LA TRANSFORMADA DE LAPLACE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LA TRANSFORMADA DE LAPLACE"

Transcripción

1 7 LA TRANSFORMADA DE LAPLACE 7 Definición de la ranformada de Laplace 7 Tranformada invera y ranformada de derivada 7 Tranformada invera 7 Tranformada de derivada 73 Propiedade operacionale I 73 Tralación en el eje 73 Tralación en el eje 74 Propiedade operacionale II 74 Derivada de una ranformada 74 Tranformada de inegrale 743 Tranformada de una función periódica 75 La función dela de Dirac 76 Siema de ecuacione diferenciale lineale REPASO DEL CAPÍTULO 7 En lo modelo maemáico lineale para iema fíico ale como un iema reore/maa o un circuio elécrico en erie, el miembro del lado derecho o enrada, de la ecuacione diferenciale m d x d b dx d kx f() L d o q d R dq d C q E() e una función de conducción y repreena ya ea una fuerza exerna f () o un volaje aplicado E() En la ección 5 conideramo problema en lo que la funcione f y E eran coninua Sin embargo, la funcione de conducción diconinua on comune Por ejemplo, el volaje aplicado a un circuio podría er coninuo en ramo y periódico al como la función diene de ierra que e muera arriba En ee cao, reolver la ecuación diferencial del circuio e difícil uando la écnica del capíulo 4 La ranformada de Laplace que e eudia en ee capíulo e una valioa herramiena que implifica la olución de problema como ée 55 55

2 56 CAPÍTULO 7 LA TRANSFORMADA DE LAPLACE 7 DEFINICIÓN DE LA TRANSFORMADA DE LAPLACE REPASO DE MATERIAL Inegrale impropia con límie de inegración infinio Decompoición en fraccione parciale INTRODUCCIÓN En cálculo elemenal aprendió que la derivación y la inegración on ranformada; eo ignifica, a grande rago, que ea operacione ranforman una función en ora Por ejemplo, la función f(x) x e ranforma, a u vez, en una función lineal y en una familia de funcione polinomiale cúbica con la operacione de derivación e inegración: d dx x x y x dx 3 x3 c Ademá, ea do ranformada ienen la propiedad de linealidad al que la ranformada de una combinación lineal de funcione e una combinación lineal de la ranformada Para a y b conane d dx [ f (x) g(x)] f (x) g (x) y [ f (x) g(x)] dxf(x) dx g(x) dx iempre que cada derivada e inegral exia En ea ección e examina un ipo epecial de ranformada inegral llamada ranformada de Laplace Ademá de ener la propiedad de linealidad, la ranformada de Laplace iene mucha ora propiedade inereane que la hacen muy úil para reolver problema lineale con valore iniciale TRANSFORMADA INTEGRAL Si f(x, y) e una función de do variable, enonce una inegral definida de f repeco a una de la variable conduce a una función de la ora variable Por ejemplo, i e conerva y conane, e ve que xy dx 3y De b igual modo, una inegral definida como a K(, ) f () d ranforma una función f de la variable en una función F de la variable Tenemo en paricular ineré en una ranformada inegral, donde el inervalo de inegración e el inervalo no acoado [, ) Si f () e define para, enonce la inegral impropia K(, ) f () d e define como un límie: K(, ) f () d lím K(, ) f () d () b : Si exie el límie en (), enonce e dice que la inegral exie o e convergene; i no exie el límie, la inegral no exie y e divergene En general, el límie en () exiirá ólo para ciero valore de la variable UNA DEFINICIÓN La función K(, ) en () e llama kernel o núcleo de la ranformada La elección de K(, ) e como el núcleo no proporciona una ranformada inegral epecialmene imporane DEFINICIÓN 7 Tranformada de Laplace Sea f una función definida para Enonce e dice que la inegral { f ()} b e f () d () e la ranformada de Laplace de f, iempre que la inegral converja

3 7 DEFINICIÓN DE LA TRANSFORMADA DE LAPLACE 57 Cuando la inegral de la definición () converge, el reulado e una función de En el análii general e ua una lera minúcula para denoar la función que e ranforma y la lera mayúcula correpondiene para denoar u ranformada de Laplace, por ejemplo, {f ()} F(), {g()} G(), {y()} Y() EJEMPLO Aplicando la definición 7 Evalúe {} SOLUCIÓN De (), {} lím b : e () d e b lím b : lím b : b e d e b iempre que En ora palabra, cuando, el exponene b e negaivo y e b : conforme b : La inegral diverge para El uo del igno de límie e vuelve un poco edioo, por lo que e adopa la noación como abreviaura para ecribir lím b: () b Por ejemplo, {} e () d e, En el límie uperior, e obreeniende lo que ignifica e : conforme : para EJEMPLO Aplicando la definición 7 Evalúe {} SOLUCIÓN De la definición 7 e iene {} e d Al inegrar por pare y uando lím e,, juno con el reulado del ejemplo, e obiene : {} e e d {} EJEMPLO 3 Aplicando la definición 7 Evalúe {e 3 } SOLUCIÓN De la definición 7 e iene {e 3 } e e 3 d e ( 3) d ( e 3) 3 3, 3 El reulado e deduce del hecho de que lím : e ( 3) para 3 o 3

4 58 CAPÍTULO 7 LA TRANSFORMADA DE LAPLACE EJEMPLO 4 Aplicando la definición 7 Evalúe {en } SOLUCIÓN De la definición 7 e inegrando por pare e iene que {en } e en d e en e co d lím e co, Tranformada de Laplace de en : e co [ e en d] e co d, 4 {en } En ee puno e iene una ecuación con {en } en ambo lado de la igualdad Si e depeja ea canidad el reulado e {en } 4, ES UNA TRANSFORMACIÓN LINEAL Para una combinación lineal de funcione pode mo ecribir e [ f () g()] d e f () d e g() d iempre que amba inegrale converjan para c Por lo que e iene que { f () g()} { f ()} {g()} F() G() (3) Como reulado de la propiedad dada en (3), e dice que e una ranformación lineal Por ejemplo, de lo ejemplo y 5 { 5} {} 5 {}, y de lo ejemplo 3 y 4 4 {4e 3 en } 4 {e 3 } {en } 3 4 Se eablece la generalización de alguno ejemplo aneriore por medio del iguiene eorema A parir de ee momeno e deja de exprear cualquier rericción en ; e obreeniende que eá lo uficienemene reringida para garanizar la convergencia de la adecuada ranformada de Laplace TEOREMA 7 Tranformada de alguna funcione báica a) {} b) { n } d) {en k} f) {enh k} n! n, n,, 3, c) {ea } k k e) {co k} a k k k g) {coh k} k

5 7 DEFINICIÓN DE LA TRANSFORMADA DE LAPLACE 59 f() a 3 FIGURA 7 Función coninua por ramo b CONDICIONES SUFICIENTES PARA LA EXISTENCIA DE {f()} La inegral que define la ranformada de Laplace no iene que converger Por ejemplo, no exie {>} ni {e } La condicione uficiene que garanizan la exiencia de {f ()} on que f ea coninua por ramo en [, ) y que f ea de orden exponencial para T Recuerde que la función e coninua por ramo en [, ) i, en cualquier inervalo a b, hay un número finio de puno k, k,,, n ( k l k ) en lo que f iene diconinuidade finia y e coninua en cada inervalo abiero ( k l, k ) Vea la figura 7 El concepo de orden exponencial e define de la iguiene manera DEFINICIÓN 7 Orden exponencial Se dice que f e de orden exponencial c i exien conane c, M y T ale que f () Me c para oda T f() f ( ) FIGURA 7 f e de orden exponencial c T Me c ( c > ) Si f e una función creciene, enonce la condición f () Me c, T, implemene eablece que la gráfica de f en el inervalo (T, ) no crece má rápido que la gráfica de la función exponencial Me c, donde c e una conane poiiva Vea la figura 7 La funcione f (), f () e y f () co on de orden exponencial c para pueo que e iene, repecivamene, e, e e, y co e Una comparación de la gráfica en el inervalo (, ) e muera en la figura 73 f() e f() e f() e co e a) b) c) FIGURA 73 Tre funcione de orden exponencial c f() e c e c FIGURA 74 e no e de orden exponencial Una función como f () e no e de orden exponencial pueo que, como e muera en la figura 74, u gráfica crece má rápido que cualquier poencia lineal poiiva de e para c Un exponene enero poiivo de iempre e de orden exponencial pueo que, para c, n c Me o n e c M para T e equivalene a demorar que el lím : n >e c e finio para n,, 3, El reulado e deduce con n aplicacione de la regla de L Hôpial TEOREMA 7 Condicione uficiene para la exiencia Si f e una función coninua por ramo en [, ) y de orden exponencial c, enonce { f ()} exie para c

6 6 CAPÍTULO 7 LA TRANSFORMADA DE LAPLACE DEMOSTRACIÓN Por la propiedad adiiva del inervalo de inegrale definida podemo ecribir { f()} T e f() d T e f() d I I La inegral I exie ya que e puede ecribir como la uma de inegrale en lo inervalo en lo que e f () e coninua Ahora pueo que f e de orden exponencial, exien conane c, M, T ale que f () Me c para T Enonce podemo ecribir I T e f () d M T e e c d M T ( c)t e e ( c) d M c para c Pueo que T Me ( c) d converge, la inegral T e f () d converge por la prueba de comparación para inegrale impropia Eo, a u vez, ignifica que I exie para c La exiencia de I e I implica que exie {f ()} e f () d para c EJEMPLO 5 Tranformada de una función coninua por ramo Evalúe {f()} donde f (), 3, 3 y FIGURA 75 Función coninua por ramo 3 SOLUCIÓN La función que e muera en la figura 75, e coninua por ramo y de orden exponencial para Pueo que f e define en do ramo, {f ()} e exprea como la uma de do inegrale: {f ()} e f () d 3 e 3 e () d e 3, 3 e () d Se concluye ea ección con un poco má de eoría relacionada con lo ipo de funcione de con la que en general e eará rabajando El iguiene eorema indica que no oda función arbiraria de e una ranformada de Laplace de una función coninua por ramo de orden exponencial TEOREMA 73 Comporamieno de F() conforme : Si f e coninua por pare en (, ) y de orden exponencial y F() {f()}, enonce el lím : F() DEMOSTRACIÓN Pueo que f e de orden exponencial, exien conane g, M y T ale que f () M e g para T También, pueo que f e coninua por ramo en el inervalo T, eá neceariamene acoada en el inervalo; e decir, f () M M e Si M denoa el máximo del conjuno {M, M } y c denoa el máximo de {, g}, enonce M F() e f () d M e e c d M e ( c) d c para c Conforme :, e iene F() : y por ano F() { f ()} :

7 7 DEFINICIÓN DE LA TRANSFORMADA DE LAPLACE 6 COMENTARIOS i) En ee capíulo no dedicaremo principalmene a funcione que on coninua por ramo y de orden exponencial Sin embargo, e oberva que ea do condicione on uficiene pero no necearia para la exiencia de la ranformada de Laplace La función f () / no e coninua por ramo en el inervalo [, ), pero exie u ranformada de Laplace Vea el problema 4 en lo ejercicio 7 ii) Como conecuencia del eorema 73 e puede decir que la funcione de como F () y F () ( ) no on la ranformada de Laplace de fun cio ne coninua por ramo de orden exponencial, pueo que F () :/ y F () :/ conforme : Pero no e debe concluir de eo que F () y F () no on ranformada de Laplace Hay ora clae de funcione EJERCICIOS 7 La repuea a lo problema eleccionado con número impar comienzan en la página RES- En lo problema l a 8 ue la definición 7 para enconrar {f()} f () f () f () f () f () 6 f () 7 9 4,,,,,,,, en,,, co, > f() f() (, ) FIGURA 76 Gráfica para el problema 7 8 f() (, ) FIGURA 77 Gráfica para el problema 8 FIGURA 78 Gráfica para el problema 9 f() c FIGURA 79 Gráfica para el problema f() e 7 f() e 5 3 f() e 4 4 f() e 5 f() e en 6 f() e co 7 f() co 8 f() en En lo problema 9 a 36 ue el eorema 7 para enconrar { f ()} 9 f() 4 f() 5 f() 4 f() f() f() f() ( ) 3 6 f() ( ) 3 7 f() e 4 8 f() e f() ( e ) 3 f() (e e ) 3 f() 4 5 en 3 3 f() co 5 en 33 f() enh k 34 f() coh k 35 f() e enh 36 f() e coh En lo problema 37 a 4 encuenre {f()} uando primero una idenidad rigonomérica 37 f() en co 38 f() co 39 f() en(4 5) 4 f () co 6 4 Una definición de la función gamma eá dada por la inegral impropia ( ) e d, a b

8 6 CAPÍTULO 7 LA TRANSFORMADA DE LAPLACE a) Demuere que (a ) a (a) ( ) b) Demuere que { }, 4 Ue el hecho de que ( ) y el problema 4 para enconrar la ranformada de Laplace de a) f() / b) f() / c) f() 3/ Problema para analizar 43 Conruya una función F() que ea de orden exponencial pero donde f() F () no ea de orden exponencial Conruya una función f que no ea de orden exponencial, pero cuya ranformada de Laplace exia 44 Suponga que {f ()} F () para c y que {f ()} F () para c Cuándo {f () f ()} F () F ()? 45 La figura 74 indica, pero no demuera, que la función f () e no e de orden exponencial Cómo demuera la obervación de que ln M c, para M y uficienemene grande, que e Me c para cualquier c? 46 Uilice el incio c) del eorema 7 para demorar que a ib {e (a ib) }, donde a y b on reale ( a) b e i Demuere cómo e puede uar la fórmula de Euler (página 34) para deducir lo reulado a {e a co b} ( a) b b {e a en b} ( a) b 47 Bajo qué condicione e una función lineal f(x) mx b, m, una ranformada lineal? 48 La demoración del incio b) del eorema 7 requiere el uo de la inducción maemáica Demuere que i e upone que { n } (n )! n e ciera, enonce e de duce que { n } n! n 7 TRANSFORMADAS INVERSAS Y TRANSFORMADAS DE DERIVADAS REPASO DE MATERIAL Decompoición en fraccione parciale INTRODUCCIÓN En ea ección e dan alguno pao hacia un eudio de cómo e puede uar la ranformada de Laplace para reolver ciero ipo de ecuacione para una función deconocida Se empieza el análii con el concepo de ranformada de Laplace invera o, má exacamene, la invera de una ranformada de Laplace F() Depué de alguno anecedene preliminare imporane obre la ranformada de Laplace de derivada f (), f (),, e ilura cómo enran en juego la ranformada de Laplace y la ranformada de Laplace invera para reolver ciera ecuacione diferenciale ordinaria encilla 7 TRANSFORMADAS INVERSAS EL PROBLEMA INVERSO Si F() repreena la ranformada de Laplace de una función f (), e decir, {f()} F(), e dice enonce que f () e la ranformada de Laplace invera de F() y e ecribe f() {F()} En el cao de lo ejemplo, y 3 de la ección 7 enemo, repecivamene Tranformada {} Tranformada invera {} {e 3 } 3 e 3 3

9 7 TRANSFORMADAS INVERSAS Y TRANSFORMADAS DE DERIVADAS 63 Prono veremo que en la aplicación de la ranformada de Laplace a ecuacione no e puede deerminar de manera direca una función deconocida f (); má bien, e puede depejar la ranformada de Laplace F() o f (); pero a parir de ee conocimieno, e deermina f calculando f () {F()} La idea e implemene ea: uponga que 6 F() e una ranformada de Laplace; encuenre una función f () al que 4 {f ()} F() En el ejemplo e muera cómo reolver ee úlimo problema Para fuura referencia el análogo del eorema 7 para la ranformada invera e preena como nuero iguiene eorema TEOREMA 7 Alguna ranformada invera a) n! b) n, n,, 3, c) n e a a k d) en k e) k co k k f) enh k k k g) coh k k Al evaluar la ranformada invera, uele uceder que una función de que eamo coniderando no concuerda exacamene con la forma de una ranformada de Laplace F() que e preena en la abla E poible que ea neceario arreglar la función de muliplicando y dividiendo enre una conane apropiada EJEMPLO Aplicando el eorema 7 Evalúe a) b) 5 7 SOLUCIÓN a) Para hacer coincidir la forma dada en el incio b) del eorema 7, e idenifica n 5 o n 4 y luego e muliplica y divide enre 4!: 5 4! 4! b) Para que coincida con la forma dada en el incio d) del eorema 7, idenificamo k 7 y, por ano, k 7 Se arregla la expreión muliplicando y dividiendo enre 7 : en 7 7 ES UNA TRANSFORMADA LINEAL La ranformada de Laplace invera e ambién una ranformada lineal para la conane a y b { F() G()} {F()} {G()}, () donde F y G on la ranformada de alguna funcione f y g Como en la ecuación () de la ección 7, la ecuación e exiende a cualquier combinación lineal finia de ranformada de Laplace

10 64 CAPÍTULO 7 LA TRANSFORMADA DE LAPLACE EJEMPLO Diviión érmino a érmino y linealidad 6 Evalúe 4 SOLUCIÓN Primero e reecribe la función dada de como do expreione dividiendo cada uno de lo érmino del numerador enre el denominador y depué e ua la ecuación (): diviión de cada uno de lo érmino linealidad y arreglo de enre el denominador la conane } { } { 4 4 } 4 4 { } { co 3 en incio e) y d) del eorema 7 con k () FRACCIONES PARCIALES La fraccione parciale juegan un papel imporane en la deerminación de ranformada de Laplace invera La decompoición de una expreión racional en la fraccione componene e puede hacer rápidamene uando una ola inrucción en la mayoría de lo iema algebraico de compuadora De hecho, alguno SAC ienen paquee implemenado de ranformada de Laplace y ranformada de Laplace invera Pero para quiene no cuenan con ee ipo de ofware, en ea ección y en la ubecuene reviaremo un poco de álgebra báica en lo cao imporane donde el denominador de una ranformada de Laplace F() coniene facore lineale diino, facore lineale repeido y polinomio cuadráico in facore reale Aunque examinaremo cada uno de eo cao conforme e dearrolla ee capíulo, podría er buena idea que conulara un libro de cálculo o uno de precálculo para una reviión má complea de ea eoría En el iguiene ejemplo e muera la decompoición en fraccione parciale en el cao en que el denominador de F() e puede decomponer en diferene facore lineale EJEMPLO 3 Fraccione parciale: diferene facore lineale Evalúe 6 9 ( )( )( 4) SOLUCIÓN Exien conane reale A, B y C, por lo que 6 9 ( )( )( 4) A B C 4 A( )( 4) B( )( 4) C( )( ) ( )( )( 4) Pueo que lo denominadore on idénico, lo numeradore on idénico: 6 9 A( )( 4) B( )( 4) C( )( ) (3) Comparando lo coeficiene de la poencia de en ambo lado de la igualdad, abemo que (3) e equivalene a un iema de re ecuacione con re incógnia A, B y C Sin embargo, hay un aajo para deerminar ea incógnia Si e hace, y 4 en (3) e obiene, repecivamene, 6 A( )(5), 5 B()(6) y C( 5)( 6), 6 5 y aí, A, 5 B, y C Por lo que la decompoición en fraccione parciale 6 3 e 6 9 ( )( )( 4) 6> 5 5> 6 3 >, (4) 4

11 7 TRANSFORMADAS INVERSAS Y TRANSFORMADAS DE DERIVADAS 65 y, por ano, de la linealidad de y del incio c) del eorema 7, 6 9 ( )( )( 4) e 5 6 e 3 e 4 (5) 7 TRANSFORMADAS DE DERIVADAS TRANSFORMADA DE UNA DERIVADA Como e indicó en la inroducción de ee capíulo, el objeivo inmediao e uar la ranformada de Laplace para reolver ecuacione diferenciale Para al fin, e neceario evaluar canidade como {dy>d} y {d y>d } Por ejemplo, i f e coninua para, enonce inegrando por pare e obiene { f ()} e f () d e f () f () { f ()} o { f ()} F() f () (6) Aquí hemo upueo que e f () : conforme : De manera imilar, con la ayuda de la ecuación (6), e f () d { f ()} e f () d e f () e f () d f () { f ()} [F() f ()] f () ; de (6) o { f ()} F() f() f () (7) De igual manera e puede demorar que { f ()} 3 F() f () f () f () (8) La nauraleza recuriva de la ranformada de Laplace de la derivada de una función f e evidene de lo reulado en (6), (7) y (8) El iguiene eorema da la ranformada de Laplace de la n-éima derivada de f Se omie la demoración TEOREMA 7 Tranformada de una derivada Si f, f,, f (n ) on coninua en [, ) y on de orden exponencial y i f (n) () e coninua por ramo en [, ), enonce { f (n) ()} n F() n f() n f () f (n ) (), donde F() { f()} SOLUCIÓN DE EDO LINEALES E evidene del reulado general dado en el eorema 7 que {d n y>d n } depende de Y() {y()} y la n derivada de y() evaluada en Ea propiedad hace que la ranformada de Laplace ea adecuada para reolver problema lineale con valore iniciale en lo que la ecuación diferencial iene coefi ciene conane Ee ipo de ecuación diferencial e implemene una combinación lineal de érmino y, y, y,, y (n) : d n y d n y a n a d n n a d n y g(), y() y, y () y,, y (n ) () y n,

12 66 CAPÍTULO 7 LA TRANSFORMADA DE LAPLACE donde la a i, i,,, n y y, y,, y n on conane Por la propiedad de li neali dad la ranformada de Laplace de ea combinación lineal e una combinación lineal de ranformada de Laplace: a n d n y d n y a d n n a d n {y} {g()} (9) Del eorema 7, la ecuación (9) e conviere en a n [ n Y() n y() y (n ) ()] a n [ n Y() n y() y (n ) ()] a Y() G(), () donde {y()} Y() y {g()} G() En ora palabra, la ranformada de Laplace de una ecuación diferencial lineal con coefi ciene conane e conviere en una ecuación algebraica en Y() Si e reuelve la ecuación ranformada general () para el ímbolo Y(), primero e obiene P()Y() Q() G() y depué e ecribe Y() Q() P() G() P(), () donde P() a n n a n n a, Q() e un polinomio en de grado menor o igual a n que conie en vario produco de lo coeficiene a i, i,, n y la condicione iniciale precria y, y,, y n y G() e la ranformada de Laplace de g() * Normalmene e ecriben lo do érmino de la ecuación () obre el mínimo común denominador y depué e decompone la expreión en do o má fraccione parciale Por úlimo, la olución y() del problema con valore iniciale original e y() {Y()}, donde la ranformada invera e hace érmino a érmino El procedimieno e reume en el iguiene diagrama Encuenre la y() deconocida que aiface la ED y la condicione iniciale Aplique la ranformada de Laplace La ED ranformada e conviere en una ecuación algebraica en Y() Solución y() del PVI original Aplique la ranformada invera de Laplace Reuelva la ecuación ranformada para Y() En el ejemplo iguiene e ilura el méodo anerior para reolver ED, aí como la decompoición en fraccione parciale para el cao en que el denominador de Y() conenga un polinomio cuadráico in facore reale EJEMPLO 4 Solución de un PVI de primer orden Ue la ranformada de Laplace para reolver el problema con valore iniciale dy 3y 3 en, y() 6 d SOLUCIÓN Primero e oma la ranformada de cada miembro de la ecuación diferencial dy 3 {y} 3 {en } d () * El polinomio P() e igual al polinomio auxiliar de n-éimo grado en la ecuación () de la ección 43 donde el ímbolo m uual e uiuye por

13 7 TRANSFORMADAS INVERSAS Y TRANSFORMADAS DE DERIVADAS 67 De (6), {dy>d} Y() y() Y() 6, y del incio d) del eorema 7, {en } >( 4), por lo que la ecuación () e igual que 6 Y() 6 3Y() 4 o ( 3)Y() Reolviendo la úlima ecuación para Y(), obenemo Y() 3 ( 3)( 4) ( 3)( 4) (3) Pueo que el polinomio cuadráico 4 no e facoriza uando número reale, e upone que el numerador en la decompoición de fraccione parciale e un polinomio lineal en : 6 5 A B C ( 3)( 4) 3 4 Poniendo el lado derecho de la igualdad obre un común denominador e igualando lo numeradore, e obiene 6 5 A( 4) (B C)( 3) Haciendo 3 e obiene inmediaamene que A 8 Pueo que el denominador no iene má raíce reale, e igualan lo coeficiene de y : 6 A B y 3B C Si en la primera ecuación e ua el valor de A e encuenra que B, y con ee valor aplicado a la egunda ecuación, e obiene C 6 Por lo que, Y() ( 3)( 4) 3 4 Aún no e ermina porque la úlima expreión racional e iene que ecribir como do fraccione Eo e hizo con la diviión érmino a érmino enre el denominador del ejemplo De () de ee ejemplo, y() Se deduce de lo incio c), d) y e) del eorema 7, que la olución del problema con valore iniciale e y() 8e 3 co 3 en EJEMPLO 5 Solución de un PVI de egundo orden Reuelva y 3y y e 4, y(), y () 5 SOLUCIÓN Procediendo como en el ejemplo 4, e ranforma la ED Se oma la uma de la ranformada de cada érmino, e uan la ecuacione (6) y (7), la condicione iniciale dada, el incio c) del eorema 7 y enonce e reuelve para Y(): Y() y() y () 3[Y() y()] Y() Y() 3 d y d 3 dy d ( 3 )Y() ( 3 )( 4) {y} {e 4 } ( )( )( 4) (4) Lo dealle de la decompoición en fraccione parciale de Y() ya e preenaron en el ejemplo 3 En via de lo reulado en (3) y (4), e iene la olución del problema con valore iniciale 6 5 y() {Y()} 5 e 6 e 3 e 4

14 68 CAPÍTULO 7 LA TRANSFORMADA DE LAPLACE En lo ejemplo 4 y 5, e ilura el procedimieno báico de cómo uar la ranformada de Laplace para reolver un problema lineal con valore iniciale, pero podría parecer que eo ejemplo demueran un méodo que no e mucho mejor que el aplicado a lo problema decrio en la eccione 3 y 43 a 46 No aque concluione negaiva de ólo do ejemplo Sí, hay una gran canidad de álgebra inherene al uo de la ranformada de Laplace, pero oberve que no e iene que uar la variación de parámero o preocupare acerca de lo cao y el álgebra en el méodo de coeficiene indeerminado Ademá, pueo que el méodo incorpora la condicione iniciale precria direcamene en la olución, no e requiere la operación eparada de aplicar la condicione iniciale a la olución general y c y c y c n y n y p de la ED para deerminar conane epecífica en una olución paricular del PVI La ranformada de Laplace iene mucha propiedade operacionale En la eccione que iguen e examinan alguna de ea propiedade y e ve cómo permien reolver problema de mayor complejidad COMENTARIOS i) La ranformada de Laplace invera de una función F() podría no er única; en ora palabra, e poible que { f ()} { f ()} y in embargo f f Para nuero propóio, eo no e algo que no deba preocupar Si f y f on coninua por ramo en [, ) y de orden exponencial, enonce f y f on eencialmene iguale Véae el problema 44 en lo ejercicio 7 Sin embargo, i f y f on coninua en [, ) y { f ()} { f ()}, enonce f f en el inervalo ii) Ee comenario e para quiene engan la neceidad de hacer a mano decompoicione en fraccione parciale Hay ora forma de deerminar lo coeficiene en una decompoición de fraccione parciale en el cao epecial cuando { f()} F() e una función racional de y el denominador de F e un produco de diino facore lineale Eo e ilura al analizar de nuevo el ejemplo 3 Suponga que e muliplican ambo lado de la upuea decompoición 6 9 ( )( )( 4) A B C 4 (5) digamo, por, e implifica y enonce e hace Pueo que lo coeficiene de B y C en el lado derecho de la igualdad on cero, e obiene Ecria de ora forma, A o A ( )( 4) ( ) ( )( 4) 5 A, donde e ha ombreado o cubiero, el facor que e elimina cuando el lado izquierdo e muliplica por Ahora, para obener B y C, implemene e evalúa el lado izquierdo de (5) mienra e cubre, a u vez, y 4: 6 9 ( )( )( 4) 5 6 B y 6 9 ( )( )( 4) C 4 3

15 7 TRANSFORMADAS INVERSAS Y TRANSFORMADAS DE DERIVADAS 69 La decompoición deeada (5) e da en (4) Ea écnica epecial para deerminar coeficiene e conoce dede luego como méodo de cubrimieno iii) En ee comenario coninuamo con la inroducción a la erminología de iema dinámico Como reulado de la ecuacione (9) y () la ranformada de Laplace e adapa bien a iema dinámico lineale El polinomio P() a n n a n n a en () e el coeficiene oal de Y() en () y e implemene el lado izquierdo de la ED en donde la derivada d k y d k e uiuyen por poencia k, k,,, n E común llamar al recíproco de P(), en paricular W() P(), función de ranferencia del iema y ecribir la ecuación () como Y() W()Q() W()G() (6) De ea manera e han eparado, en un enido adiivo, lo efeco de la repuea debido a la condicione iniciale (e decir, W()Q()) de lo cauado por la función de enrada g (e decir, W()G()) Vea (3) y (4) Por ano la repuea y() del iema e una uperpoición de do repuea: y() {W()Q()} {W()G()} y () y () Si la enrada e g(), enonce la olución del problema e y () {W() Q()} Ea olución e llama repuea de enrada cero del iema Por oro lado, la función y () {W()G()} e la alida debida a la enrada g() Enonce, i la condición inicial del iema e el eado cero (oda la condicione iniciale on cero), enonce Q() y por ano, la única olución del problema con valore iniciale e y () La úlima olución e llama repuea de eado cero del iema Tano y () como y () on olucione pariculare: y () e una olución del PVI que conie en la ecuación homogénea relacionada con la condicione iniciale dada y y () e una olución del PVI que conie en la ecuación no homogénea con condicione iniciale cero En el ejemplo 5 e ve de (4) que la función de ranferencia e W() ( 3 ), la repuea de enrada cero e y () ( )( ) y la repuea de eado cero e 3e 4e, y () ( )( )( 4) 5 e 6 e 3 e 4 Compruebe que la uma de y () y y () e la olución de y() en el ejemplo 5 y que y (), y () 5, mienra que y (), y () EJERCICIOS 7 La repuea a lo problema eleccionado con número impar comienzan en la página RES- 7 TRANSFORMADAS INVERSAS En lo problema a 3 ue el álgebra apropiada y el eorema 7 para enconrar la ranformada invera de Laplace dada ( ) ( )

16 7 CAPÍTULO 7 LA TRANSFORMADA DE LAPLACE ( )( 4) ( )( ) ( )( ) ( )( 3)( 6) ( )( )( ) ( )( 4) TRANSFORMADAS DE DERIVADAS En lo problema 3 a 4, ue la ranformada de Laplace para reolver el problema con valore iniciale dy 3 y, y() d 3 dy y, y() 3 d 33 y 6y e 4, y() 34 y y co 5, y() 35 y 5y 4y, y(), y () 36 y 4y 6e 3 3e, y(), y () 37 y y en, y(), y () 38 y 9y e, y(), y () 39 y 3y 3y y e, y(), y (), y () 4 y y y y en 3, y(), y (), y () La forma invera de lo reulado del problema 46 en lo ejercicio 7 on a e a co b ( a) b b e a en b ( a) b En lo problema 4 y 4 ue la ranformada de Laplace y ea invera para reolver el problema con valore iniciale dado 4 y y e 3 co, y() 4 y y 5y, y(), y () 3 Problema para analizar 43 a) Con un ligero cambio de noación la ranformada en (6) e igual a { f ()} { f ()} f () Con f () e a, analice cómo e puede uar ee reulado juno con c) del eorema 7 para evaluar {e a } b) Proceda como en el incio a), pero ea vez examine cómo uar (7) con f () en k juno con d) y e) del eorema 7 para evaluar { en k} 44 Conruya do funcione f y f que engan la mima ranformada de Laplace No conidere idea profunda 45 Lea de nuevo el Comenario iii) de la página 69 Encuenre la repuea de enrada cero y la repuea de eado cero para el PVI del problema Suponga que f () e una función para la que f () e coninua por ramo y de orden exponencial c Ue lo reulado de ea ección y la ección 7 para juificar f () lím : F(), donde F() { f ()} Compruebe ee reulado con f () co k 73 PROPIEDADES OPERACIONALES I REPASO DE MATERIAL Coninúe pracicando la decompoición en fraccione parciale Complear el cuadrado INTRODUCCIÓN No e conveniene uar la definición 7 cada vez que e deea enconrar la ranformada de Laplace de una función f () Por ejemplo, la inegración por pare requerida para evaluar {e en 3} e formidable en poca palabra En ea ección y la que igue e preenan varia propiedade operacionale de la ranformada de Laplace que ahorran rabajo y permien conruir una lia má exena de ranformada (vea la abla del apéndice III) in ener que recurrir a la definición báica y a la inegración

17 73 PROPIEDADES OPERACIONALES I 7 73 TRASLACIÓN EN EL EJE UNA TRASLACION Evaluar ranformada ale como {e 5 3 } y {e co 4} e direco iempre que e conozca (y aí e) { 3 } y {co 4} En general, i e conoce la ranformada de Laplace de una función f, { f ()} F(), e poible calcular la ranformada de Laplace de un múliplo exponencial de f, e decir, {e a f ()}, in ningún efuerzo adicional que no ea raladar o deplazar, la ranformada F() a F( a) Ee reulado e conoce como primer eorema de ralación o primer eorema de deplazamieno TEOREMA 73 Primer eorema de ralación Si {f()} F() y a e cualquier número real, enonce {e a f()} F( a) PRUEBA La demoración e inmediaa, ya que por la definición 7 F F ( ) F( a) {e a f ()} e e a f () d e ( a) f () d F( a) = a, a > FIGURA 73 Deplazamieno en el eje Si e conidera una variable real, enonce la gráfica de F( a) e la gráfica de F() deplazada en el eje por la canidad a Si a, la gráfica de F() e deplaza a unidade a la derecha, mienra que i a, la gráfica e deplaza a unidade a la izquierda Véae la figura 73 Para enfaizar, a vece e úil uar el imbolimo {e a f ()} { f ()} : a, donde : a ignifica que en la ranformada de Laplace F() de f () iempre que aparezca el ímbolo e reemplaza por a EJEMPLO Uando el primer eorema de ralación Evalúe a) {e 5 3 } b) {e co 4} SOLUCIÓN Lo iguiene reulado e deducen de lo eorema 7 y 73 a) {e 5 3 } { 3 } : 5 3! 4 : 5 6 ( 5) 4 b) {e co 4} {co 4} : ( ) 6 : ( ) 6 FORMA INVERSA DEL TEOREMA 73 Para calcular la invera de F( a), e debe reconocer F(), para enconrar f () obeniendo la ranformada de Laplace invera de F() y depué muliplicar f () por la función exponencial e a Ee procedimieno e reume con ímbolo de la iguiene manera: {F( a)} {F() : a } e a f (), () donde f() {F()} En la primera pare del ejemplo iguiene e ilura la decompoición en fraccione parciale en el cao cuando el denominador de Y() coniene facore lineale repeido

18 7 CAPÍTULO 7 LA TRANSFORMADA DE LAPLACE EJEMPLO Fraccione parciale: facore lineale repeido Evalúe a) 5 > 5>3 ( 3) b) 4 6 SOLUCIÓN a) Un facor lineal repeido e un érmino ( a) n, donde a e un número real y n e un enero poiivo Recuerde que i ( a) n aparece en el denominador de una expreión racional, enonce e upone que la decompoición coniene n fraccione parciale con numeradore y denominadore conane a, ( a),, ( a) n Por ano, con a 3 y n e ecribe 5 A ( 3) 3 B ( 3) Colocando lo do érmino del lado derecho con un denominador común, e obiene el numerador 5 A( 3) B y ea idenidad produce A y B Por ano, y 5 ( 3) 3 5 ( 3) 3 ( 3) ( 3) Ahora ( 3) e F() deplazada re unidade a la derecha Ya que {> }, e iene de () que () (3) ( 3) : 3 e 3 Por úlimo, (3) e 5 ( 3) e 3 e 3 (4) b) Para empezar, oberve que el polinomio cuadráico 4 6 no iene raíce reale y por ano no iene facore lineale reale En ea iuación compleamo el cuadrado: > 5>3 4 6 > 5>3 ( ) (5) El objeivo aquí e reconocer la expreión del lado derecho como alguna ranformada de Laplace F() en la cual e ha reemplazado por Lo que e raa de hacer e imilar a rabajar hacia ará del incio b) del ejemplo El denominador en (5) ya eá en la forma correca, e decir, con en lugar de Sin embargo, e debe arreglar el numerador manipulando la conane: 5 ( ) 5 ( ) Ahora mediane la diviión enre el denominador de cada érmino, la linealidad de, lo incio e) y d) del eorema 7 y por úlimo (), > 5> 3 ( ) > 5> ( ) 3 ( ) ( ) : e co ( ) e en 3 ( ) ( ) : (7) (6)

19 73 PROPIEDADES OPERACIONALES I 73 EJEMPLO 3 Un problema con valore iniciale Reuelva y 6y 9y e 3, y(), y () 7 SOLUCIÓN Ane de ranformar la ED, oberve que u lado derecho e imilar a la función del incio a) del ejemplo Depué de uar la linealidad, el eorema 73 y la condicione iniciale, e implifica y luego e reuelve para Y() {f ()}: {y } 6 {y } 9 {y} { e 3 } Y() y() y () 6[Y() y()] 9Y() ( 6 9)Y() 5 ( 3) Y() 5 Y() ( 3) 3 ( 3) 3 ( 3) 3 5 ( 3) ( 3) 5 El primer érmino del lado derecho ya e ha decompueo en fraccione parciale en () del incio a) del ejemplo () Por lo que Y() y() 3 3 ( 3) ( 3) 5 ( 3) 4! 4! ( 3) 5 De la forma invera () del eorema 73, lo do úlimo érmino de (8) on e 3 y 4! 4 e 3 : 3 Por lo que (8) e y() e 3 e 3 4 e 3 5 : 3 EJEMPLO 4 Un problema con valore iniciale Reuelva y 4y 6y e, y(), y () SOLUCIÓN {y } 4 {y } 6 {y} {} {e } Y() y() y () 4[Y() y()] 6Y() (8) ( 4 6)Y() ( ) Y() ( )( 4 6) Pueo que el érmino cuadráico en el denominador no e facoriza en facore lineale reale, e encuenra que la decompoición en fraccione parciale para Y() e Y() >6 >3 > 5> Ademá, en la preparación para omar la ranformada invera, ya e manejó el úlimo érmino en la forma necearia del incio b) del ejemplo Por lo que en via de lo reulado en (6) y (7), e iene la olución

20 74 CAPÍTULO 7 LA TRANSFORMADA DE LAPLACE y() 6 3 ( ) 3 ( ) 6 3 e e co 3 e en 73 TRASLACIÓN EN EL EJE FUNCIÓN ESCALÓN UNITARIO En ingeniería e común enconrar funcione que eán ya ea deacivada o acivada Por ejemplo, una fuerza exerna que acúa en un iema mecánico, o un volaje aplicado a un circuio, e puede deacivar depué de ciero iempo E conveniene enonce definir una función epecial que e el número (deacivada) haa un ciero iempo a y enonce el número (acivada) depué de ee iempo La función e llama función ecalón uniario o función de Heaviide DEFINICIÓN 73 Función ecalón uniario La función ecalón uniario ( a) e define como ( a),, a a FIGURA 73 Gráfica de la función ecalón uniario y a Oberve que e define ( a) ólo en el eje no negaivo, pueo que eo e odo lo que inerea en el eudio de la ranformada de Laplace En un enido má amplio, ( a) para a En la figura 73, e muera la gráfica de ( a) Cuando una función f definida para e muliplica por ( a), la función ecalón uniario deaciva una pare de la gráfica de ea función Por ejemplo, conidere la función f () 3 Para deacivar la pare de la gráfica de f para, implemene formamo el produco ( 3) ( ) Véae la figura 733 En general, la gráfica de f() ( a) e (deacivada) para a y e la pare de la gráfica de f (acivada) para a La función ecalón uniario ambién e puede uar para ecribir funcione definida por ramo en una forma compaca Por ejemplo, i conideramo, 3, y 3 y lo valore correpondiene de ( ) y ( 3), debe er evidene que la función definida por ramo que e muera en la figura 734 e igual que f() 3 ( ) ( 3) También, una función general definida por ramo del ipo f() g(), h(), a a (9) FIGURA 733 La función e f() ( 3) ( ) f() e la mima que: Análogamene, una función del ipo f() g() g() ( a) h() ( a) () f(), g(),, a a b b () FIGURA 734 La función e f () 3 ( ) ( 3) puede er ecria como f () g()[ ( a) ( b)] ()

21 73 PROPIEDADES OPERACIONALES I 75 f () EJEMPLO 5 Una función definida por ramo Expree f () la gráfica,, 5 5 en érmino de funcione ecalón uniario Trace FIGURA 735 La función e f () ( 5) f() f() 5 a) f (), SOLUCIÓN En la figura 735 e muera la gráfica de f Ahora, de (9) y () con a 5, g() y h(), e obiene f () ( 5) Conidere una función general y f () definida para La función definida por ramo, a f( a) ( a) (3) f( a), a juega un papel imporane en la explicación que igue Como e muera en la figura 736, para a la gráfica de la función y f( a) ( a) coincide con la gráfica de y f ( a) para a (que e la gráfica complea de y f (), deplazada a unidade a la derecha en el eje ), pero e idénicamene cero para a Vimo en el eorema 73 que un múliplo exponencial de f () da como reulado una ralación de la ranformada F() en el eje Como una conecuencia del iguiene eorema, e ve que iempre que F() e muliplica por una función exponencial e a, a, la ranformada invera del produco e a F() e la función f deplazada a lo largo del eje en la manera que e muera en la figura 736b Ee reulado, preenado a coninuación en u verión de ranformada direca, e llama egundo eorema de ralación o egundo eorema de deplazamieno a b) f ( a) ( a) FIGURA 736 Deplazamieno en el eje TEOREMA 73 Segundo eorema de ralación Si F() { f()} y a, enonce { f( a) ( a)} e a F() DEMOSTRACIÓN Por la propiedad de inervalo adiivo de inegrale, e f ( a) e puede ecribir como do inegrale: ( a) d a {f ( a) ( a)} e f ( a) ( a) d e f ( a) ( a) d e f ( a) d cero para a a uno para a Ahora i hacemo v a, dv d en la úlima inegral, enonce { f ( a) ( a)} e (v a) f (v) dv e a e v f (v) dv e a { f ()} Con frecuencia e deea enconrar la ranformada de Laplace de ólo una función ecalón uniario Eo puede er de la definición 7 o eorema 73 Si e idenifica f () en el eorema 73, enonce f ( a), F() {} > y por ano, { ( a)} (4) Por ejemplo, i e ua la ecuación (4), la ranformada de Laplace de la función de la figura 734 e e a {f()} {} 3 { ( )} { ( 3)} 3 e e 3 a

22 76 CAPÍTULO 7 LA TRANSFORMADA DE LAPLACE FORMA INVERSA DEL TEOREMA 73 Si f () {F()}, la forma invera del eorema 73 a, e {e a F()} f( a) ( a) (5) EJEMPLO 6 Uo de la fórmula (5) Evalúe b) 9 e / a) 4 e SOLUCIÓN a) De acuerdo con la idenidade a, F() ( 4) y {F()} e 4, e iene de (5) 4 e e 4( ) ( ) b) Con a p, F() ( 9) y {F()} co 3, de la ecuación (5) e obiene 9 e / co 3 La úlima expreión e puede implificar un poco con la fórmula adicional para el coeno Compruebe que el reulado e igual a en 3 FORMA ALTERNATIVA DEL TEOREMA 73 Con frecuencia no enfrenamo con el problema de enconrar la ranformada de Laplace de un produco de una función g y una función ecalón uniario ( a) donde la función g no iene la forma precia de deplazamieno f ( a) del eorema 73 Para enconrar la ranformada de Laplace de g() ( a), e poible arreglar g() en la forma requerida f ( a) uando álgebra Por ejemplo, i e quiere uar el eorema 73 para deerminar la ranformada de Laplace de ( ), e endría que forzar g() a la forma f ( ) Se debe rabajar algebraicamene y comprobar que ( ) 4( ) 4 e una idenidad Por ano, { ( )} {( ) ( ) 4( ) ( ) 4 ( )}, donde ahora cada érmino del lado derecho e puede evaluar con el eorema 73 Pero como ea operacione on ardada y con frecuencia no obvia, e má imple dieñar una forma alernaiva del eorema 73 Uando la definición 7, la definición de ( a), y la uiución u a, e obiene {g() ( a)} a e g() d e (u a) g(u a) du E decir, {g() ( a)} e a {g( a)} (6) EJEMPLO 7 Segundo eorema de ralación: forma alernaiva Evalúe {co ( )} SOLUCIÓN Con g() co y a p, enonce g( p) co ( p) co por la fórmula de adicción para la función coeno Por ano, por la ecuación (6), {co ( )} e {co } e

23 73 PROPIEDADES OPERACIONALES I 77 y π π 3π FIGURA 737 Gráfica de la función en (8) pared y w(x) FIGURA 738 Viga emporada con carga variable L x EJEMPLO 8 Un problema con valore iniciale Reuelva y y f (), y() 5, donde f(), 3 co, SOLUCIÓN La función f e puede ecribir como f () 3 co ( p), y enonce por linealidad, por lo reulado del ejemplo 7 y por la fraccione parciale uuale, e iene Y() {y } {y} 3 {co ( )} Y() y() Y() 3 e 3 ( )Y() 5 e 5 3 e e e (7) Ahora procediendo como e hizo en el ejemplo 6, e iene de (5) con a p que lo invero de lo érmino denro del parénei on y e e ( ) ( ), e en( ) ( ), Por lo que el invero de (7) e 3 y() 5e e ( ) ( ) e co( ) ( ) 3 en( ) ( ) 3 co( ) ( ) 3 5e ; idenidade rigonomérica [e ( ) en co ] ( ) 5e, 3 5e e 3 ( ) en 3 co, Uando un programa de graficación hemo obenido la gráfica de (8) que e muera en la figura 737 VIGAS En la ección 5 vimo que la deflexión eáica y(x) de una viga uniforme de longiud L con carga w(x) por unidad de longiud e deermina a parir de la ecuación diferencial lineal de cuaro orden EI d4 y w(x), dx 4 (9) donde E e el módulo de Young de elaicidad e I e un momeno de inercia de una ección ranveral de la viga La ranformada de Laplace e paricularmene úil para reolver la ecuación (9) cuando w(x) e define por ramo Sin embargo, para uar la ranformada de Laplace e debe uponer de manera ácia que y(x) y w(x) eán definida en (, ) y no en (, L) Oberve, ambién, que el iguiene ejemplo e un problema con valore en la fronera má que un problema con valore iniciale EJEMPLO 9 Un problema con valore en la fronera Una viga de longiud L e empora en ambo exremo, como e muera en la figura 738 Deermine la deflexión de la viga cuando la carga eá dada por w(x) w, L x, x L> L> x L (8)

24 78 CAPÍTULO 7 LA TRANSFORMADA DE LAPLACE SOLUCIÓN Recuerde que debido a que la viga ea emporada en ambo exremo, la condicione de fronera on y(), y (), y(l), y (L) Ahora uando () e puede exprear w(x) en érmino de la función ecalón uniario: w(x) w L x w L x x L w L L L x x x L Tranformando la ecuación (9) repeco a la variable x, e obiene EI 4 Y() 3 y() y () y () y () o 4 Y() y () y () Si hacemo c y () y c y (), enonce y en conecuencia Y() c c w 3 4 EIL w L w EIL L> 5 6 L> L> 6e L/, e L/ e L/ y(x) c!! 3 c 3! c x c 6 x3 w 6 EIL 3! w 4 EIL L> 4! 5L x4 x 5 x 4! 5 5! L 5 x L 5! 6 5! 5! 6 e L/ Aplicando la condicione y(l) y y (L) al úlimo reulado, e obiene un iema de ecuacione para c y c : c L c L 3 6 c L c L 49w L 4 9EI 85w L 3 96EI Reolviendo e encuenra que c 3w L (96El) y c 9w L (4EI) Por lo que la deflexión eá dada por y(x) 3w L 9EI x 3w L 8EI x3 w 6EIL 5L x4 x 5 x L 5 x L EJERCICIOS 73 La repuea a lo problema eleccionado con número impar comienzan en la página RES- 73 TRASLACIÓN EN EL EJE En lo problema a encuenre F() o f (), como e indica {e } {e 6 } 3 { 3 e } 4 { e 7 } 5 {(e e ) } 6 {e ( ) } 7 {e en 3} 8 {e co 4} 9 {( e 3e 4 ) co 5} e en ( ) ( ) 9 ( ) 3 ( ) ( ) ( ) ( ) 4

25 73 PROPIEDADES OPERACIONALES I 79 En lo problema a 3, ue la ranformada de Laplace para reolver el problema con valore iniciale y 4y e 4, y() y y e, y() 3 y y y, y(), y () 4 y 4y 4y 3 e, y(), y () 5 y 6y 9y, y(), y () 6 y 4y 4y 3, y(), y () 7 y 6y 3y, y(), y () 3 8 y y 5y, y(), y () 9 y y e co, y(), y () 3 y y 5y, y(), y () 4 En lo problema 3 y 3, ue la ranformada de Laplace y el procedimieno decrio en el ejemplo 9 para reolver el problema con valore en la fronera dado 3 y y y, y (), y() 3 y 8y y, y(), y (p) 33 Un peo de 4 lb eira un reore pie El peo e libera a parir del repoo 8 pulgada arriba de la poición de equilibrio y el movimieno reulane iene lugar en un medio que ofrece una fuerza de amoriguamieno numéricamene igual a 7 vece la velocidad inanánea Ue la ranformada de 8 Laplace para enconrar la ecuación de movimieno x() 34 Recuerde que la ecuación diferencial para la carga inanánea q() en el capacior en un circuio RCL en erie eá dada por L d q d R dq d C q E() () Véae la ección 5 Ue la ranformada de Laplace para enconrar q() cuando L h, R, C 5 f, E() 5 V,, q() e i() Cuál e la corriene i()? 35 Conidere una baería de volaje conane E que carga el capacior que e muera en la figura 739 Divida la ecuación () enre L y defina l R L y v LC Ue la ranformada de Laplace para demorar que la olución q() de q lq v q E L ujea a q(), i() e q() E C e (coh enh ),, E C[ e ( )],, E FIGURA 739 Circuio en erie del problema Ue la ranformada de Laplace para enconrar la carga q() en un circuio RC en erie cuando q() y E() E e k, k Conidere do cao: k RC y k RC 73 TRASLACIÓN EN EL EJE En lo problema 37 a 48 encuenre F() o f (), como e indica 37 {( ) ( )} 38 {e ( )} 39 { ( )} 4 {(3 ) ( )} 4 {co ( )} ( ) En lo problema 49 a 54, compare la gráfica dada con una de la funcione de lo incio a) a f) La gráfica de f () e preena en la figura e 3 e e a) f () f () ( a) b) f ( b) ( b) c) f () ( a) d) f () f () ( b) e) f () ( a) f() ( b) f) f ( a) ( a) f ( a) ( b) f() FIGURA 73 Gráfica para lo problema 49 a 54 f() a L C b R en ( e ) e / 4 e ( ) E C e (co en ), a b FIGURA 73 Gráfica para el problema 49

26 8 CAPÍTULO 7 LA TRANSFORMADA DE LAPLACE 5 f() 58 f (), en, 3 > 3 > a b 59 f (),, FIGURA 73 Gráfica para el problema 5 6 f () en,, 5 f() 6 f() a b a b pulo recangular FIGURA 733 Gráfica para el problema 5 FIGURA 737 Gráfica para el problema 6 5 f() 6 f() 3 a b FIGURA 734 Gráfica para el problema función ecalera 53 f() FIGURA 738 Gráfica para el problema 6 En lo problema 63 a 7, ue la ranformada de Laplace para reolver el problema con valore iniciale a b FIGURA 735 Gráfica para el problema y y f (), y(), donde f () 64 y y f (), y(), donde, 5, 54 f() f (),, a b FIGURA 736 Gráfica para el problema y y f (), y(), donde f(),, 66 y 4y f(), y(), y (), donde En lo problema 55 a 6, ecriba cada función en érmino de funcione ecalón uniario Encuenre la ranformada de Laplace de la función dada 67 f(),, y 4y en ( ), y(), y () 55 f () 56 f () 57 f (),,,,,,, y 5y 6y ( ), y(), y () y y f(), y(), y (), donde f (),,, 7 y 4y 3y ( ) ( 4) ( 6), y(), y ()

27 73 PROPIEDADES OPERACIONALES I 8 7 Suponga que un peo de 3 libra eira un reore pie Si el peo e libera a parir del repoo en la poición de equilibrio, deermine la ecuación de movimieno x() i una fuerza f () acúa en el iema para 5 y luego e reira (véae el ejemplo 5) Deprecie cualquier fuerza de amoriguamieno Ue un programa de graficación para razar x() en el inervalo [, ] 7 Reuelva el problema 7 i la fuerza aplicada f () en acúa en el iema para p y depué e reira En lo problema 73 y 74 ue la ranformada de Laplace para enconrar la carga q() en el capacior en un circuio RC en erie ujeo a la condicione indicada 73 q(), R 5, C 8 f, E() dada en la figura 739 E() 5 FIGURA 739 E() en el problema a) Ue a ranformada de Laplace para deerminar a carga q() en el capacior en un circuio RC en erie cuando q(), R 5, C f y E() e como e muera en la figura 73 b) Suponga que E V Ue un programa de compuadora para graficar y dibuje q() para 6 Ue la gráfica para eimar q máx el valor máximo de a carga E() E FIGURA 73 E() en el problema Una viga en voladizo eá emporada en u exremo izquierdo y libre en u exremo derecho Ue a ranformada de Laplace para deerminar la deflexión y(x) cuando la carga eá dada por w(x) w,, 3 x L> L> x L 78 Reuelva el problema 77 cuando la carga eá dada por 74 q() q, R, C f, E() dada en la figura 73 E() w(x), w,, x L>3 L> 3 x L> 3 L 3 x L > 3e 3 5 FIGURA 73 E() en el problema Encuenre la deflexión y (x) de una viga en voladizo emporada en u exremo izquierdo y libre en u exremo derecho cuando la carga oal e como e da en el ejemplo 9 8 Una viga eá emporada en u exremo izquierdo y apoyada implemene en el exremo derecho Encuenre la deflexión y (x) cuando la carga e como la que e da en el problema a) Ue la ranformada de Laplace para enconrar la corriene i() en un circuio LR en erie de una ola malla cuando i(), L h, R y E() e como e ilura en a figura 73 b) Ue un programa de compuadora para graficar y dibuje i() en el inervalo 6 Ue la gráfica para eimar i máx e i mín, lo valore máximo y mínimo de la corriene E() π/ en, < 3 π/ 3 π/ FIGURA 73 E() en el problema 75 π Modelo maemáico 8 Pael denro de un horno Lea de nuevo el ejemplo 4 en la ección 3 acerca del enfriamieno de un pael que e aca de un horno a) Dieñe un modelo maemáico para la emperaura de un pael mienra eá denro del horno con bae en la iguiene upoicione: en la mezcla de pael eá a emperaura ambiene de 7 ; el horno no e precaliena por lo que en, cuando la mezcla de pael e coloca denro del horno, la emperaura denro del horno ambién e 7 ; la emperaura del horno aumena linealmene haa 4 minuo, cuando e alcanza la emperaura deeada de 3 ; la emperaura del horno e maniene conane en 3 para 4 b) Ue la ranformada de Laplace para reolver el problema con valore iniciale del incio a)

28 8 CAPÍTULO 7 LA TRANSFORMADA DE LAPLACE Problema para analizar 8 Analice cómo e podría arreglar cada una de la iguiene funcione, de al forma que el eorema 73 e pudiera uar direcamene para enconrar la ranformada de Laplace dada Compruebe u repuea con la ecuación (6) de ea ección a) {( ) ( )} b) {e ( 5)} c) {co ( )} d) {( 3) ( )} 83 a) Suponga que el eorema 73 e cumple cuando el ímbolo a e reemplaza por ki, donde k e un número real e i Demuere que uar para deducir { co k} { en k} k ( k ) k ( k ) {e ki } e puede b) Ahora ue la ranformada de Laplace para reolver el problema con valore iniciale x v x co v, x(), x () 74 PROPIEDADES OPERACIONALES II REPASO DE MATERIAL Definición 7 Teorema 73 y 73 INTRODUCCIÓN En ea ección e dearrollan varia propiedade operacionale má de la ranformada de Laplace En epecial, veremo cómo enconrar la ranformada de una función f () que e muliplica por un monomio n, la ranformada de un ipo epecial de inegral y la ranformada de una función periódica La do úlima propiedade de ranformada permien reolver ecuacione que no e han enconrado haa ee puno: ecuacione inegrale de Volerra, ecuacione inegrodiferenciale y ecuacione diferenciale ordinaria en la que la función de enrada e una función periódica definida por ramo 74 DERIVADAS DE UNA TRANSFORMADA MULTIPLICACIÓN DE UNA FUNCIÓN POR n La ranformada de Laplace del produco de una función f () con e puede enconrar derivando la ranformada de Laplace de f () Para moivar ee reulado, e upone que F() {f ()} exie y que e poible inercambiar el orden de la derivada y de la inegral Enonce d d F() d e f () d d ; [e f ()] d e f() d {f()} d e decir, {f()} { f ()} d Se puede uar el úlimo reulado para enconrar la ranformada de Laplace de f (): { f ()} { f()} d d {f()} d d d d {f ()} d d { f ()} Lo do cao aneriore ugieren el reulado general para { n f()} TEOREMA 74 Derivada de ranformada Si F() { f ()} y n,, 3,, enonce d n { n f()} ( ) n d F() n

Sistemas lineales invariantes

Sistemas lineales invariantes Siema lineale invariane Inroducción Un iema lineal invariane e repreena uualmene mediane un bloque en el que e mueran ano la exciación como la repuea (figura ): Exciación x() Siema lineal invariane Repuea

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-8-2-M-2-2-27 CURSO: SEMESTRE: Curo de vacacione Diciembre 27 CÓDIGO DEL CURSO: 8 TIPO DE EXAMEN: Primer Parcial

Más detalles

Transformada de Laplace

Transformada de Laplace Capíulo 7 Tranformada de Laplace En ea ección inroduciremo y eudiaremo la ranformada de Laplace, dearrollaremo alguna de u propiedade ma báica y úile. Depué veremo alguna aplicacione. 7. Definicione y

Más detalles

6.6 Aplicaciones 403 } { 10 si t < 2 0 si t Œ; 2/ ; con x.0/ D x 0.0/ D 0: 10e. 5e 2s s.s 2 C 2s C 5/ 5e s s.s 2 C 2s C 5/ : D 12.s C 1/ 2 C 4.

6.6 Aplicaciones 403 } { 10 si t < 2 0 si t Œ; 2/ ; con x.0/ D x 0.0/ D 0: 10e. 5e 2s s.s 2 C 2s C 5/ 5e s s.s 2 C 2s C 5/ : D 12.s C 1/ 2 C 4. 6.6 Aplicacione 403 6.6 Aplicacione Ejemplo 6.6. Conideremo un iema maa-reore con m kg, c 4 Nm/ y k 0 N/m. Supongamo que el iema eá inicialmene en repoo y en equilibrio por lo cual x.0/ x 0.0/ 0 y que

Más detalles

La transformada de Laplace

La transformada de Laplace CAPÍTULO 6 La ranformada de Laplace 6.6 Aplicacione Ejemplo 6.6. Conideremo un iema maa-reore con m g, c 4 Nm/ y 0 N/m. Supongamo que el iema eá inicialmene en repoo y en equilibrio por lo cual x.0/ x

Más detalles

Nº de actividad Contenido 1 Uso de la función de Heaviside en ecuaciones diferenciales

Nº de actividad Contenido 1 Uso de la función de Heaviside en ecuaciones diferenciales Univeridad Diego Porale Primer Semere 007 Faculad de Ingeniería Iniuo de Ciencia Báica Aignaura: Ecuacione Diferenciale Laboraorio Nº 8 Reolución de ecuacione diferenciale uando ranformada de Laplace Aplicacione

Más detalles

CAPITULO VI LA TRANSFORMADA DE LAPLACE

CAPITULO VI LA TRANSFORMADA DE LAPLACE CAPITULO VI LA TRANSFORMADA DE LAPLACE 6. Definición. Tranformada de Laplace Suponga que la función eá definida para y la inegral impropia Converge para exie para. Enonce la ranformada de Laplace de. y

Más detalles

Ecuaciones Diferenciales Lineales y Espacios Vectoriales

Ecuaciones Diferenciales Lineales y Espacios Vectoriales Ecuacione Diferenciale Lineale y Epacio Vecoriale Reumen El conjuno de la funcione coninua obre un inervalo forman un epacio vecorial, e decir que la combinación lineal de olucione a la ecuacione diferenciale

Más detalles

SEMESTRE TIPO 1 DURACIÓN MÁXIMA 2.0 HORAS 5 DE JUNIO DE NOMBRE Apellido paterno Apellido materno Nombre (s) Grupo

SEMESTRE TIPO 1 DURACIÓN MÁXIMA 2.0 HORAS 5 DE JUNIO DE NOMBRE Apellido paterno Apellido materno Nombre (s) Grupo UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE ECUACIONES DIFERENCIALES SEGUNDO EXAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

PRÁCTICA TRANSFORMADA DE LAPLACE CURSO CÁLCULO II. Práctica 11 (19/05/2015)

PRÁCTICA TRANSFORMADA DE LAPLACE CURSO CÁLCULO II. Práctica 11 (19/05/2015) PRÁCTICA TRANSFORMADA DE LAPLACE CURSO 4-5 CÁLCULO II Prácica Malab Prácica (9/5/5) Objeivo o Calcular ranformada de Laplace y ranformada invera de Laplace, uilizando cálculo imbólico. o Comprobar propiedade

Más detalles

El método operacional de Laplace

El método operacional de Laplace Deparameno de ngeniería Elécrica Univeridad Nacional de Mar del Plaa rea Elecroecnia El méodo operacional de Laplace uor: ngeniero Guavo Lui Ferro Prof. duno Elecroecnia EDCÓN 6 . nroducción al méodo operacional

Más detalles

2.2.a Servosistemas Tipo 1 Referencia distinta de cero r(t) ¹ 0

2.2.a Servosistemas Tipo 1 Referencia distinta de cero r(t) ¹ 0 2.2.a Servoiema Tipo Referencia diina de cero r() ¹ 0 Dieño de ervoiema Tipo para plana Tipo 0. Fernando di Sciacio (207) Dieño de Servoiema de Tipo Cuando la Plana NO Tiene un Inegrador Para plana ipo

Más detalles

Respuesta temporal de sistemas

Respuesta temporal de sistemas 4 Repuea emporal de iema OBJETIVOS PALABRAS CLAVE Y TEMAS Análii de la repuea ranioria y eacionaria Siema de primer orden Siema de egundo orden Siema de orden uperior Nocione de eabilidad Polo y cero en

Más detalles

TRANSFORMADAS. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs

TRANSFORMADAS. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs Univeridad Carlo III de Madrid Señale y Siema TRANSFORMADAS OBJETIVOS Reviión de la herramiena maemáica que e uilizan para la obención del modelo maemáico en forma de función de ranferencia. Reviión de

Más detalles

Puente de Bassano (Palladio, 1569), Viaducto Longdon-Upon-Tern, Gales (1796) y Firth of Forth, Escocia (1890)

Puente de Bassano (Palladio, 1569), Viaducto Longdon-Upon-Tern, Gales (1796) y Firth of Forth, Escocia (1890) cálculo II eiccpc prácica 6. ranformada de laplace curo 2009/0, fecha de enrega 6/03/0. Como e conocido, la viga e una pieza lineal horizonal que, apoyada en uno o má puno opora la carga que obre ella

Más detalles

6.4 Propiedades de la TL 359. y D f 2.t/ 1. Cuáles de las siguientes funciones cumplen las condiciones suficientes para la existencia de la TL?.

6.4 Propiedades de la TL 359. y D f 2.t/ 1. Cuáles de las siguientes funciones cumplen las condiciones suficientes para la existencia de la TL?. f hg kj kj kj kj 6.4 Propiedade de la TL 359 Ejemplo 6.3.4 Oberve que la funcione. f./ ; i I. f./ i I i no e enero; 3. f 3./ i ; ; ; 3; ienen oda la mima TL, a aber F./. La gráfica de ea funcione e preenan

Más detalles

( ) V t. I t C U R S O: FÍSICA MENCIÓN MATERIAL: FM-07 DINÁMICA II

( ) V t. I t C U R S O: FÍSICA MENCIÓN MATERIAL: FM-07 DINÁMICA II C U R S O: FÍSICA MENCIÓN MATERIAL: FM-07 DINÁMICA II En la nauraleza exien leye de conervación. Una de ea leye e la de Conervación de la Canidad de Movimieno, la cual erá analizada en ea guía. El concepo

Más detalles

Parte I 1. Modelación Matemática de Sistemas Físicos. Capítulo Introducción. 1.2 Respuesta Impulsiva

Parte I 1. Modelación Matemática de Sistemas Físicos. Capítulo Introducción. 1.2 Respuesta Impulsiva apíulo Pare I.. Inroducción Modelación Maemáica de Siema Fíico En el análii y dieño de iema de conrol, un pao umamene imporane; e la modelación maemáica del proceo fíico a er conrolado. La modelación conie

Más detalles

Pruebas t. 1 Prueba de hipótesis. Error tipo I. Decisión correcta. Decisión correcta. Error tipo II

Pruebas t. 1 Prueba de hipótesis. Error tipo I. Decisión correcta. Decisión correcta. Error tipo II Prueba Dr. Jeú Albero Mellado Boque Prueba de hipóei En el méodo cienífico e eablecen lo iguiene pao: Obervación, Hipóei, Experimenación y Concluione. Con el objeivo de ajuare a ee proceo cienífico, la

Más detalles

Cuando la integral (1) converge, el resultado es una función de s. La transformada de Laplace se puede escribir también como F(s).

Cuando la integral (1) converge, el resultado es una función de s. La transformada de Laplace se puede escribir también como F(s). Unidad 5. a ransformada de aplace Inroducción. En nuesro curso de cálculo elemenal aprendimos que la derivación y la inegración son ransformadas, es decir, que esas operaciones ransforman una función en

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-4-M-2-00-2017 CURSO: Maemáica Inermedia 3 SEMESTRE: Primero CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN: Examen

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES Tema 1 ECUACIONES DIFERENCIALES EJERCICIO 1 Comprobar que la función y() = c 2 ++3 es una solución del problema de valor inicial 2 y 2y + 2y = 6, y(0) = 3, y (0) = 1, (1.1) en <

Más detalles

SEGUNDO EXAMEN EJERCICIOS RESUELTOS

SEGUNDO EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II (G I T I SEGUNDO EXAMEN 13 1 EJERCICIOS RESUELTOS EJERCICIO 1 Considera el cuerpo de revolución que se genera al girar alrededor del eje OX la gráfica de la función x α f(x = x (, + (x +

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

Flujo en Redes de Transporte

Flujo en Redes de Transporte Flujo en Rede de Tranpore Eduardo Urei Flujo en Rede de Tranpore p./55 Red de Tranpore Una Red de Tranpore e un grafo dirigido con peo (V, E, c) donde hay do vérice diinguido: uno llamado fuene y oro llamado

Más detalles

TEMA 3: Métodos para el análisis de sistemas

TEMA 3: Métodos para el análisis de sistemas Dinámica de Siema TEM : Méodo para el análii de iema..- Inroducción...- Solución de ecuacione diferenciale lineale...- Tranformada de Laplace..4.- Diagrama de bloque..- Mariz de Tranferencia.6.- Méodo

Más detalles

I. OBJETIVO: Identificar, en recorridos con velocidad variable, la relación entre la gráfica de la función y la gráfica de su derivada

I. OBJETIVO: Identificar, en recorridos con velocidad variable, la relación entre la gráfica de la función y la gráfica de su derivada Rapidez de Inanánea de Cambio, CBTi 164, CD. MADERO, TAM, MEXICO S. Valero, G. Barba, A. Del Caillo, P. Venura, M. Torre Rapidez Inanánea de Cambio I. OBJETIVO: Idenificar, en recorrido con velocidad variable,

Más detalles

Cómo realizar cálculos algebraicos con expresiones polinomiales y racionales en la Class Pad?

Cómo realizar cálculos algebraicos con expresiones polinomiales y racionales en la Class Pad? Cómo realizar cálculo algeraico con epreione polinomiale y racionale en la Cla Pad? Prof Roinon Arco INTRODUCCIÓN: La Aplicación Principal de la Cla Pad dipone de comando que permien dearrollar, facorizar

Más detalles

Solución Clase Auxiliar 11 Movimiento Browniano, 7 de Noviembre de 2007

Solución Clase Auxiliar 11 Movimiento Browniano, 7 de Noviembre de 2007 Univeridad de Chile Faculad de C. Fíica y Maemáica Deparameno de Ingeniería Indurial IN79O: Modelo Eocáico en Siema de Ingeniería Profeor : Raúl Goue Auxiliar : Felipe Caro, Francico Uribe Solución Clae

Más detalles

I. OBJETIVO: Identificar, en recorridos con velocidad variable, la relación entre la gráfica de la función y la gráfica de su derivada

I. OBJETIVO: Identificar, en recorridos con velocidad variable, la relación entre la gráfica de la función y la gráfica de su derivada Rapidez Inanánea de Cambio, CD. MADERO, TAM, MEXICO S. Valero, G. Barba, A. Del Caillo, P. Venura, M. Torre Rapidez Inanánea de Cambio I. OBJETIVO: Idenificar, en recorrido con velocidad variable, la relación

Más detalles

No Idealidades en Reactores de Flujo

No Idealidades en Reactores de Flujo No Idealidade en Reacore de Flujo Caua principale y no idealidade ípica: Mezclado imperfeco de lo agiadore debido a la preencia de muy baja velocidad denro del iema de reacción (zona muera): Canalización:

Más detalles

T R lbf pie I I 3, Solution is: I slug pie 2

T R lbf pie I I 3, Solution is: I slug pie 2 Univeridad de Valparaío 1 Ejercicio de Dinámica de Roación: 1.- Un peo de 12 lbf cuelga de una cuerda enrollada en un ambor de 2 pie de io, giraorio alrededor de un eje fijo O. La aceleración angular del

Más detalles

4.2 Solución de un sistema de ecuaciones diferenciales lineales con condiciones iniciales por medio de la trasformada de Laplace

4.2 Solución de un sistema de ecuaciones diferenciales lineales con condiciones iniciales por medio de la trasformada de Laplace . Solución de un iema de ecuacione diferenciale lineale con condicione iniciale por medio de la raformada de Laplace 0. Solución de un iema de ecuacione diferenciale lineale con condicione iniciale por

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA CENTRO NACIONAL DE ESTUDIOS GENERALES MODALIDAD SABATINA

UNIVERSIDAD NACIONAL DE INGENIERIA CENTRO NACIONAL DE ESTUDIOS GENERALES MODALIDAD SABATINA UNIVERSIDAD NACINAL DE INGENIERIA CENTR NACINAL DE ESTUDIS GENERALES MDALIDAD SABATINA UNIDAD II CINEMATICA: MVIMIENT RECTILINE GUIA DE TRABAJ CLASE PRÁCTICA MVIMIENT RECTILINE UNIFRME. Pr.Nr. El movimieno

Más detalles

Circuitos para observar la descarga y carga de un capacitor.

Circuitos para observar la descarga y carga de un capacitor. IUITO Objeivo Enconrar el comporamieno de la diferencia de poencial en función del iempo, (), enre los exremos de un capacior cuando en un circuio se carga y cuando se descarga el capacior. INTODUION onsidere

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-07-2-V--00-208 CURSO: Maemáica Inermedia CÓDIGO DEL CURSO: 07 SEMESTRE: Primer Semesre JORNADA: Vesperina

Más detalles

Fundamentos Básicos Sistemas y Señales

Fundamentos Básicos Sistemas y Señales Fundamenos Básicos Sisemas y Señales Preparado por : jhuircan Depo. Ingeniería Elécrica Universidad de La Fronera Objeivos q Revisar los concepos básicos de la Teoría de Sisemas q Revisar los concepos

Más detalles

Flujo en Redes. Algoritmos y Estructuras de Datos III

Flujo en Redes. Algoritmos y Estructuras de Datos III Flujo en Rede Algorimo y Erucura de Dao III Flujo en Rede Definicione: Una red N = (V, X ) e un grafo orienado conexo que iene do nodo diinguido una fuene, con grado de alida poiivo y un umidero, con grado

Más detalles

Resolviendo la Ecuación Diferencial de 1 er Orden

Resolviendo la Ecuación Diferencial de 1 er Orden Resolviendo la Ecuación Diferencial de er Orden J.I. Huircán Universidad de La Fronera February 6, 200 bsrac El siguiene documeno planea disinos méodos para resolver una ecuación diferencial de primer

Más detalles

VIGAS DE PARED DELGADA

VIGAS DE PARED DELGADA Compendio de Cálculo Erucural FCEFyN UNC.Maa-.Giro-.Giudici - 5 Capíulo VGS DE PED DELGD NODUCCÓN Ee capíulo eá dedicado al eudio de viga de pared delgada. El objeivo e deerminar la enione y la deformacione,

Más detalles

LA TRANSFORMACIÓN DE LAPLACE

LA TRANSFORMACIÓN DE LAPLACE CAPÍTULO CINCO LA TRANSFORMACIÓN DE LAPLACE 5. Inroducción El concepo de ranformar una función puede empleare dede el puno de via de hacer un cambio de variable para implificar la olución de un problema;

Más detalles

Índice de Precios Hoteleros (IPH). Base 2001 (desde enero de 2001 a diciembre 2008) Nota metodológica

Índice de Precios Hoteleros (IPH). Base 2001 (desde enero de 2001 a diciembre 2008) Nota metodológica Índice de Precio Hoelero (. Bae 20 (dede enero de 20 a diciembre 2008 Noa meodológica adrid, marzo 2009 El Índice de Precio Hoelero,, e una medida eadíica de la evolución menual del conjuno de la principale

Más detalles

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de

Más detalles

PRIMER EXAMEN EJERCICIOS RESUELTOS

PRIMER EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II (G. I. T. I.) PRIMER EXAMEN 03 04 EJERCICIOS RESUELTOS EJERCICIO. Dada la curva cuya ecuación en coordenadas polares es r θ para 0 θ, se pide: () Deermina la ecuación de la reca angene a

Más detalles

13.1 Posición, velocidad y aceleración

13.1 Posición, velocidad y aceleración En ee capíulo e inicia el eudio del movimieno. Aquí no e iene ineré en la propiedade de lo objeo ni en la caua de u movimieno; el objeivo conie ólo en decribir analizar el movimieno de un puno en el epacio.

Más detalles

Flujo máximo: Redes de flujo y método de Ford-Fulkerson. Jose Aguilar

Flujo máximo: Redes de flujo y método de Ford-Fulkerson. Jose Aguilar Flujo máximo: Rede de flujo y méodo de Ford-Fulkeron Joe Aguilar b a d c 0 0 0 0 0 Flujo en Rede. Flujo máximo Algorimo de Flujo Lo algorimo de flujo reuelven el problema de enconrar el flujo máximo de

Más detalles

Intervalos de confianza Muestras pequeñas. Estadística Prof. Tamara Burdisso

Intervalos de confianza Muestras pequeñas. Estadística Prof. Tamara Burdisso Inervalo de confianza Muera pequeña Eadíica 016 - Prof. Tamara Burdio Qué ocurre cuando n

Más detalles

Apuntes Transformada de Laplace

Apuntes Transformada de Laplace Univeridad écnica Federico Santa María Departamento de Matemática Campu Santiago MA3 ICIPEV Apunte ranformada de Laplace Definición de la ranformada de Laplace Vivian Aranda Núñez Verónica Gruenerg Stern

Más detalles

LA INTEGRAL INDEFINIDA

LA INTEGRAL INDEFINIDA Inegrales LA INTEGRAL INDEFINIDA Inegral indefinida: Primiiva (aniderivada) Primiivas (Aniderivadas) Dada la función F( es fácil hallar su derivada F (. El proceso inverso: enconrar F ( a parir de F (

Más detalles

ERROR EN ESTADO ESTACIONARIO. TIPOS DE SISTEMAS. COEFICIENTES DE ERROR.

ERROR EN ESTADO ESTACIONARIO. TIPOS DE SISTEMAS. COEFICIENTES DE ERROR. ERROR EN ESTADO ESTACIONARIO. TIPOS DE SISTEMAS. COEFICIENTES DE ERROR. Ojeivo: Analizar el error en eado eacionario para iema con realimenación uniaria y no uniaria. Como aí amién definir el ipo de iema,

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-118-1-M-2-12-2017 CURSO: SEMESTRE: Curo de vacacione Diciembre 2017 CÓDIGO DEL CURSO: 118 TIPO DE EXAMEN:

Más detalles

RECOMENDACIÓN UIT-R P Método de predicción de la dinámica de los desvanecimientos en los trayectos Tierra-espacio

RECOMENDACIÓN UIT-R P Método de predicción de la dinámica de los desvanecimientos en los trayectos Tierra-espacio Rec. UIT-R P.163-1 1 RECOMENDACIÓN UIT-R P.163-1 Méodo de predicción de la dinámica de lo devanecimieno en lo rayeco Tierra-epacio La Aamblea de Radiocomunicacione de la UIT, (Cueión UIT-R 01/3) (003-005)

Más detalles

CURSO REDES ELECTRICAS I 1 CAPITULO 5 IMPEDANCIAS SÍNCRONAS DE LOS ELEMENTOS DE LA RED.

CURSO REDES ELECTRICAS I 1 CAPITULO 5 IMPEDANCIAS SÍNCRONAS DE LOS ELEMENTOS DE LA RED. CURSO REDES ELECTRICAS I CAPITULO 5 IMPEDANCIAS SÍNCRONAS DE LOS ELEMENTOS DE LA RED. En ee curo, eamo uoniendo que en la red rifáica coniderada, la 3 corriene que circulan or la red forman un iema equilibrado

Más detalles

Automá ca. Ejercicios Capítulo4.RespuestadeRégimenTransitorio

Automá ca. Ejercicios Capítulo4.RespuestadeRégimenTransitorio Auomáca Ejercicio Capíulo4.RepueadeRégimenTraniorio JoéRamónLlaaGarcía EherGonzálezSarabia DámaoFernándezPérez CarloToreFerero MaríaSandraRoblaGómez DeparamenodeTecnologíaElecrónica eingenieríadesiemayauomáca

Más detalles

La transformada de Laplace

La transformada de Laplace Capíulo 8 La ransformada de Laplace 8.. Inroducción a las ransformadas inegrales En ese aparado aprenderemos un méodo alernaivo para resolver el problema de valores iniciales (4.5.) y (x) + py (x) + qy(x)

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: CIENCIAS NATURALES Y EDUCACION AMBIENTAL ASIGNATURA: FISICA NOTA

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: CIENCIAS NATURALES Y EDUCACION AMBIENTAL ASIGNATURA: FISICA NOTA INSIUCION EDUCAIVA A PRESENACION NOMBRE AUMNA: AREA : CIENCIAS NAURAES Y EDUCACION AMBIENA ASIGNAURA: FISICA NOA DOCENE: HUGO HERNAN BEDOYA IPO DE GUIA: CONCEPUA - EJERCIACION PERIODO GRADO FECHA N DURACION

Más detalles

SUPERINTENDENCIA DE BANCOS Y SEGUROS REPUBLICA DEL ECUADOR

SUPERINTENDENCIA DE BANCOS Y SEGUROS REPUBLICA DEL ECUADOR SUPERINTENDENCI DE NCOS Y SEGUROS REPULIC DEL ECUDOR Inrucivo para la aplicación del Concepo de Valor en Riego (Var), para la eimación de la Liquidez erucural requerida por la Iniucione Financiera OCTURE

Más detalles

MODELOS DE REGIMENES CAMBIANTES ESTOCÁSTICOS Markov switching regimes

MODELOS DE REGIMENES CAMBIANTES ESTOCÁSTICOS Markov switching regimes MODELOS DE REGIMENES CAMBIANES ESOCÁSICOS Markov wiching regime Comporamieno dinámico de la variable dependen del eado de la economía Modelo AR y SAR: vario regímene en función del valor de una variable

Más detalles

MECÁNICA DE SÓLIDOS Curso 2017/18

MECÁNICA DE SÓLIDOS Curso 2017/18 MECÁNICA DE SÓLIDOS Curo 2017/18 1 COMPORTAMIENTO MECÁNICO DE LOS MATERIALES 2 LAS ECUACIONES DE LA MECÁNICA DE SÓLIDOS 3 PLASTICIDAD 4 VISCOELASTICIDAD 5 VISCOPLASTICIDAD J. A. Rodríguez Marínez J. Zahr

Más detalles

Nº de actividad Contenido 1 Calcular la transformada de Laplace, usando calculadora

Nº de actividad Contenido 1 Calcular la transformada de Laplace, usando calculadora Univeridad Diego Portale Primer Semetre 007 Facultad de Ingeniería Intituto de Ciencia Báica Aignatura: Ecuacione Diferenciale Laboratorio Nº 7 Definición de tranformada de Laplace Propiedad de la tranformada

Más detalles

Series de Fourier. Roberto S. Costas Santos. October 10, Durante este capítulo analizaremos el comportamiento de la serie 1

Series de Fourier. Roberto S. Costas Santos. October 10, Durante este capítulo analizaremos el comportamiento de la serie 1 Series de Fourier Robero S. Cosas Sanos Ocober, 3 Inroducción Serie de Fourier en forma exponencial compleja Durane ese capíulo analizaremos el comporamieno de la serie k= Si enemos en cuena la idenidad

Más detalles

modelación Markov Switching con probabilidades de transición crecimiento económico en Colombia: endógenas María Teresa Ramírez Giraldo

modelación Markov Switching con probabilidades de transición crecimiento económico en Colombia: endógenas María Teresa Ramírez Giraldo crecimieno económico en Colombia: modelación Markov Swiching con probabilidade de ranición endógena Marha Mia Arango María erea Ramírez Giraldo . Moivación. Objeivo 3. Modelo Economérico 4. Información

Más detalles

Controlabilidad. Considere el sistema lineal continuo en el tiempo representado por: Guía

Controlabilidad. Considere el sistema lineal continuo en el tiempo representado por: Guía Tema: Conrolailidad y Oervailidad. Lugar de ejecución: Taller de Elecrónica (Laoraorio: Inrumenación y Conrol. Tiempo de ejecución: hr. Faculad: Ingeniería. Ecuela: Elecrónica Aignaura: Conrol Digial Ojeivo

Más detalles

Lección 8: Demodulación y Detección Paso-Banda. Parte II

Lección 8: Demodulación y Detección Paso-Banda. Parte II Lección 8: Demodulación y Deección ao-banda. are II Gianluca Cornea, h.d. Dep. de Ingeniería de Siema de Información y Telecomunicación Univeridad San ablo-cu Conenido nvolvene Compleja Tolerancia al rror

Más detalles

MATEMÁTICAS ESPECIALES II PRÁCTICA 7 La transformada de Laplace.

MATEMÁTICAS ESPECIALES II PRÁCTICA 7 La transformada de Laplace. MATEMÁTICAS ESPECIALES II - 28 PRÁCTICA 7 La tranformada de Laplace. Se dice que una función f(t) e de orden exponencial α cuando t i exiten contante M > y T > tale que f(t) < Me αt para todo t > T. Sea

Más detalles

Hallar el vector unitario tangente a la curva dada por. Solución La derivada de es. Por tanto, el vector unitario tangente es

Hallar el vector unitario tangente a la curva dada por. Solución La derivada de es. Por tanto, el vector unitario tangente es SECCIÓN.4 Vecores angenes vecores normales 859 En la sección precedene se vio que el vecor velocidad apuna en la dirección del movimieno. Esa observación lleva a la definición siguiene, que es válida para

Más detalles

Ejemplos básicos Transformada de Laplace

Ejemplos básicos Transformada de Laplace Ejemplo báico Tranformada de Laplace Genaro Luna Carreto 1 05 de Noviembre 2018, 6pm. 1 Profeor de la Benemérita Univeridad Autónoma de Puebla, México. Ecuacione diferenciale Problema 1. Reuelve la iguiente

Más detalles

Relación de ejercicios. Ecuaciones diferenciales

Relación de ejercicios. Ecuaciones diferenciales Relación de ejercicios. Ecuaciones diferenciales Abraham Rueda Zoca Ejercicio 1. [ punos] Resolver la ecuación diferencial: x = 2 + x + x 2 2. Solución. Veamos que se raa de una ecuación homogénea. Si

Más detalles

EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS. 3t t dt 3 dt 3t C 3 x2 1 C. 2 2x 2 1 dx 1 arctg 2x C. 5x dx arctg 5x3 C. Ln t C Ln Ln x C.

EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS. 3t t dt 3 dt 3t C 3 x2 1 C. 2 2x 2 1 dx 1 arctg 2x C. 5x dx arctg 5x3 C. Ln t C Ln Ln x C. EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS. Para resolverla planeamos la susiución, de la que se sigue que d. Por ano,. 5 5.986 d d d C C. 5 5.986 Ln 5.986 C.. arcg C.. 5 5. 5 6 5 5 6 5 5 arcg5 C.

Más detalles

Cifras poblacionales de referencia METODOLOGÍA

Cifras poblacionales de referencia METODOLOGÍA Cifra poblacionale de referencia MTOOLOGÍA. Inroducción La elaboración de cifra de población de cada ámbio geográfico e uno de lo comeido de la oficina de eadíica pública por er un elemeno relevane para

Más detalles

Tema 2. Descripción externa de sistemas

Tema 2. Descripción externa de sistemas de Sitema y Automática Tema. Decripción externa de itema Automática º Curo del Grado en Ingeniería en Tecnología Indutrial de Sitema y Automática Contenido Tema.- Decripción externa de itema:.1. Introducción.

Más detalles

UNA APLICACIÓN ECONÓMICA DE LOS MÉTODOS DISCRETOS DE OPTIMIZACIÓN DINÁMICA

UNA APLICACIÓN ECONÓMICA DE LOS MÉTODOS DISCRETOS DE OPTIMIZACIÓN DINÁMICA UNA APLICACIÓN ECONÓMICA DE LOS MÉODOS DISCREOS DE OPIMIZACIÓN DINÁMICA Reumen Alejo Macaya El rabajo aborda la reolución de un problema económico de opimización dinámica (deerminación de la rayecoria

Más detalles

6 La transformada de Laplace

6 La transformada de Laplace CAPÍTULO 6 La tranformada de Laplace 6. efinición de la tranformada de Laplace 6.. efinición y primera obervacione En la gran mayoría de lo itema de interé para la fíica y la ingeniería e poible (al meno

Más detalles

y + y = tan(x) + 3x 1. Solución: Primero resolvamos la ecuación diferencial homogénea: y + y = 0

y + y = tan(x) + 3x 1. Solución: Primero resolvamos la ecuación diferencial homogénea: y + y = 0 Semesre Primavera Jueves, 4 de Noviembre PAUTA SOLEMNE N ECUACIONES DIFERENCIALES Encuenre la solución general de la ecuación y + y an(x) + 3x Solución: Primero resolvamos la ecuación diferencial homogénea:

Más detalles

Correlación. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV

Correlación. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV Correlación Dr. Luis Javier Morales Mendoza Procesamieno Analógico de Señales FIEC - UV Índice.. Inroducción.. Correlación Cruzada.. Auocorrelación.4. Calculo de la correlación y de la auocorrelación.5.

Más detalles

Capítulo 5 Sistemas lineales de segundo orden

Capítulo 5 Sistemas lineales de segundo orden Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d

Más detalles

130 Matemáticas I. Parte IV. I.T.I. en Electricidad. Prof: Jos Antonio Abia Vian

130 Matemáticas I. Parte IV. I.T.I. en Electricidad. Prof: Jos Antonio Abia Vian 30 Maemáicas I Pare IV Cálculo inegral en IR 3 Maemáicas I : Cálculo inegral en IR Tema Cálculo de primiivas. Primiiva de una función Definición 55.- Diremos ue la función F coninua en [a, b], es una primiiva

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

1. Desarrollo Preguntas. Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas

1. Desarrollo Preguntas. Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Universidad Simón Bolívar Deparameno de Maemáicas Puras y Aplicadas Maemáicas IV (MA-5 Sepiembre-Diciembre 8 4 ra Auoevaluación Maerial Cubiero: La presene auoevaluación versa sobre el maerial cubiero

Más detalles

(3.5 Puntos) A e jπk B 1 B e j2πk D 5 C πe j5φ F π + φ D 5e jφ E 5φ E e j5φ (1 + cos(α)) A ( 1) k F ( 5e jφ ) C π G ( 1/j) π/2 G π/2 φ

(3.5 Puntos) A e jπk B 1 B e j2πk D 5 C πe j5φ F π + φ D 5e jφ E 5φ E e j5φ (1 + cos(α)) A ( 1) k F ( 5e jφ ) C π G ( 1/j) π/2 G π/2 φ IE TE Nombre: Insiuo Tecnológico de osa Rica Escuela de Ingeniería Elecrónica EL-47 Modelos de Sisemas Profesor: Dr. Pablo lvarado Moya I Semesre, 6 Examen Parcial Toal de Punos: 64 Punos obenidos: Porcenaje:

Más detalles

ANEXO A LA PRÁCTICA CARGA Y DESCARGA DE UN CAPACITOR EN UN CIRCUITO RC

ANEXO A LA PRÁCTICA CARGA Y DESCARGA DE UN CAPACITOR EN UN CIRCUITO RC ANEXO A LA PRÁTIA ARGA Y DESARGA DE UN APAITOR EN UN IUITO Inroducción. En esa prácica se esudia el comporamieno de circuios. En una primera pare se analiza el fenómeno de carga y en la segunda pare la

Más detalles

Las señales pueden ser también, señales continuas o señales alternas.

Las señales pueden ser también, señales continuas o señales alternas. INSIUO ÉCNICO SLESINO LORENZO MSS ema 1: CONCEPOS PRELIMINRES LLER DE MEDICIONES Conenido: Concepo de señal elécrica. Valores caracerísicos de las señales elécricas: Frecuencia (período, Fase, Valor de

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV

Convolución. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV Dr. Luis Javier Morales Mendoza Procesamieno Analógico de Señales FIEC - UV Índice.. Inroducción.. La función dela de Dirac.3. Definición de la convolución.3.. propiedades de la convolución.3.. Méodo Gráfico

Más detalles

Flujo en Redes. Algoritmos y Estructuras de Datos III

Flujo en Redes. Algoritmos y Estructuras de Datos III Flujo en Rede Algorimo y Erucura de Dao III Flujo en Rede Definicione: Una red N = (V, X ) e un grafo orienado conexo que iene do nodo diinguido una fuene, con grado de alida poiivo y un umidero, con grado

Más detalles

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN March 2, 2009 1. Derivadas Parciales y Funciones Diferenciables En ese capíulo, D denoa un subconjuno abiero de R n. Definición 1.1. Consideremos una función f : D R y sea p D, i = 1,, n. Definimos la

Más detalles

SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS.

SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS. SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS. El objeivo de esas noas complemenarias al ema de solución numérica de ecuaciones diferenciales ordinarias es dar una inroducción simple al ema,

Más detalles

Una familia de elipses *

Una familia de elipses * Miscelánea Maemáica 38 (003) 33 4 SMM Una familia de elipses * Fernando Garibay B. Faculad de Ingeniería Química Universidad Michoacana de San Nicolás de Hidalgo Edificio M, Cd. Universiaria 5800 Morelia,

Más detalles

SERIE DE ECUACIONES DIFERENCIALES

SERIE DE ECUACIONES DIFERENCIALES SERIE DE ECUACIONES DIFERENCIALES PROFESOR: PEDRO RAMÍREZ MANNY TEMA ) Clasifique cada una de las ecuaciones diferenciales siguienes indicando orden (O), grado (G) y si es lineal (L) o no (NL). a) ( y)

Más detalles

a) Dar la definición de dominio y rango de una función. b) Explicar cada una de las siguientes funciones y dar tres ejemplos de cada una.

a) Dar la definición de dominio y rango de una función. b) Explicar cada una de las siguientes funciones y dar tres ejemplos de cada una. UNIVERSIDAD DE LONDRES PREPARATORIA GUIA DE MATEMÁTICAS VI Áreas I-II Plan : 9 Clave maeria : 00 Clave UNAM : Unidad I. Funciones Objeivos Que el alumno idenifique disinos ipos de funciones, esablezca

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE BLERES JUNIO (GENERL) (RESUELTOS por nonio Menguiano) MTEMÁTICS II Tiempo máimo: horas y minuos Conese de manera clara y razonada una de las dos opciones

Más detalles

Incremento de v. Incremento de t

Incremento de v. Incremento de t MOVIMIENTO RECTILÍNEO Y UNIFORMEMENTE ACELERADO Vao a coniderar ahora oviieno en lo que u velocidad varíe. Lo priero que neceiao conocer e cóo varía la velocidad con el iepo. De odo lo oviieno variado

Más detalles

CONCEPTOS BÁSICOS DE VIBRACIONES Y ONDAS. Gladys Patricia Abdel Rahim Garzón

CONCEPTOS BÁSICOS DE VIBRACIONES Y ONDAS. Gladys Patricia Abdel Rahim Garzón CONCEPTOS BÁSICOS DE VIBRACIONES Y ONDAS Glady Paricia Abdel Rahim Garzón CONCEPTOS BÁSICOS DE VIBRACIONES Y ONDAS Glady Paricia Abdel Rahim Garzón Abdel Rahim Garzon, Glady Paricia Concepo báico de vibracione

Más detalles

Facultad de Ciencias Sociales Universidad de la República Curso: Análisis Económico, Práctico 5

Facultad de Ciencias Sociales Universidad de la República Curso: Análisis Económico, Práctico 5 Faculad de Ciencia Sociale Univeridad de la República Curo: Análii Económico, 200 rácico 5. Diga en cada uno de lo iguiene cao i la ofera monearia e reduce, e maniene inalerada o aumena: a. El Banco Cenral

Más detalles

MOVIMIENTO RECTILÍNEO Y UNIFORMEMENTE ACELERADO

MOVIMIENTO RECTILÍNEO Y UNIFORMEMENTE ACELERADO FQ 4 Eo MOVIMIENTO RECTILÍNEO Y UNIFORMEMENTE ACELERADO Vao a coniderar ahora oviieno en lo que u velocidad varíe. Lo priero que neceiao conocer e cóo varía la velocidad con el iepo. De odo lo oviieno

Más detalles

4º ESO ACADÉMICAS ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa ECUACIONES

4º ESO ACADÉMICAS ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa ECUACIONES º ESO ACADÉMICAS ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. ECUACIONES.- ECUACIONES Una ecuación es una igualdad donde se desconoce el valor de una lera (incógnia o variable). El valor de la variable que

Más detalles

Ecuaciones de evolución como ecuaciones integrales

Ecuaciones de evolución como ecuaciones integrales 22 (28) 46-51 Ecacione de evolción como ecacione inegrale Gonzalo orga 1 Lciano Barbani 2 1. Deparameno de Maemáica, Univeridad de acama. Copiapó, Chile 2. E-mail: gonzalo.aorga@da.cl 3. Inio de Maemáica

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

1.10 Aplicaciones de las ecuaciones diferenciales de primer orden

1.10 Aplicaciones de las ecuaciones diferenciales de primer orden . Aplicaciones de las ecuaciones diferenciales de primer orden 55. Aplicaciones de las ecuaciones diferenciales de primer orden Ejemplo.. Decaimieno radiacivo El isóopo radiacivo Torio 24 se desinegra

Más detalles

Por lo tanto el polinomio de Newton basado en diferencias divididas será:

Por lo tanto el polinomio de Newton basado en diferencias divididas será: Universidad Nacional de Ingeniería 7--6 Faculad de Ingeniería Mecánica P.A. 5- Área de Ciencias Básicas y Humanidades SE PERMITE UNA HOJA DE FORMULARIO. Problema ARIO - EXAMEN FINAL DE CALCULO NUMERICO

Más detalles

M.R.U.A. Y Caída Libre

M.R.U.A. Y Caída Libre M.R.U.A. Y Caída Libre MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO (M.R.U.A.) Un M.R.U.A. iene aceleración conane y u Trayecoria e una línea reca. Un aión, cuando depega, a aumenando u elocidad. Tiene

Más detalles