No Idealidades en Reactores de Flujo
|
|
|
- Ramona Castro Padilla
- hace 8 años
- Vistas:
Transcripción
1 No Idealidade en Reacore de Flujo Caua principale y no idealidade ípica: Mezclado imperfeco de lo agiadore debido a la preencia de muy baja velocidad denro del iema de reacción (zona muera): Canalización: Oro ipo de canalización: Reromezclado en reacore ubulare. Difuión axial y radial en reacore ubulare. Flujo laminar en reacore ubulare; y en general cualquier régimen de flujo que difiera del régimen de flujo ideal. Ingeniería de Reacore 152 M.A.Romero 23
2 Análii de la No Idealidade en Reacore de Flujo Méodo exaco Perfile de T, C, V Méodo de análii Méodo aproximado Uilizan medicione experimenale y un modelo de mezclado inermedio Función de diribución de iempo de reidencia. e baa en el hecho de que diferene elemeno del fluído oman diferene iempo en paar a ravé del reacor. Generalmene, para el análii de la diribución del flujo e uilizan écnica experimenale, la cuale eán baada en la adición de una uancia inere (razador) al iema de reacción y en la medición de la concenración de ea uancia con repeco al iempo a la alida del reacor. La flucuación en el flujo de alimenación puede er una función pulo, ecalón, enoidal, ec. Conc. de Trazador Tiempo de reidencia La diribución de iempo de reidencia e define como la fracción volumen del fluido a la alida que ha permanecido un iempo menor que. e puede inerprear como la probabilidad que iene un elemeno del fluído que enró a, alga a un iempo menor que el iempo de reidencia. Ingeniería de Reacore 153 M.A.Romero 23
3 df() F( 1 ) 1 La probabilidad de que un elemeno del fluido alga a un iempo menor al iempo de reidencia e:. Enonce, la probabilidad de que alga depué del iempo de reidencia e 1. F(). F() Fracción volumen del fluido con "edad" <. F( + d) Fracción volumen del fluido con "edad" <+d. df() Fracción volumen del fluido con "edad" enre y (+d). Enonce, el iempo promedio de reidencia ería el valor eperado de la función probabilíica: Como e elimina el érmino d Para un cambio ecalón: df() d d df() Ingeniería de Reacore 154 M.A.Romero 23
4 w 1 F() w w. donde w e la fracción peo. A un iempo : F() Fracción del fluído con edad (y compoición w 1 e igual a F(). 1 - F() Fracción del fluído con edad > y compoición w, enonce w () w 1 F() + w [1 F()] por lo ano: para un cambio ecalón. Por ora pare, para un cambio pulo: En un diferencial de iempo d, la maa de razador que ale del iema e donde: w Fracción máica del razador. Para un iema de denidad conane: enonce: F() w md & m T Ingeniería de Reacore 155 M.A.Romero 23
5 df() d mw & m T mw & recordando, de la definición del valor eperado: df() d d eo e demuera en el iguiene ejemplo. Deerminación F() y a parir de dao de repuea a un pulo Una canidad conocida de raza e inyeca a un reacor que opera en eado eable. Lo dao experimenale de la concenración a la alida on : Tiempo (eg) Concenración a la alida C (gr/cm 3 ) Con ea información, deerminar la curva F() y el iempo promedio de reidencia. OLUCION. Para iema de denidad conane: Ingeniería de Reacore 156 M.A.Romero 23
6 F() Muliplicando y dividiendo por el volumen: F() C md & C md & Evaluando la inegrale como umaoria de dao dicreo: F () Cm& Cm& Como lo dao eán equiepaciado en el iempo : Efecuando lo cálculo: F () Tiempo (eg) ΣC (gr/cm 3 ) F() C C Ingeniería de Reacore 157 M.A.Romero 23
7 Donde Σ C 5. gr/cm 3. Para el iempo medio de reidencia : Evaluando numéricamene la inegrale: ( mw & ) ( mw & ) C C Calculando el iempo medio de reidencia : ΣC 12x x x x1. 18,72 18,72/ eg Graficando F() v : F () (eg) Ingeniería de Reacore 158 M.A.Romero 23
5. MODELOS DE FLUJO EN REACTORES REALES
5. MODLOS D FLUJO N RACTORS RALS 5.1 INTRODUCCIÓN n el caso de los reacores homogéneos isoérmicos, para predecir el comporamieno de los mismos deben enerse en cuena dos aspecos: - La velocidad a la cual
Transformada de Laplace
Capíulo 7 Tranformada de Laplace En ea ección inroduciremo y eudiaremo la ranformada de Laplace, dearrollaremo alguna de u propiedade ma báica y úile. Depué veremo alguna aplicacione. 7. Definicione y
MODELOS DE REGIMENES CAMBIANTES ESTOCÁSTICOS Markov switching regimes
MODELOS DE REGIMENES CAMBIANES ESOCÁSICOS Markov wiching regime Comporamieno dinámico de la variable dependen del eado de la economía Modelo AR y SAR: vario regímene en función del valor de una variable
PRACTICA DE LABORATORIO 5: MEDIDA DE LA PERMEABILIDAD
PRACTICA DE LABORATORIO 5: MEDIDA DE LA PERMEABILIDAD 1. OBJETIO La Prácica 5 va a cenrare en la deerminación de la permeabilidad de un uelo arenoo ípico (arena de la playa de Caelldefel). Sin embargo
TRANSFORMADAS. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs
Univeridad Carlo III de Madrid Señale y Siema TRANSFORMADAS OBJETIVOS Reviión de la herramiena maemáica que e uilizan para la obención del modelo maemáico en forma de función de ranferencia. Reviión de
4.2 Solución de un sistema de ecuaciones diferenciales lineales con condiciones iniciales por medio de la trasformada de Laplace
. Solución de un iema de ecuacione diferenciale lineale con condicione iniciale por medio de la raformada de Laplace 0. Solución de un iema de ecuacione diferenciale lineale con condicione iniciale por
PRÁCTICA TRANSFORMADA DE LAPLACE CURSO CÁLCULO II. Práctica 11 (19/05/2015)
PRÁCTICA TRANSFORMADA DE LAPLACE CURSO 4-5 CÁLCULO II Prácica Malab Prácica (9/5/5) Objeivo o Calcular ranformada de Laplace y ranformada invera de Laplace, uilizando cálculo imbólico. o Comprobar propiedade
Muestreo y Cuantización
5ºuroTraamieno Digial de eñal Muereo y uanización Muereo y uanización de eñale onveridore AnalógicoDigial apíulo 5: Muereo y uanización 1 Muereo 5ºuroTraamieno Digial de eñal El muereo digial de una eñal
1.10 Aplicaciones de las ecuaciones diferenciales de primer orden
. Aplicaciones de las ecuaciones diferenciales de primer orden 55. Aplicaciones de las ecuaciones diferenciales de primer orden Ejemplo.. Decaimieno radiacivo El isóopo radiacivo Torio 24 se desinegra
LA TRANSFORMADA DE LAPLACE
7 LA TRANSFORMADA DE LAPLACE 7 Definición de la ranformada de Laplace 7 Tranformada invera y ranformada de derivada 7 Tranformada invera 7 Tranformada de derivada 73 Propiedade operacionale I 73 Tralación
TEMA 3: Métodos para el análisis de sistemas
Dinámica de Siema TEM : Méodo para el análii de iema..- Inroducción...- Solución de ecuacione diferenciale lineale...- Tranformada de Laplace..4.- Diagrama de bloque..- Mariz de Tranferencia.6.- Méodo
Flujo máximo: Redes de flujo y método de Ford-Fulkerson. Jose Aguilar
Flujo máximo: Rede de flujo y méodo de Ford-Fulkeron Joe Aguilar b a d c 0 0 0 0 0 Flujo en Rede. Flujo máximo Algorimo de Flujo Lo algorimo de flujo reuelven el problema de enconrar el flujo máximo de
CURSO REDES ELECTRICAS I 1 CAPITULO 5 IMPEDANCIAS SÍNCRONAS DE LOS ELEMENTOS DE LA RED.
CURSO REDES ELECTRICAS I CAPITULO 5 IMPEDANCIAS SÍNCRONAS DE LOS ELEMENTOS DE LA RED. En ee curo, eamo uoniendo que en la red rifáica coniderada, la 3 corriene que circulan or la red forman un iema equilibrado
MATRICES. M(n) ó M nxn A =
MTRICES Definición de mari. Una mari de orden m n es un conjuno de m n elemenos perenecienes a un conjuno, que para nosoros endrá esrucura de cuerpo conmuaivo y lo denoaremos por K, dispuesos en m filas
Método desarrollado en el año de 1889, pero por su sencillez todavía se sigue utilizando.
1 3.2.1.1. Fórmula racional Méodo desarrollado en el año de 1889, pero por su sencillez odavía se sigue uilizando. Hipóesis fundamenal: una lluvia consane y uniforme que cae sobre la cuenca de esudio,
7 Lugares geométricos en el espacio
7 Lugare geomérico en el epacio ACTIVIDADES INICIALES 7.I Ecribe una ecuacione paramérica de la reca que paa por lo puno A(,, ) B(,, ). Calcula, ademá, un par de ecuacione implícia que la deerminen. AB
USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD
USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD Inroducción. En muchas áreas de ingeniería se uilizan procesos esocásicos o aleaorios para consruir modelos de sisemas ales como conmuadores
Tema 13 Modelos de crecimiento exógeno básicos
Tema 13 Modelo de crecimieno exógeno báico 13.1 Reolución del modelo con la función genérica de roducción. 13.2 Lo modelo de Harrod-Domar y de Kaldor. 13.3 El modelo de Solo. Bibliografía: Sala i Marin
Los Procesos de Poisson y su principal distribución asociada: la distribución exponencial
Los Procesos de Poisson y su principal disribución asociada: la disribución exponencial Lucio Fernandez Arjona Noviembre 2004. Revisado Mayo 2005 Inroducción El objeivo de esas noas es inroducir al esudio
ESTUDIO DE MERCADO. MÉTODOS DE PROYECCIÓN
ESTUDIO DE MERCADO. MÉTODOS DE PROECCIÓN Qué es una proyección? Es una esimación del comporamieno de una variable en el fuuro. Específicamene, se raa de esimar el valor de una variable en el fuuro a parir
Departamento de Ingeniería Hidráulica y M.A. de la U.P.V HIDROGRAMA UNITARIO
Deparameno de Ingeniería Hidráulica y M.A. de la U.P.V. 6 6.- HIDROGRAMA UNITARIO Deparameno de Ingeniería Hidráulica y M.A. de la U.P.V. 63 PROBLEMA RESUELTO 1 El HU de una cuenca para una lluvia de 1
TRABAJO PRÁCTICO N 1 Introducción al Control de Procesos
TRABAJO PRÁCTICO N Inroducción al Conrol de Procesos OBJETIVOS: Adquirir una primera aproximación de la forma en que acúan los sisemas de conrol realimenados, aprendiendo a idenificar ipos de variables.
Circuitos para observar la descarga y carga de un capacitor.
IUITO Objeivo Enconrar el comporamieno de la diferencia de poencial en función del iempo, (), enre los exremos de un capacior cuando en un circuio se carga y cuando se descarga el capacior. INTODUION onsidere
Las señales pueden ser también, señales continuas o señales alternas.
INSIUO ÉCNICO SLESINO LORENZO MSS ema 1: CONCEPOS PRELIMINRES LLER DE MEDICIONES Conenido: Concepo de señal elécrica. Valores caracerísicos de las señales elécricas: Frecuencia (período, Fase, Valor de
DERIVACION DE LA ECUACION DE BERNOULLI
DERIACION DE LA ECUACION DE BERNOULLI Prearado or: Ing. Eseban L. Ibarrola Cáedra de Mecánica de los Fluidos- FCEFyN- UNC Exisen varios formas alernaivas ara derivar la ecuación de Bernoulli, ero odas
PRÁCTICA 4 TEMA 6: SERIES TEMPORALES
PRÁCTICA 4 TEMA 6: SERIES TEMPORALES En las prácicas aneriores se habían analizado observaciones de variables de ipo ransversal (por ejemplo, obenidas para diferenes municipios). Llamaremos Serie Temporal
Propagación de crecidas
cnicas y algorimos empleados en esudios hidrológicos e hidráulicos Monevideo - Agoso 010 PROGRAMA DE FORMACIÓN IBEROAMERICANO EN MATERIA DE AGUAS Propagación de crecidas Luis Teixeira Profesor Tiular,
INCERTIDUMBRE EN LA CALIBRACIÓN DE VISCOSÍMETROS CAPILARES
CENTO NACIONAL DE METOLOGÍA INCETIDUMBE EN LA CALIBACIÓN DE VISCOSÍMETOS CAPILAES Wolfgang A. Schmid ubén J. Lazos Marínez Sonia Trujillo Juárez Noa: El presene ejercicio ha sido desarrollado bajo aspecos
Definición. Elementos de un Sistema de Control
TEORÍA DE CONTROL. Tema 1. Inroducción a los Sisemas de Conrol Sisema de Conrol Los conroles auomáicos o sisemas de conrol consiuyen una pare muy imporane en los procesos indusriales modernos, donde se
V () t que es la diferencia de potencial entre la placa positiva y la negativa del
:: OBJETIVOS [7.1] En esa prácica se deermina experimenalmene la consane de descarga de un condensador, ambién llamado capacior ó filro cuando esá conecado en serie a una resisencia R. Se esudian asociaciones
MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS
1º) La facura del gas se calcula a parir de una canidad fija y de un canidad variable que se calcula según los m 3 consumidos (el precio de cada m 3 es consane). El impore de la facura de una familia,
SUPERINTENDENCIA DE BANCOS Y SEGUROS REPUBLICA DEL ECUADOR
SUPERINTENDENCI DE NCOS Y SEGUROS REPULIC DEL ECUDOR Inrucivo para la aplicación del Concepo de Valor en Riego (Var), para la eimación de la Liquidez erucural requerida por la Iniucione Financiera OCTURE
CAÍDA LIBRE Y TIRO VERTICAL
CAÍDA LIBRE Y TIRO VERTICAL ECUACIONES HORA- RIAS PARA CAIDA LI- BRE Y TIRO VERTICAL Poición en función del iepo Velocidad en función del iepo - 4 - CAÍDA LIBRE y TIRO VERTICAL Suponé que un ipo va a la
Capítulo 4 Sistemas lineales de primer orden
Capíulo 4 Sisemas lineales de primer orden 4. Definición de sisema lineal de primer orden Un sisema de primer orden es aquel cuya salida puede ser modelada por una ecuación diferencial de primer orden
Práctica 4: Sistemas telescópicos. Objeto próximo.
LABORATORO D ÓPTCA (ÓPTCA NSTRUMNTAL) CURSO 2009/10 Prácica 4: Sisemas elescópicos. Objeo próximo. 1 Objeivo de la prácica n esa prácica se comprueba que cuando el aneojo rabaja con jeos próximos, es necesario
Definición de Cinética Química
/6/ Cinéica Química Química 44 [C] [P] Ileana Nieves Marínez [R] Definición de Cinéica Química Rama de la química física que esudia cuaniaivamene la rapidez de una reacción. Esudia cómo la composición
VIGAS DE PARED DELGADA
Compendio de Cálculo Erucural FCEFyN UNC.Maa-.Giro-.Giudici - 5 Capíulo VGS DE PED DELGD NODUCCÓN Ee capíulo eá dedicado al eudio de viga de pared delgada. El objeivo e deerminar la enione y la deformacione,
Análisis de inversiones y proyectos de inversión
Análisis de inversiones y proyecos de inversión Auora: Dra. Maie Seco Benedico Índice 5. Análisis de Inversiones 1. Inroducción. 2. Crierios para la valoración de un proyeco. 3. Técnicas de valoración
Tema 5: 5 Técnicas de Evaluación de la Fiabilidad
Tema 5: 5 Técnicas de Evaluación de la Fiabilidad.- Inroducción 2.- Funciones para la evaluación de STFs 3.- Técnicas de modelado Arboles de fallos Modelos combinaorios Cadenas de Markov 4.- Modelado con
Modelación hidrodinámica de reactor agitado para contacto gas-líquido
Revisa CENIC Ciencias uímicas, Vol. 36, No. 3,. Modelación hidrodinámica de reacor agiado para conaco gas-líquido Lidia A. Fernández García, Mayra Baaller Vena, Elie Véliz Lorenzo y Caridad Álvarez Álvarez.
Electrónica Analógica 1. Interpretación de las hojas de datos de diodos
1 1- Diodos recificadores Elecrónica Analógica 1 Inerpreación de las hojas de daos de diodos En las hojas de daos dadas por el fabricane de cualquier disposiivo elecrónico enconramos la información necesaria
TEMA 2 LOS MODELOS ECONOMETRICOS Y SU PROBLEMATICA
TEMA 2 LOS MODELOS ECONOMETRICOS Y SU PROBLEMATICA 1. CONCEPTO DE MODELO El ermino modelo debe de idenificarse con un esquema menal ya que es una represenación de la realidad. En ese senido, Pulido (1983)
CONSIDERACIONES RESPECTO AL INDICADOR DÉFICIT FISCAL/PIB Juan Carlos Requena I N T R O D U C C I O N
CONSIDERACIONES RESPECTO AL INDICADOR DÉFICIT FISCAL/PIB Juan Carlos Requena I N T R O D U C C I O N Los méodos uilizados para la elaboración del Presupueso General de la Nación es uno de los emas acuales
y = log b x b y =x. ln(e x ) = x = e lnx.
5. FUNCIÓN LOGARÍTMICA La función logarímica de base b se define como la inversa de la función exponencial con base b. Es decir, el logarimo de base b de un número x es el exponene al cual debe elevarse
TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales.
T-1 Inroducción a la elecrónica digial 1 TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL El raamieno de la información en elecrónica se puede realizar de dos formas, mediane écnicas analógicas o mediane écnicas
2 El movimiento y su descripción
El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina
Master en Economía Macroeconomía II. 1 Learning by Doing (versión en tiempo discreto)
Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 4 - Soluciones 1 Learning by Doing (versión en iempo discreo) Considere una economía cuyas preferencias, ecnología, y acumulación
Análisis Estadístico de Datos Climáticos
Análisis Esadísico de Daos Climáicos SERIES TEMPORALES I Mario Bidegain (FC) Alvaro Diaz (FI) Universidad de la República Monevideo, Uruguay 2011 CONTENIDO Esudio de las series emporales en Climaología.
Fundamentos de Electrónica - Análisis de Circuitos en Corriente Alterna 2
Fundamenos de Elecrónica - Análisis de Circuios en Corriene Alerna 1 Análisis de Circuios en Corriene Alerna 1. Inroducción: Coninuando con el esudio de los principios básicos que rigen el comporamieno
Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables.
ASAS DE VARIACIÓN ( véase Inroducción a la Esadísica Económica y Empresarial. eoría y Pácica. Pág. 513-551. Marín Pliego, F. J. Ed. homson. Madrid. 2004) Un aspeco del mundo económico que es de gran inerés
Capítulo 2. Fundamentos. Modelado de procesos químicos
Capíulo 2 Fundamenos Modelado de procesos químicos Como se planeó en el capíulo anerior, una pare imporane de la simulación es el modelado del sisema en esudio. Los punos más imporanes a ener en cuena
CAPÍTULO II. Conceptos de Confiabilidad
CAPÍTULO II Concepos de Confiabilidad CAPÍTULO II CONCEPTOS DE CONFIABILIDAD Una de las áreas de ingeniería de confiabilidad es la modelación de la misma, debido a que los procesos en general se comporan
CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos
CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de
Principios de funcionamiento. Convertidores A-D. v(t) v d (t) Principios de funcionamiento. Principios de funcionamiento ADC
Converidores A-D Principios de funcionamieno Programa: v() Inroducción. Caracerísicas. Técnicas de Conversión A - D: Basados en converidores D-A. ST C EO C v d () n... h h h... Simuláneo. Inegrador. Bibliografía:
6. CONTROL PID CLÁSICO. Consideremos el siguiente lazo de control SISO:
6. CONROL PI CLÁSICO 6. Etructura PI Crrepnde a la etructura de cntrl ma uada en el medi indutrial. La letra PI crrepnden a la accine: Prprcinal, Integral y erivativa. Su implicidad limita el rang de la
ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t
E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe
Resolución Prueba Oficial
JUEVES DE epiembre DE en n 7 buca en ee número lo comenario de la preguna que aparecieron en la Prueba Oficial de ciencia. el jueve 7 de epiembre publicaremo la cuara pare de la reolución de la prueba
LA TRANSFORMACIÓN DE LAPLACE
CAPÍTULO CINCO LA TRANSFORMACIÓN DE LAPLACE 5. Inroducción El concepo de ranformar una función puede empleare dede el puno de via de hacer un cambio de variable para implificar la olución de un problema;
REGIMENES DE CORRIENTES O FLUJOS
LINEAS DE CORRIENTE Ø Las líneas de corriente son líneas imaginarias dibujadas a través de un fluido en movimiento y que indican la dirección de éste en los diversos puntos del flujo de fluidos. Ø Una
PROPAGACIÓN DE INCERTIDUMBRE EN LA CONVERSIÓN DE ALGUNAS MAGNITUDES DE HUMEDAD
Simposio de Merología 5 al 7 de Ocubre de 006 PROPAGACIÓN DE INCERTIDUMBRE EN LA CONVERSIÓN DE ALGUNAS MAGNITUDES DE HUMEDAD Jesús A. Dávila Pacheco, Enrique Marines López Cenro Nacional de Merología,
Introducción. Gestión de Operaciones. Introducción. Opciones de Toma de Decisiones. Capítulo 10: Planeación Agregada 4.
Inroducción Geión de Operacione Capíulo 0: Planeación Agregada Caraceríica: Horizone ípico: 2 mee. Agregación de produco en demanda y producción: Crierio: Tipo de demanda. orma de producción. Coo. Se maneja
3.5.1 Trasformada de Laplace de la función escalón unitario
.5. Trformd de Lplce de l función eclón unirio 0.5. Trformd de Lplce de l función eclón unirio Función Eclón Unirio Tmbién llmd función lo unidd de Heviide, y con frecuenci e uiliz en pliccione que rn
ASPECTOS METODOLÓGICOS DE INDICADORES DE VOLUMEN DE VENTAS, DE ARTÍCULOS ELABORADOS POR LA ACTIVIDAD MANUFACTURERA. Lima noviembre 2008
Índice de volumen de venas de la producción indusrial ASPECTOS METODOLÓGICOS DE INDICADORES DE VOLUMEN DE VENTAS, DE ARTÍCULOS ELABORADOS POR LA ACTIVIDAD MANUFACTURERA Lima noviembre 2008 Rolando Porilla
Introducción a los reactores químicos
Introducción a los reactores químicos Dr. Rogelio Cuevas García 1 Dr. Rogelio Cuevas García 1 Reactores Químicos Reactor Químico Es el dispositivo donde ocurre un cambio en la composición debido a la reacción
En esta sección inicial el estudiante se va a familiarizar con el uso de algunos instrumentos de laboratorio.
Prácica de Laboraorio Nº 1. INSTRUMENTOS DE LORTORIO EL INVERSOR LÓGIO. Objeivos : - Familiarizarse con el uso de algunos insrumenos de laboraorio. - Funcionamieno del inversor lógico. Medición de algunos
6. ALGEBRAS DE BOOLE
6.1. Relaciones de orden Relación de orden Se llama relación de orden sobre un conjuno A a cualquier relación R enre sus elemenos que verifica las siguienes res propiedades: 1. Refleiva: ara, para cualquier
Guía de Ejercicios Econometría II Ayudantía Nº 3
Guía de Ejercicios Economería II Ayudanía Nº 3 1.- La serie del dao hisórico del IPC Español desde enero de 2002 hasa diciembre de 2011, esá represenada en el siguiene gráfico: 115 110 105 100 95 90 85
Republica Bolivariana de Venezuela. Ministerio del Poder Popular para la Educación Superior
Republica Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Universidad Nacional Experimental Politécnica de la Fuerza Armada Núcleo Zulia Autor: Ing. Marlon Arteaga 1 1.
MÉTODO DE DEFLACIÓN DE VARIABLES ECONÓMICAS: CUENTAS ECONÓMICAS Y TABLAS INPUT-OUTPUT CRISTINA PRADO
MÉTODO DE DEFLACIÓN DE VARIABLES ECONÓMICAS: CUENTAS ECONÓMICAS Y TABLAS INPUT-OUTPUT CRISTINA PRADO EUSKAL ESTATISTIKA ERAKUNDEA INSTITUTO VASCO DE ESTADISTICA Donosia-San Sebasián, 1 01010 VITORIA-GASTEIZ
Especialización, escala y alcance en las empresas. agropecuarias pampeanas.
Epecialización, ecala y alcance en la emprea agropecuaria pampeana Daniel Lema Iniuo de Economía y Sociología I danilema@correoinagovar Vícor Brecia Iniuo de Economía y Sociología I vbrecia@correoinagovar
Control de un péndulo invertido usando métodos de diseño no lineales
Conrol de un péndulo inverido usando méodos de diseño no lineales F. Salas [email protected] J.Aracil [email protected] F. Gordillo [email protected] Depo de Ingeniería de Sisemas y Auomáica.Escuela Superior
Asimetrías en la Respuesta de los Precios de la Gasolina en Chile 1
Aimería en la Repuea de lo Precio de la Gaolina en Chile 1 Felipe Balmaceda Cenro de Economía Aplicada Univeridad de Chile Paula Soruco Deparameno de Economía ILADES-Univeridad Albero Hurado 27 diciembre
Aplicaciones del Ampli cador Operacional
Aplicaciones del Ampli cador Operacional J.I.Huircan Universidad de La Fronera January 6, 202 Absrac Exisen muchas aplicaciones con el Ampli cador Operacional (AO). El análisis en aplicaciones lineales
APUNTES DE CINETICA QUIMICA
PUNTES DE CINETIC QUIMIC POYO L CURSO DE DE FISICOQUIMIC NDRES SOTO BUBE. SEPTIEMBRE 00 (VERSION.0) Cinéica Química. Por medio de la ermodinámica es posible predecir la ocurrencia de reacciones, pero no
Respecto del eje de giro de la rueda, cuál de las siguientes cantidades permanece constante mientras esta desciende por el plano inclinado?
CIENCIAS (BIOLOGÍA, FÍSICA, QUÍMICA) MÓDULO 3 Eje temático: Mecánica - Fluido 1. Una rueda deciende rodando por un plano inclinado que forma un ángulo α con la horizontal del modo que e ilutra en la figura
1. Se tiene la siguiente tabla de transacciones inter industriales en el período t. 1 2 3(a) Total C(a) FBK Export (a) 47.8 103.3 95.4 20.0 46.
TRANSFERENCIAS IMPLÍCITAS DEL INGRESO ENTRE SECTORES PRODUCTIVOS, RELACIONES DE INTERCAMBIO CON EL ETERIOR, DEFLACTORES IMPLÍCITOS Y PODER ADQUISITIVO TEMA I. Se iene la siguiene abla de ransacciones iner
5. EFICIENCIA Y PRODUCTIVIDAD DEL SISTEMA PORTUARIO ESPAÑOL: UN ESTUDIO EMPÍRICO
Mónica Marín Bofarull 5. EFICIENCIA Y PRODUCTIVIDAD DEL SISTEMA PORTUARIO ESPAÑOL: UN ESTUDIO EMPÍRICO Mónica Marín Bofarull Mónica Marín Bofarull 5.. Modelización de la producción del iema poruario epañol:
Instituto San Marcos FISICA 5 Año Soluciones Practico N 3 Velocidad media, MRU Docente responsable: Fernando Aso
Iniuo San Marco Solucione Pracico N 3 Velocidad edia, MRU Docene reponable: Fernando Ao 1) Qué e la elocidad edia? La elocidad edia e la elocidad oada en un ineralo de iepo grande. 2) Qué ignificado iene
UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS ECONÓMICAS (Universidad del Perú, Decana de América)
César Anúnez. I Noas de Crecimieno Económico UNIVERSIDAD NACIONA MAOR DE SAN MARCOS FACUTAD DE CIENCIAS ECONÓMICAS (Universidad del Perú, Decana de América) En esa pare esudiaremos el amaño del obierno,
Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE.
Invesigación y écnicas de Mercado Previsión de Venas ÉCNICAS CUANIAIVAS ELEMENALES DE PREVISIÓN UNIVARIANE. (II) écnicas elemenales: Modelos Naive y Medias Móviles. Medición del error de previsión. Profesor:
Aplicación de las ondículas al análisis de imágenes
Aplicación de la ondícula al análii de imágene Terea Navarro Gonzalo Deparamen de Maemàica Aplicada III. Univeria Poliècnica de Caalunya. Colom 1 08222-Terraa [email protected] 1. Inroducción La ondícula
PREVISIÓN DE LA DEMANDA
Capíulo 0. Méodos de Previsión de la OBJETIVOS. Los pronósicos y la planificación de la producción y los invenarios. 2. El proceso de elaboración de los pronósicos. Méodos de previsión de la demanda 4.
1. Derivadas de funciones de una variable. Recta tangente.
1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias
PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO
PROCESOS ESOCÁSICOS PROCESOS ESOCÁSICOS INEGRAL ESOCÁSICA ECUACIONES DIFERENCIALES ESOCASICAS: LEMA DE IO Procesos esocásicos Un proceso esocásico describe la evolución emporal de una variable aleaoria.
Tema 2. Modelos matemáticos de los sistemas físicos
Tema. Modelos maemáicos de los sisemas físicos Objeivos Definir modelo maemáico en el ámbio de la ingeniería de sisemas Conocer la meodología de modelado de sisemas físicos Reconocer un modelo lineal de
Tema 3. Circuitos capacitivos
Inroducción a la Teoría de ircuios Tema 3. ircuios capaciivos. Inroducción... 2. Inerrupores... 3. ondensadores... 2 3.. Asociación de capacidades.... 5 ondensadores en paralelo... 5 ondensadores en serie...
UNIDAD IX. Técnicas de Suavización
UNIDAD IX Técnicas de Suavización UNIDAD IX La esadísica demuesra que suele ser más fácil hacer algo bien que explicar por qué se hizo mal. Allen L. Webser, 1998 Cuál es el objeivo de la Técnica de suavización?
3 Aplicaciones de primer orden
CAÍTULO 3 Aplicaciones de primer orden 3.2. Modelo logísico El modelo de Malhus iene muchas limiaciones. or ejemplo, predice que una población crecerá exponencialmene con el iempo, que no ocurre en la
