los contenidos a desarrollar en este tema son los siguientes: Distribución conjunta de probabilidad Probabilidad/densidad marginales y condicionadas Independencia
Discretas. Continuas
UNIDAD 0. DISTRIBUCIÓN TEÓRICA DE PROBABILIDAD Discretas Binomial Distribución Teórica de Probabilidad Poisson Normal Continuas Normal Estándar 0.1. Una distribución de probabilidad es un despliegue de
Distribución Chi (o Ji) cuadrada (χ( 2 )
Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably
CM0244. Suficientable
IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE
PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado.
1 PROBABILIDAD EXPERIMENTOS Al fijar las condiciones iniciales para un experimento se da lugar a dos tipos de situaciones: a) Experimentos determinísticos: se conoce el resultado. Por ejemplo: si suelto
UNIVERSIDAD AUTONOMA DE SANTO DOMINGO
UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Descriptiva Para Psicólogos (EST-225)
ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua
ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:
3 PROBABILIDAD Y DISTRIBUCION NORMAL
3 PROBABILIDAD Y DISTRIBUCION NORMAL La probabilidad puede ser considerada como una teoría referente a los resultados posibles de los experimentos. Estos experimentos deben ser repetitivos; es decir poder
Estadística Aplicada
Estadística Aplicada Distribuciones de Probabilidad Variables aleatorias Toman un valor numérico para cada resultado de un espacio muestral Discretas. Sus valores posibles constituyen un conjunto discreto.
Unidad Temática 3 UT3-1: Variable Aleatoria
Autoevaluación UT3 Unidad Temática 3 UT3-1: Variable Aleatoria Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza.
Distribuciones de probabilidad multivariadas
Capítulo 3 Distribuciones de probabilidad multivariadas Sobre un dado espacio muestral podemos definir diferentes variables aleatorias. Por ejemplo, en un experimento binomial, X 1 podría ser la variable
Ejercicios de Variables Aleatorias
Ejercicios de Variables Aleatorias Elisa M. Molanes-López, Depto. Estadística, UC3M Transformaciones de variables aleatorias Ejercicio. Sea X una v.a. continua con función de densidad dada por: /, si
Prueba Integral Lapso /6
Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,
Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda
Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid
Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X
Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.
Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada
ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ
ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ Probabilidad - Período de retorno y riesgo La probabilidad de ocurrencia de un fenómeno en hidrología puede citarse de varias Formas: El
Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 1) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dadas las matrices A = x y z y B = 1, se pide: 1 1 3 1 k, X = 1.
Estadística para la toma de decisiones
Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables continúas. Objetivo Al término de la sesión el estudiante
ESTADÍSTICA I, curso Problemas Tema 4
ESTADÍSTICA I, curso 007-008 Problemas Tema 4 1. En un problema de una prueba aplicada a niños pequeños se les pide que hagan corresponder tres dibujos de animales con la palabra que identifica a ese animal.
LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.
LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante
Distribuciones de probabilidad
Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir
SESION 12 LA DISTRIBUCIÓN BINOMIAL
SESION LA DISTRIBUCIÓN BINOMIAL I. CONTENIDOS:. La distribución omial.. Variables aleatorias en una distribución omial. 3. Descripciones de la distribución omial. 4. Distribución de Poisson. II. OBJETIVOS:
INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso
INDICE Capítulo I: Conceptos Básicos 1.- Introducción 3 2.- Definición de calidad 7 3.- Política de calidad 10 4.- Gestión de la calidad 12 5.- Sistema de calidad 12 6.- Calidad total 13 7.- Aseguramiento
= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] =
El peso en kg de los estudiantes universitarios de una gran ciudad se supone aproximado por una distribución normal con media 60kg y desviación típica 8kg. Se toman 100 muestras aleatorias simples de 64
EJERCICIOS DE SELECTIVIDAD
EJERCICIOS DE SELECTIVIDAD INFERENCIA 1998 JUNIO OPCIÓN A Un fabricante de electrodomésticos sabe que la vida media de éstos sigue una distribución normal con media μ = 100 meses y desviación típica σ
Tema 5 Algunas distribuciones importantes
Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos
Distribuciones de probabilidad con R Commander
Distribuciones de probabilidad con R Commander En el menú Distribuciones podemos seleccionar Distribuciones discretas Distribuciones continuas Las distribuciones discretas que aparecen en R Commander son
Definición de probabilidad
Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total
Tema 5. Contraste de hipótesis (I)
Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar
Repaso de conceptos de álgebra lineal
MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso
Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis
Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José
Generación de variables aleatorias continuas Método de rechazo
Generación de variables aleatorias continuas Método de rechazo Georgina Flesia FaMAF 18 de abril, 2013 Método de Aceptación y Rechazo Repaso Se desea simular una v. a. X discreta, con probabilidad de masa
Distribuciones de probabilidad bidimensionales o conjuntas
Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso
Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial.
Algunas Distribuciones Estadísticas Teóricas Distribución Continuas: a) Distribución Uniforme b) Distribución de Exponencial c) Relación entre la Distribuciones de Poisson y Exponencial. d) Distribución
Unidad 1: Espacio de Probabilidad
Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar
Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Generación de Variables Aleatorias UCR ECCI CI-453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Las variables aleatorias se representan por medio de distribuciones
Técnicas Cuantitativas para el Management y los Negocios I
Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:
MATEMÁTICAS APLICADAS A LAS CC. SOCIALES I. Examen de la tercera evaluación. Nombre y apellidos Fecha: 10 de junio de 2010
IES ATENEA San Sebastián de los Rees MATEMÁTICAS APLICADAS A LAS CC. SOCIALES I Eamen de la tercera evaluación Nombre apellidos Fecha: 0 de junio de 00.- (, 5 puntos) En seis modelos de zapatillas deportivas
Tema 2: Magnitudes aleatorias
Facultad de Economía y Empresa 1 Prácticas Tema.- Magnitudes aleatorias Tema : Magnitudes aleatorias DEMANDA La demanda de cierto artículo es una variable aleatoria con la siguiente distribución: Número
Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).
VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido
Tema 4. MODELOS DE DISTRIBUCIONES DISCRETOS.
Estadística Tema 4 Curso /7 Tema 4. MODELOS DE DISTRIBUCIONES DISCRETOS. Objetivos Conceptos: Conocer los siguientes modelos discretos de probabilidad: uniforme, binomial, geométrico y Poisson. De cada
Teoría de muestras 2º curso de Bachillerato Ciencias Sociales
TEORÍA DE MUESTRAS Índice: 1. Introducción----------------------------------------------------------------------------------------- 2 2. Muestras y población-------------------------------------------------------------------------------
Trabajo No 1. Derivados Financieros
Trabajo No 1. Derivados Financieros Norman Giraldo Gómez Escuela de Estadística - Universidad Nacional de Colombia [email protected] Marzo, 2010 1. Introducción Este trabajo consiste de un punto asignado
INDICE. Prólogo a la Segunda Edición
INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.
Teoría de la decisión
1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia
Regresión y Correlación
Relación de problemas 4 Regresión y Correlación 1. El departamento comercial de una empresa se plantea si resultan rentables los gastos en publicidad de un producto. Los datos de los que dispone son: Beneficios
TEOREMA DEL LÍMITE CENTRAL
Material de clase n 2 Domingo 13 Junio TEOREMA DEL LÍMITE CENTRAL A medida que n se vuelve más grande, la distribución de las medias muestrales se aproxima a una distribución normal con una media x = µ
MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES
PROBABILIDAD Y ESTADÍSTICA
PROBABILIDAD Y ESTADÍSTICA 4 horas a la semana 8 créditos Semestre variable según la carrera Objetivo del curso: Analizar y resolver problemas de naturaleza aleatoria en la ingeniería, aplicando conceptos
EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.
EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones
Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria
Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza
Notas de clase A. Leonardo Bañuelos Saucedo Nayelli Manzanarez Gómez
PROBABILIDAD Y ESTADÍSTICA Notas de clase A. Leonardo Bañuelos Saucedo Nayelli Manzanarez Gómez INTRODUCCIÓN TEMA V VARIABLES ALEATORIAS CONJUNTAS En los capítulos anteriores se estudiaron variables aleatorias
Teorema Central del Límite (1)
Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico
478 Índice alfabético
Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión
ESTADÍSTICA. Tema 4 Regresión lineal simple
ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B.
Variables aleatorias conjuntas
Variables aleatorias conjuntas M. en A. Víctor D. inilla Morán Facultad de Ineniería UNAM Resumen Variables aleatorias conjuntas discretas; unción de probabilidad conjunta: su deinición propiedades. Función
Distribuciones de probabilidad más usuales
Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y
Tema 2. Regresión Lineal
Tema 2. Regresión Lineal 3.2.1. Definición Mientras que en el apartado anterior se desarrolló una forma de medir la relación existente entre dos variables; en éste, se trata de esta técnica que permite
GRAFICOS DE CONTROL DATOS TIPO VARIABLES
GRAFICOS DE CONTROL DATOS TIPO VARIABLES OBJETIVO DEL LABORATORIO El objetivo del presente laboratorio es que el estudiante conozca y que sea capaz de seleccionar y utilizar gráficos de control, para realizar
Análisis de Componentes de la Varianza
Análisis de Componentes de la Varianza Resumen El procedimiento de Análisis de Componentes de Varianza está diseñado para estimar la contribución de múltiples factores a la variabilidad de una variable
DISTRIBUCIÓN N BINOMIAL
DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina
Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR
Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.
Carrera: Ingeniería Civil CIM 0531
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Probabilidad y Estadística Ingeniería Civil CIM 0531 3 2 8 2.- HISTORIA DEL PROGRAMA
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: IDENTIFICACIÓN DE LA ASIGNATURA
JUNIO Opción A
Junio 010 (Prueba Específica) JUNIO 010 Opción A 1.- Discute y resuelve según los distintos valores del parámetro a el siguiente sistema de ecuaciones: a x + a y + az 1 x + a y + z 0.- Una panadería se
4. Regresión Lineal Simple
1 4. Regresión Lineal Simple Introducción Una vez conociendo las medidas que se utilizan para expresar la fuerza y la dirección de la relación lineal entre dos variables, se tienen elementos base para
DISTRIBUCIÓN DE POISSON
DISTRIBUCIÓN DE POISSON P O I S S O N Siméon Denis Poisson, (1781-1840), astronauta francés, alumno de Laplace y Lagrange, en Recherchés sur la probabilité des jugements..., un trabajo importante en probabilidad
