Transformada de Laplace

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Transformada de Laplace"

Transcripción

1 Capíulo 7 Tranformada de Laplace En ea ección inroduciremo y eudiaremo la ranformada de Laplace, dearrollaremo alguna de u propiedade ma báica y úile. Depué veremo alguna aplicacione. 7. Definicione y reulado báico Definición 7. (Tranformada de Laplace) Sea f una funcion definida para. Se dice que la inegral L [f ()] e f () d P. S. de Laplace e llama la ranformada de Laplace de f iempre que la inegral converja. Teorema 7. Si f e una función coninua por pedazo de orden exponencial, enonce exie L [f ()] F (), > α Noa 7. f () /2 / PC[, +] in embargo u ranformada de Laplace i exie. Teorema 7.2 La ranformada de Laplace e un operador lineal. Demoración. Se igue direcamene de la propiedade de la inegral. La ranformada de Laplace de alguna funcione uuale e muera en la iguiene abla. 73

2 f () F () L {f} () 2 n n! n+, n N π /2 π /2 Teorema 7.3 Teorema de ralación. 2 3/2 α Γ (α + ), α > α+ TTL: Si L(f()) F() enonce L ( e a f () ) F ( a) ; TTL2: Si L(f()) F() y a > enonce Teorema 7.4 (Teorema de Lerch) con L(f( a)h( a)) e a F(). L [f ()] L [f 2 ()] f () f 2 () N () N () d ; e decir e una función nula. La uilización prácica de la ranformada de Laplace requiere no ólo el cálculo de la mima a parir de una función dada, ino ambién el problema invero, e decir, enconrar una función f conocida u ranformada de Laplace L [f ()]. Definición 7.2 (Tranformada invera de Laplace) Si F () L [f ()] enonce llamaremo ranformada invera de Laplace de F() a f() y la denoaremo f () L [F ()]. Teorema 7.5 Dada F (), u ranformada invera de Laplace ea dada por f () L [F ()] 2πi γ+i γ i e F () d con Re () γ; oda la ingularidade de F eán a la izquierda de γ

3 Teorema 7.6 Sea H la función de Heaviide, enonce Demoración. Teorema 7.7 L [H ( a)] L [H ( a)] e a. a e H( a) d e d + a e d e e a a, >. L [ e a] a (7.) L [f ( a)h ( a)] e a F (). (7.2) Teorema 7.8 (Tranformada de Laplace de la convolución de funcione) [ ] L f (τ)g ( τ) dτ F ()G(). (7.3) El eorema anerior e puede enunciar da la iguiene manera equivalene: Teorema 7.9 (Teorema de Falung) L [F ()G()] f () g (). Demoración. L [f () g ()] e (f () g ()) d ( ) e f ( u) g (u) du d R e f ( u)g (u) du d con R limiado por u,u. Haciendo el cambio de variable τ u, σ u y denoando con R 2 el cuadrane poiivo del plano τ-σ enemo L [f () g ()] e (τ+σ) f (τ) g (σ) dσ dτ R 2 e τ f (τ) dτ F ()G(). e σ g (σ) dσ La inegrale que hemo coniderado on aboluamene convergene para > α.

4 Teorema 7. (Tranformada de Laplace de la n-éima derivada de una función) Corolario 7. L [ f (n) () ] L [ f (n ) () ] f (n ) (). L [ f (n) () ] n F () n f () f (n ) (). (7.4) Demoración. Por inducción. Noa 7.2 Ee eorema permie decir que al aplicar la ranformada de Laplace podemo reemplazar la derivación repeco a por la muliplicación por, lo que permie ranformar una ecuación diferencial en una ecuación algebraica. Teorema 7. Si L [f ()] F (), enonce [ ] L f (u) du Demoración. Inegrando por pare: [ ] L f (u) du e f (u) du F (). (7.5) + e f () d F (). Noa 7.3 Ee eorema e puede demorar ambién omado g () en el eorema de la ranformada de una convolución. Teorema 7.2 L [ n f ()] ( ) n d n dnf (). (7.6) Demoración. d d e f () d L [f ()]. ( e f () ) d e f () d Por inducción e obiene la concluión del eorema.

5 f () Teorema 7.3 Sea f una función al que exie L [f ()] F (). Si exie lim + enonce [ ] f () L F (u) du. (7.7) Demoración. Inegrando: Sea g al que f () g (). Enonce F () L [f ()] L [g ()] dg d. G (u) Pero lim G (). Enonce [ ] f () L F (u) du F (u) du. F (u) du. Teorema 7.4 Si f e una función coninua por pedazo y de orden exponencial α, enonce lim L [f ()]. Demoración. Por hipóei e iene que f () M e α, >. Enonce e f () M e ( α). Por la monoonía de la inegral e igue que e f () d M e ( α) d M α, > α. Por oro lado L [f ()] e f () d e f () d. Enonce L [f ()] M α, > α, de donde e igue que lim L [f ()]. Teorema 7.5 Si f e una función periódica de período T, enonce Demoración. L [f ()] L [f ()] T T e f () d. e T e f () d + T e f () d. Haciendo u + T en la úlima inegral: e f () d e T e u f (u) du. Enonce T

6 T L [f ()] e f () d + e T L [f ()], y de aquí e igue el eorema. Teorema 7.6 (Tranformada de Laplace de la dela de Dirac) L [δ ( a)] e a, con a. Demoración. L [δ ( a)] de aquí e igue que L [δ ( a)] e a. e δ ( a) d + e δ ( a) d; Corolario 7.2 L [δ ()]. 7.2 Alguna Aplicacione Problema 7. Deerminar L [ en b]. b Solución. Pariendo de L [en b] F () 2 + b2, enconramo que df d 2b ( 2 + b 2 ) 2. Por ano L [ en b] 2b ( 2 + b 2 ) 2. Problema 7.2 Demorar que F () 2 no e la ranformada de Laplace de función alguna. Solución. Si exiiera una función f al que L [f] 2 debería ocurrir que lim 2. Eo no ucede por lo ano no exie al función. [ ] en Problema 7.3 Calcular L. [ ] en Solución. L + u du π 2 2 arcan. Reolvamo una ecuación diferencial con coeficiene variable y condiciona iniciale.

7 Problema 7.4 Reolver la ecuación diferencial y +2y 4y con condicione iniciale y () y (). Solución. Sabemo que L [y ] d d L [y ] d d (L [y] y ()) d d (Y ()) Y () Y () y que L [y ] 2 Y (). Enonce, uiuyendo ( 3 Y () + ) Y () La olución de ea ecuación lineal en Y () e Y () 3 + c 3 e 4 2. La conane de inegración c e deermina al requerir que Y () i. Se obiene que c, y enonce de donde e concluye que Y () 3, y () 2 2.

PRÁCTICA TRANSFORMADA DE LAPLACE CURSO CÁLCULO II. Práctica 11 (19/05/2015)

PRÁCTICA TRANSFORMADA DE LAPLACE CURSO CÁLCULO II. Práctica 11 (19/05/2015) PRÁCTICA TRANSFORMADA DE LAPLACE CURSO 4-5 CÁLCULO II Prácica Malab Prácica (9/5/5) Objeivo o Calcular ranformada de Laplace y ranformada invera de Laplace, uilizando cálculo imbólico. o Comprobar propiedade

Más detalles

Nº de actividad Contenido 1 Uso de la función de Heaviside en ecuaciones diferenciales

Nº de actividad Contenido 1 Uso de la función de Heaviside en ecuaciones diferenciales Univeridad Diego Porale Primer Semere 007 Faculad de Ingeniería Iniuo de Ciencia Báica Aignaura: Ecuacione Diferenciale Laboraorio Nº 8 Reolución de ecuacione diferenciale uando ranformada de Laplace Aplicacione

Más detalles

Sistemas lineales invariantes

Sistemas lineales invariantes Siema lineale invariane Inroducción Un iema lineal invariane e repreena uualmene mediane un bloque en el que e mueran ano la exciación como la repuea (figura ): Exciación x() Siema lineal invariane Repuea

Más detalles

Puente de Bassano (Palladio, 1569), Viaducto Longdon-Upon-Tern, Gales (1796) y Firth of Forth, Escocia (1890)

Puente de Bassano (Palladio, 1569), Viaducto Longdon-Upon-Tern, Gales (1796) y Firth of Forth, Escocia (1890) cálculo II eiccpc prácica 6. ranformada de laplace curo 2009/0, fecha de enrega 6/03/0. Como e conocido, la viga e una pieza lineal horizonal que, apoyada en uno o má puno opora la carga que obre ella

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-8-2-M-2-2-27 CURSO: SEMESTRE: Curo de vacacione Diciembre 27 CÓDIGO DEL CURSO: 8 TIPO DE EXAMEN: Primer Parcial

Más detalles

Apuntes Transformada de Laplace

Apuntes Transformada de Laplace Univeridad écnica Federico Santa María Departamento de Matemática Campu Santiago MA3 ICIPEV Apunte ranformada de Laplace Definición de la ranformada de Laplace Vivian Aranda Núñez Verónica Gruenerg Stern

Más detalles

SEMESTRE TIPO 1 DURACIÓN MÁXIMA 2.0 HORAS 5 DE JUNIO DE NOMBRE Apellido paterno Apellido materno Nombre (s) Grupo

SEMESTRE TIPO 1 DURACIÓN MÁXIMA 2.0 HORAS 5 DE JUNIO DE NOMBRE Apellido paterno Apellido materno Nombre (s) Grupo UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE ECUACIONES DIFERENCIALES SEGUNDO EXAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

Ecuaciones Diferenciales Lineales y Espacios Vectoriales

Ecuaciones Diferenciales Lineales y Espacios Vectoriales Ecuacione Diferenciale Lineale y Epacio Vecoriale Reumen El conjuno de la funcione coninua obre un inervalo forman un epacio vecorial, e decir que la combinación lineal de olucione a la ecuacione diferenciale

Más detalles

La transformada de Laplace

La transformada de Laplace CAPÍTULO 6 La ranformada de Laplace 6.6 Aplicacione Ejemplo 6.6. Conideremo un iema maa-reore con m g, c 4 Nm/ y 0 N/m. Supongamo que el iema eá inicialmene en repoo y en equilibrio por lo cual x.0/ x

Más detalles

CAPITULO VI LA TRANSFORMADA DE LAPLACE

CAPITULO VI LA TRANSFORMADA DE LAPLACE CAPITULO VI LA TRANSFORMADA DE LAPLACE 6. Definición. Tranformada de Laplace Suponga que la función eá definida para y la inegral impropia Converge para exie para. Enonce la ranformada de Laplace de. y

Más detalles

6.6 Aplicaciones 403 } { 10 si t < 2 0 si t Œ; 2/ ; con x.0/ D x 0.0/ D 0: 10e. 5e 2s s.s 2 C 2s C 5/ 5e s s.s 2 C 2s C 5/ : D 12.s C 1/ 2 C 4.

6.6 Aplicaciones 403 } { 10 si t < 2 0 si t Œ; 2/ ; con x.0/ D x 0.0/ D 0: 10e. 5e 2s s.s 2 C 2s C 5/ 5e s s.s 2 C 2s C 5/ : D 12.s C 1/ 2 C 4. 6.6 Aplicacione 403 6.6 Aplicacione Ejemplo 6.6. Conideremo un iema maa-reore con m kg, c 4 Nm/ y k 0 N/m. Supongamo que el iema eá inicialmene en repoo y en equilibrio por lo cual x.0/ x 0.0/ 0 y que

Más detalles

4.2 Solución de un sistema de ecuaciones diferenciales lineales con condiciones iniciales por medio de la trasformada de Laplace

4.2 Solución de un sistema de ecuaciones diferenciales lineales con condiciones iniciales por medio de la trasformada de Laplace . Solución de un iema de ecuacione diferenciale lineale con condicione iniciale por medio de la raformada de Laplace 0. Solución de un iema de ecuacione diferenciale lineale con condicione iniciale por

Más detalles

Métodos Matemáticos de la Física 2 Transformaciones Integrales

Métodos Matemáticos de la Física 2 Transformaciones Integrales Método Matemático de la Fíica 2 Tranformacione Integrale L. A. Núñez * Centro de Atrofíica Teórica, Departamento de Fíica, Facultad de Ciencia, Univeridad de Lo Ande, Mérida 5, Venezuela y Centro Nacional

Más detalles

6.4 Propiedades de la TL 359. y D f 2.t/ 1. Cuáles de las siguientes funciones cumplen las condiciones suficientes para la existencia de la TL?.

6.4 Propiedades de la TL 359. y D f 2.t/ 1. Cuáles de las siguientes funciones cumplen las condiciones suficientes para la existencia de la TL?. f hg kj kj kj kj 6.4 Propiedade de la TL 359 Ejemplo 6.3.4 Oberve que la funcione. f./ ; i I. f./ i I i no e enero; 3. f 3./ i ; ; ; 3; ienen oda la mima TL, a aber F./. La gráfica de ea funcione e preenan

Más detalles

Solución Clase Auxiliar 11 Movimiento Browniano, 7 de Noviembre de 2007

Solución Clase Auxiliar 11 Movimiento Browniano, 7 de Noviembre de 2007 Univeridad de Chile Faculad de C. Fíica y Maemáica Deparameno de Ingeniería Indurial IN79O: Modelo Eocáico en Siema de Ingeniería Profeor : Raúl Goue Auxiliar : Felipe Caro, Francico Uribe Solución Clae

Más detalles

TRANSFORMADAS. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs

TRANSFORMADAS. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs Univeridad Carlo III de Madrid Señale y Siema TRANSFORMADAS OBJETIVOS Reviión de la herramiena maemáica que e uilizan para la obención del modelo maemáico en forma de función de ranferencia. Reviión de

Más detalles

LA TRANSFORMADA DE LAPLACE

LA TRANSFORMADA DE LAPLACE 7 LA TRANSFORMADA DE LAPLACE 7 Definición de la ranformada de Laplace 7 Tranformada invera y ranformada de derivada 7 Tranformada invera 7 Tranformada de derivada 73 Propiedade operacionale I 73 Tralación

Más detalles

Flujo en Redes de Transporte

Flujo en Redes de Transporte Flujo en Rede de Tranpore Eduardo Urei Flujo en Rede de Tranpore p./55 Red de Tranpore Una Red de Tranpore e un grafo dirigido con peo (V, E, c) donde hay do vérice diinguido: uno llamado fuene y oro llamado

Más detalles

MATEMÁTICAS ESPECIALES II PRÁCTICA 7 La transformada de Laplace.

MATEMÁTICAS ESPECIALES II PRÁCTICA 7 La transformada de Laplace. MATEMÁTICAS ESPECIALES II - 28 PRÁCTICA 7 La tranformada de Laplace. Se dice que una función f(t) e de orden exponencial α cuando t i exiten contante M > y T > tale que f(t) < Me αt para todo t > T. Sea

Más detalles

Cuando la integral (1) converge, el resultado es una función de s. La transformada de Laplace se puede escribir también como F(s).

Cuando la integral (1) converge, el resultado es una función de s. La transformada de Laplace se puede escribir también como F(s). Unidad 5. a ransformada de aplace Inroducción. En nuesro curso de cálculo elemenal aprendimos que la derivación y la inegración son ransformadas, es decir, que esas operaciones ransforman una función en

Más detalles

LA INTEGRAL INDEFINIDA

LA INTEGRAL INDEFINIDA Inegrales LA INTEGRAL INDEFINIDA Inegral indefinida: Primiiva (aniderivada) Primiivas (Aniderivadas) Dada la función F( es fácil hallar su derivada F (. El proceso inverso: enconrar F ( a parir de F (

Más detalles

Pruebas t. 1 Prueba de hipótesis. Error tipo I. Decisión correcta. Decisión correcta. Error tipo II

Pruebas t. 1 Prueba de hipótesis. Error tipo I. Decisión correcta. Decisión correcta. Error tipo II Prueba Dr. Jeú Albero Mellado Boque Prueba de hipóei En el méodo cienífico e eablecen lo iguiene pao: Obervación, Hipóei, Experimenación y Concluione. Con el objeivo de ajuare a ee proceo cienífico, la

Más detalles

Sistemas lineales con ruido blanco

Sistemas lineales con ruido blanco Capíulo 3 Sisemas lineales con ruido blanco 3.1. Ruido Blanco En la prácica se encuenra procesos esocásicos escalares u con media cero y la propiedad de que w( 1 ) y w( 2 ) no esán correlacionados aún

Más detalles

El método operacional de Laplace

El método operacional de Laplace Deparameno de ngeniería Elécrica Univeridad Nacional de Mar del Plaa rea Elecroecnia El méodo operacional de Laplace uor: ngeniero Guavo Lui Ferro Prof. duno Elecroecnia EDCÓN 6 . nroducción al méodo operacional

Más detalles

SISTEMAS LINEALES. Tema 4. Análisis de Fourier para Señales y Sistemas de Tiempo Continuo (Sesión 2)

SISTEMAS LINEALES. Tema 4. Análisis de Fourier para Señales y Sistemas de Tiempo Continuo (Sesión 2) SISTEMAS LINEALES Tema 4. Análisis de Fourier para Señales y Sisemas de Tiempo Coninuo (Sesión ) 18 de noviembre de 010 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA 4 Conenidos. Relación con la ransformada

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-07-2-V--00-208 CURSO: Maemáica Inermedia CÓDIGO DEL CURSO: 07 SEMESTRE: Primer Semesre JORNADA: Vesperina

Más detalles

Càlcul II / Transformada de Laplace

Càlcul II / Transformada de Laplace Càlcul II / Tranformada de Laplace de eembre de 5 Definicion. bàic Definició Donada f :, + [ R conínua a, + [. ) Se n diu la eva ranformada de Laplace (o L-ranformada) a la funció L[f depenen d un paràmere

Más detalles

SEGUNDO EXAMEN EJERCICIOS RESUELTOS

SEGUNDO EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II (G I T I SEGUNDO EXAMEN 13 1 EJERCICIOS RESUELTOS EJERCICIO 1 Considera el cuerpo de revolución que se genera al girar alrededor del eje OX la gráfica de la función x α f(x = x (, + (x +

Más detalles

La transformada de Laplace

La transformada de Laplace CAPÍTULO 6 La ranformada d Laplac 6.3 Exincia d TL Lo rulado nconrado n la ccion anrior no podrían hacr pnar qu baará cuidar l rango d la variabl para agurar la xincia d la TL d una función; in mbargo,

Más detalles

Transformada de Laplace

Transformada de Laplace Transformada de Laplace Definición: La Transformada de Laplace Dada una función f (t) definida para toda t 0, la transformada de Laplace de f es la función F definida como sigue: { f } 0 st F () s = L

Más detalles

Problemas de desarrollo

Problemas de desarrollo IE TE Nombre: Insiuo Tecnológico de osa Rica Escuela de Ingeniería Elecrónica EL-7 Modelos de Sisemas Profesor: Dr. Pablo Alvarado Moya II Semesre, 5 Examen Parcial Toal de Punos: 9 Punos obenidos: Porcenaje:

Más detalles

2. Independencia del camino. Campos conservativos.

2. Independencia del camino. Campos conservativos. GRADO DE INGENIERÍA AEROESPAIAL. URSO. Lección. álculo vecorial.. Independencia del camino. ampos conservaivos. Ha ocasiones en las que la inegral de un campo vecorial F, definido en una región U, a lo

Más detalles

Índice de Precios Hoteleros (IPH). Base 2001 (desde enero de 2001 a diciembre 2008) Nota metodológica

Índice de Precios Hoteleros (IPH). Base 2001 (desde enero de 2001 a diciembre 2008) Nota metodológica Índice de Precio Hoelero (. Bae 20 (dede enero de 20 a diciembre 2008 Noa meodológica adrid, marzo 2009 El Índice de Precio Hoelero,, e una medida eadíica de la evolución menual del conjuno de la principale

Más detalles

(3.5 Puntos) A e jπk B 1 B e j2πk D 5 C πe j5φ F π + φ D 5e jφ E 5φ E e j5φ (1 + cos(α)) A ( 1) k F ( 5e jφ ) C π G ( 1/j) π/2 G π/2 φ

(3.5 Puntos) A e jπk B 1 B e j2πk D 5 C πe j5φ F π + φ D 5e jφ E 5φ E e j5φ (1 + cos(α)) A ( 1) k F ( 5e jφ ) C π G ( 1/j) π/2 G π/2 φ IE TE Nombre: Insiuo Tecnológico de osa Rica Escuela de Ingeniería Elecrónica EL-47 Modelos de Sisemas Profesor: Dr. Pablo lvarado Moya I Semesre, 6 Examen Parcial Toal de Punos: 64 Punos obenidos: Porcenaje:

Más detalles

130 Matemáticas I. Parte IV. I.T.I. en Electricidad. Prof: Jos Antonio Abia Vian

130 Matemáticas I. Parte IV. I.T.I. en Electricidad. Prof: Jos Antonio Abia Vian 30 Maemáicas I Pare IV Cálculo inegral en IR 3 Maemáicas I : Cálculo inegral en IR Tema Cálculo de primiivas. Primiiva de una función Definición 55.- Diremos ue la función F coninua en [a, b], es una primiiva

Más detalles

Universidad Diego Portales Facultad de Ingeniería Instituto de Ciencias Básicas

Universidad Diego Portales Facultad de Ingeniería Instituto de Ciencias Básicas Univeridad Diego Portale Facultad de Ingeniería Intituto de Ciencia Báica Ecuacione Diferenciale er Semetre 6 Guia de ejercicio: Tranformada de Laplace Ejercicio : Calcule la iguiente tranformada de Laplace.

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

Ecuaciones integrales fraccionarias: su solución mediante la transformación de Laplace.

Ecuaciones integrales fraccionarias: su solución mediante la transformación de Laplace. Ecuaciones inegrales fraccionarias: su solución mediane la ransformación de Laplace. Cerui, Rubén A. Deparameno de Maemáica Faculad de Ciencias Exacas y Naurales y Agrimensura Universidad Nacional del

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES Tema 1 ECUACIONES DIFERENCIALES EJERCICIO 1 Comprobar que la función y() = c 2 ++3 es una solución del problema de valor inicial 2 y 2y + 2y = 6, y(0) = 3, y (0) = 1, (1.1) en <

Más detalles

No Idealidades en Reactores de Flujo

No Idealidades en Reactores de Flujo No Idealidade en Reacore de Flujo Caua principale y no idealidade ípica: Mezclado imperfeco de lo agiadore debido a la preencia de muy baja velocidad denro del iema de reacción (zona muera): Canalización:

Más detalles

Nº de actividad Contenido 1 Calcular la transformada de Laplace, usando calculadora

Nº de actividad Contenido 1 Calcular la transformada de Laplace, usando calculadora Univeridad Diego Portale Primer Semetre 007 Facultad de Ingeniería Intituto de Ciencia Báica Aignatura: Ecuacione Diferenciale Laboratorio Nº 7 Definición de tranformada de Laplace Propiedad de la tranformada

Más detalles

3 Transformada de Laplace i sèries de Fourier

3 Transformada de Laplace i sèries de Fourier 3 Transformada de Laplace i sèries de Fourier Calculeu la de Laplace de les funcions següens: ransformada a f = +, si <

Más detalles

Intervalos de confianza Muestras pequeñas. Estadística Prof. Tamara Burdisso

Intervalos de confianza Muestras pequeñas. Estadística Prof. Tamara Burdisso Inervalo de confianza Muera pequeña Eadíica 016 - Prof. Tamara Burdio Qué ocurre cuando n

Más detalles

Flujo en Redes. Algoritmos y Estructuras de Datos III

Flujo en Redes. Algoritmos y Estructuras de Datos III Flujo en Rede Algorimo y Erucura de Dao III Flujo en Rede Definicione: Una red N = (V, X ) e un grafo orienado conexo que iene do nodo diinguido una fuene, con grado de alida poiivo y un umidero, con grado

Más detalles

La transformada de Laplace

La transformada de Laplace Capíulo 8 La ransformada de Laplace 8.. Inroducción a las ransformadas inegrales En ese aparado aprenderemos un méodo alernaivo para resolver el problema de valores iniciales (4.5.) y (x) + py (x) + qy(x)

Más detalles

UCV-INGENIERÍA ECUACIONES DIFERENCIALES (0256) Tema 3: La Transformada de Laplace. Contenidos programáticos

UCV-INGENIERÍA ECUACIONES DIFERENCIALES (0256) Tema 3: La Transformada de Laplace. Contenidos programáticos UCV-INGENIERÍA ECUACIONES DIFERENCIALES (56) ECUACIONES DIFERENCIALES (56) Tma 3: La Tranformada d Laplac Connido programáico 3.- Dfinicion prliminar. Dfinición d Tranformada d Laplac. Condición uficin

Más detalles

UNIDAD 3 Transformadas de Laplace

UNIDAD 3 Transformadas de Laplace Traformada de aplace 3. Defiicioe a raformada de aplace de ua fució () f, repreeada co el ímbolo, e la operació maemáica defiida mediae la iguiee iegral impropia: { ()} lim b f e f () d b Por lo geeral,

Más detalles

Transformada de Laplace

Transformada de Laplace Tranformada de Laplace Ing. Juan Sacerdoi Faculad de Ingeniería Deparameno de Maemáica Univeridad de Bueno Aire 5 V. Agradecemo al Sr. Alejandro Quadrini por la rancripción de ee documeno. Índice. Inroducción..

Más detalles

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función =

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función = DERIVACIÓN BAJO EL SIGNO INTEGRAL. Hallar el puno del inervalo [,] en el que la función F () d alcanza su valor mínimo. El mínimo de una función se alcanza en los punos donde su primera derivada es nula

Más detalles

CAPITULO 8. LA TRANSFORMADA DE LAPLACE La transformada de Laplace

CAPITULO 8. LA TRANSFORMADA DE LAPLACE La transformada de Laplace CAPITULO 8. LA TRANSFORMADA DE LAPLACE 8.1. La transformada de Laplace Definición 1.Sea f (t) una función definida para t 0. Se define la transformada de Laplace de f (t) de la forma, - s es un parámetro

Más detalles

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009 EXAMEN DE MATEMÁTICAS I (Primer Parcial) de febrero de 9 Sólo una respuesa a cada cuesión es correca. Respuesa correca:. punos. Respuesa incorreca: -. punos Respuesa en blanco: punos.- Sea ABC un riángulo

Más detalles

2.2.a Servosistemas Tipo 1 Referencia distinta de cero r(t) ¹ 0

2.2.a Servosistemas Tipo 1 Referencia distinta de cero r(t) ¹ 0 2.2.a Servoiema Tipo Referencia diina de cero r() ¹ 0 Dieño de ervoiema Tipo para plana Tipo 0. Fernando di Sciacio (207) Dieño de Servoiema de Tipo Cuando la Plana NO Tiene un Inegrador Para plana ipo

Más detalles

Problemas de desarrollo

Problemas de desarrollo IE TE Nombre: Insiuo Tecnológico de osa Rica Escuela de Ingeniería Elecrónica EL-7 Modelos de Sisemas Profesor: Dr. Pablo Alvarado Moya II Semesre, 5 Examen Parcial Toal de Punos: 9 Punos obenidos: Porcenaje:

Más detalles

MECÁNICA DE SÓLIDOS Curso 2017/18

MECÁNICA DE SÓLIDOS Curso 2017/18 MECÁNICA DE SÓLIDOS Curo 2017/18 1 COMPORTAMIENTO MECÁNICO DE LOS MATERIALES 2 LAS ECUACIONES DE LA MECÁNICA DE SÓLIDOS 3 PLASTICIDAD 4 VISCOELASTICIDAD 5 VISCOPLASTICIDAD J. A. Rodríguez Marínez J. Zahr

Más detalles

SERIE DE ECUACIONES DIFERENCIALES

SERIE DE ECUACIONES DIFERENCIALES SERIE DE ECUACIONES DIFERENCIALES PROFESOR: PEDRO RAMÍREZ MANNY TEMA ) Clasifique cada una de las ecuaciones diferenciales siguienes indicando orden (O), grado (G) y si es lineal (L) o no (NL). a) ( y)

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA CENTRO NACIONAL DE ESTUDIOS GENERALES MODALIDAD SABATINA

UNIVERSIDAD NACIONAL DE INGENIERIA CENTRO NACIONAL DE ESTUDIOS GENERALES MODALIDAD SABATINA UNIVERSIDAD NACINAL DE INGENIERIA CENTR NACINAL DE ESTUDIS GENERALES MDALIDAD SABATINA UNIDAD II CINEMATICA: MVIMIENT RECTILINE GUIA DE TRABAJ CLASE PRÁCTICA MVIMIENT RECTILINE UNIFRME. Pr.Nr. El movimieno

Más detalles

6.3 Existencia de TL C1 s 1 2 D. 2 s 1 D

6.3 Existencia de TL C1 s 1 2 D. 2 s 1 D 6.3 Exincia d TL 355 p Ejmplo 6..8 Calcular L. p L L n o C C p p : Podmo aplicar, nonc, la fórmula para lo xponn r ngaivo qu cumplan < r

Más detalles

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD Inroducción. En muchas áreas de ingeniería se uilizan procesos esocásicos o aleaorios para consruir modelos de sisemas ales como conmuadores

Más detalles

Autoevaluación Cálculo Integral. sen(x) dx (i) cos(x)

Autoevaluación Cálculo Integral. sen(x) dx (i) cos(x) Auoevaluación Cálculo Inegral Ejercicio 6. Calcular las siguienes inegrales indefinidas: ln d d ln( + d (a (b (c g cos + e d e + (d (e e + e d (f d cos( sen (g sen ( d (h ( + sen( d (i cos( cos ( + d (j

Más detalles

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial Boletín n o 4

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial Boletín n o 4 AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Indutrial. Epecialidad en Electrónica Indutrial Boletín n o. Hallar la tranformada de Laplace de cada una de la iguiente funcione: a) n Ch n + Sh n) b) en c)

Más detalles

CURSO REDES ELECTRICAS I 1 CAPITULO 5 IMPEDANCIAS SÍNCRONAS DE LOS ELEMENTOS DE LA RED.

CURSO REDES ELECTRICAS I 1 CAPITULO 5 IMPEDANCIAS SÍNCRONAS DE LOS ELEMENTOS DE LA RED. CURSO REDES ELECTRICAS I CAPITULO 5 IMPEDANCIAS SÍNCRONAS DE LOS ELEMENTOS DE LA RED. En ee curo, eamo uoniendo que en la red rifáica coniderada, la 3 corriene que circulan or la red forman un iema equilibrado

Más detalles

TEMA 3: Métodos para el análisis de sistemas

TEMA 3: Métodos para el análisis de sistemas Dinámica de Siema TEM : Méodo para el análii de iema..- Inroducción...- Solución de ecuacione diferenciale lineale...- Tranformada de Laplace..4.- Diagrama de bloque..- Mariz de Tranferencia.6.- Méodo

Más detalles

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN March 2, 2009 1. Derivadas Parciales y Funciones Diferenciables En ese capíulo, D denoa un subconjuno abiero de R n. Definición 1.1. Consideremos una función f : D R y sea p D, i = 1,, n. Definimos la

Más detalles

LA TRANSFORMADA DE LAPLACE.

LA TRANSFORMADA DE LAPLACE. TEMA N o 5 LA TRANSFORMADA DE LAPLACE. DEFINICIÓN Sea f (t) una función continua en un intervalo [; ) y uponemo que f atiface cierta condicione. Entonce la integral L ff (t)g = F () = Z e t f (t) dt e

Más detalles

Motivación. Gran parte de las señales de nuestra experiencia cotidiana son continuas; sin embargo, cada vez más, se procesan digitalmente.

Motivación. Gran parte de las señales de nuestra experiencia cotidiana son continuas; sin embargo, cada vez más, se procesan digitalmente. c Luis Vielva, Grupo de raamieno Avanzado de Señal. Dp. Ingeniería de Comunicaciones. Universidad de Canabria. Señales y sisemas. ema 5: Muesreo. OpenCourseWare p. /?? ema 5: Muesreo. Moivación. 2. Esquema.

Más detalles

Resolviendo la Ecuación Diferencial de 1 er Orden

Resolviendo la Ecuación Diferencial de 1 er Orden Resolviendo la Ecuación Diferencial de er Orden J.I. Huircán Universidad de La Fronera February 6, 200 bsrac El siguiene documeno planea disinos méodos para resolver una ecuación diferencial de primer

Más detalles

Flujo en Redes. Algoritmos y Estructuras de Datos III

Flujo en Redes. Algoritmos y Estructuras de Datos III Flujo en Rede Algorimo y Erucura de Dao III Flujo en Rede Definicione: Una red N = (V, X ) e un grafo orienado conexo que iene do nodo diinguido una fuene, con grado de alida poiivo y un umidero, con grado

Más detalles

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de

Más detalles

LA INTEGRAL INDEFINIDA

LA INTEGRAL INDEFINIDA Inegrales LA INTEGRAL INDEFINIDA Inegral indeinida: Primiiva (aniderivada) Primiivas (Aniderivadas) Dada la unción F (, es ácil hallar su derivada F (. El proceso inverso, enconrar F ( a parir de F ( se

Más detalles

MA26A, Auxiliar 5, 26 de Abril, 2007

MA26A, Auxiliar 5, 26 de Abril, 2007 MA26A, Auxiliar 5, 26 de Abril, 27 Profeor Cátedra: Raúl Manaevich Profeor Auxiliar : Alfredo Núnez. Tranformada de Laplace... Sea f : [, ) R función continua a trozo y de orden exponencial. Demuetre que

Más detalles

SOLO PARA INFORMACION

SOLO PARA INFORMACION ÍNDICE GENERAL INTRODUCION.... 3. OBJETIVOS... 3. eperimeno... 3. Modelo fíico... 3. dieño... 4 3. Maeriale... 5 4. Variable independiene... 5 5. Variable dependiene:... 5 6. Rango de Trabajo... 5 7. Procedimieno...

Más detalles

Ecuaciones de evolución como ecuaciones integrales

Ecuaciones de evolución como ecuaciones integrales 22 (28) 46-51 Ecacione de evolción como ecacione inegrale Gonzalo orga 1 Lciano Barbani 2 1. Deparameno de Maemáica, Univeridad de acama. Copiapó, Chile 2. E-mail: gonzalo.aorga@da.cl 3. Inio de Maemáica

Más detalles

3.5.1 Trasformada de Laplace de la función escalón unitario

3.5.1 Trasformada de Laplace de la función escalón unitario .5. Trformd de Lplce de l función eclón unirio 0.5. Trformd de Lplce de l función eclón unirio Función Eclón Unirio Tmbién llmd función lo unidd de Heviide, y con frecuenci e uiliz en pliccione que rn

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE BLERES JUNIO (GENERL) (RESUELTOS por nonio Menguiano) MTEMÁTICS II Tiempo máimo: horas y minuos Conese de manera clara y razonada una de las dos opciones

Más detalles

LA TRANSFORMACIÓN DE LAPLACE

LA TRANSFORMACIÓN DE LAPLACE CAPÍTULO CINCO LA TRANSFORMACIÓN DE LAPLACE 5. Inroducción El concepo de ranformar una función puede empleare dede el puno de via de hacer un cambio de variable para implificar la olución de un problema;

Más detalles

Índice de diapositivas en Tr2009_6_Prog_Din.doc

Índice de diapositivas en Tr2009_6_Prog_Din.doc Deparameno de Economía, Faculad de Ciencias Sociales, Universidad de la República, Uruguay Maesría en Economía Inernacional 29. Macroeconomía. Alvaro Foreza Índice de diaposiivas en Tr29_6_Prog_Din.doc

Más detalles

Transformadas de Laplace

Transformadas de Laplace Semana 7 - Clase 9 9// Tema 3: E D O de orden > Algunas definiciones previas Transformadas de Laplace En general vamos a definir una transformación integral, F (s), de una función, f(t) como F (s) = b

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV

Convolución. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV Dr. Luis Javier Morales Mendoza Procesamieno Analógico de Señales FIEC - UV Índice.. Inroducción.. La función dela de Dirac.3. Definición de la convolución.3.. propiedades de la convolución.3.. Méodo Gráfico

Más detalles

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS Hasa ahora conocemos la represenación de una grafica mediane una ecuación con dos variables. En ese

Más detalles

EXAMEN DE MATEMÁTICAS I 8 de febrero de 2006

EXAMEN DE MATEMÁTICAS I 8 de febrero de 2006 EXAMEN DE MATEMÁTICAS I 8 de febrero de 006 MATEMÁTICAS I Eamen del º PARCIAL 8 de febrero de 006 Sólo una respuesa a cada cuesión es correca. Respuesa correca: 0. punos. Respuesa incorreca: -0. punos

Más detalles

Propiedades de la Transformada de Laplace

Propiedades de la Transformada de Laplace Propiedade de la Tranformada de Laplace W. Colmenare Univeridad Simón Bolívar, Departamento de Proceo y Sitema Reumen En eto apunte demotramo alguna de la propiedade de la tranformada de Laplace y hacemo

Más detalles

6 La transformada de Laplace

6 La transformada de Laplace CAPÍTULO 6 La tranformada de Laplace 6. efinición de la tranformada de Laplace 6.. efinición y primera obervacione En la gran mayoría de lo itema de interé para la fíica y la ingeniería e poible (al meno

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

3. Propiedades de la transformada de Laplace

3. Propiedades de la transformada de Laplace Transformada de Laplace 2. Sea F(s) = L [ f (t)]. Pruebe que, para cualquier constante a positiva, se cumple que L [ f (at)] = ( s ) a F. a En los ejercicios del 2 al 4 pruebe que la función dada es de

Más detalles

MODELOS DE REGIMENES CAMBIANTES ESTOCÁSTICOS Markov switching regimes

MODELOS DE REGIMENES CAMBIANTES ESTOCÁSTICOS Markov switching regimes MODELOS DE REGIMENES CAMBIANES ESOCÁSICOS Markov wiching regime Comporamieno dinámico de la variable dependen del eado de la economía Modelo AR y SAR: vario regímene en función del valor de una variable

Más detalles

Movimiento uniformemente acelerado

Movimiento uniformemente acelerado CINEMÁTICA DE LA PARTÍCULA Moimieno recilíneo Como su nombre lo indica, ese moimieno es el que iene lugar cuando una parícula se desplaza a lo largo de un rayeco reco. Describiremos res casos para el moimieno

Más detalles

Opción A Ejercicio 1.-

Opción A Ejercicio 1.- Soluciones modelo (Sepiembre de 009) Opción A Ejercicio.- ['5 punos] Se considera la función f: [, + ) R definida por f( ) -+. Deermina la asínoa de la gráfica Evidenemene, la función no iene asínoas vericales,

Más detalles

Incremento de v. Incremento de t

Incremento de v. Incremento de t MOVIMIENTO RECTILÍNEO Y UNIFORMEMENTE ACELERADO Vao a coniderar ahora oviieno en lo que u velocidad varíe. Lo priero que neceiao conocer e cóo varía la velocidad con el iepo. De odo lo oviieno variado

Más detalles

Solución de un caso particular del problema de valor de frontera en términos de la función de Green sobre un intervalo

Solución de un caso particular del problema de valor de frontera en términos de la función de Green sobre un intervalo Solución de un caso paricular del problema de valor de fronera en érminos de la función de Green sobre un inervalo Objeivos. Mosrar que un caso muy especial del problema de valor de fronera: x () = f(),

Más detalles

T R lbf pie I I 3, Solution is: I slug pie 2

T R lbf pie I I 3, Solution is: I slug pie 2 Univeridad de Valparaío 1 Ejercicio de Dinámica de Roación: 1.- Un peo de 12 lbf cuelga de una cuerda enrollada en un ambor de 2 pie de io, giraorio alrededor de un eje fijo O. La aceleración angular del

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-4-M-2-00-2017 CURSO: Maemáica Inermedia 3 SEMESTRE: Primero CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN: Examen

Más detalles

Controlabilidad. Considere el sistema lineal continuo en el tiempo representado por: Guía

Controlabilidad. Considere el sistema lineal continuo en el tiempo representado por: Guía Tema: Conrolailidad y Oervailidad. Lugar de ejecución: Taller de Elecrónica (Laoraorio: Inrumenación y Conrol. Tiempo de ejecución: hr. Faculad: Ingeniería. Ecuela: Elecrónica Aignaura: Conrol Digial Ojeivo

Más detalles

Ma-841 : Ecuaciones Diferenciales

Ma-841 : Ecuaciones Diferenciales Ma-84 : Ecuaciones Diferenciales Tarea No : Referencias Bibliográficas.- Visie la Biblioeca del Campus seleccione 7 libros de Ecuaciones Diferenciales, publicados en los úlimos 0 años, que a su crierio

Más detalles

INTEGRALES Prueba de Evaluación Continua Grupo A1 10-XI Enunciar y demostrar el Teorema Fundamental del Cálculo Integral.

INTEGRALES Prueba de Evaluación Continua Grupo A1 10-XI Enunciar y demostrar el Teorema Fundamental del Cálculo Integral. INTEGRALES Pruea de Evaluación Coninua Grupo A -XI-.- Enunciar y demosrar el Teorema Fundamenal del Cálculo Inegral. Ver eoría de la maeria..- Calcular las derivadas de las siguienes funciones: a) F()

Más detalles

Determinación de las garantías para el contrato de futuros de soja en pesos. Value at Risk

Determinación de las garantías para el contrato de futuros de soja en pesos. Value at Risk Deerminación de las garanías para el conrao de fuuros de soja en pesos. Value a Risk Gabriela acciano inancial Risk Manager gfacciano@bcr.com.ar Direcora Deparameno de Capaciación y Desarrollo de Mercados

Más detalles

Respuesta temporal de sistemas

Respuesta temporal de sistemas 4 Repuea emporal de iema OBJETIVOS PALABRAS CLAVE Y TEMAS Análii de la repuea ranioria y eacionaria Siema de primer orden Siema de egundo orden Siema de orden uperior Nocione de eabilidad Polo y cero en

Más detalles

Transformada de Laplace, aplicaciones

Transformada de Laplace, aplicaciones Tranformada de Laplace, aplcacone Ora eñale de excacón Señal mpulo f A 0 eñal Impulo deal La eñal mpulo real eórca e una eñal de amplud 0 de alura y de área gual a A Se mbolza de la guene forma fa.δ en

Más detalles

x t, x t, x dx dt sustituyendo e integrando, obtenemos: 3

x t, x t, x dx dt sustituyendo e integrando, obtenemos: 3 E.T.S.I. Indusriales y Telecomunicación Curso - Grados E.T.S.I. Indusriales y Telecomunicación Tema 5: Inegración de funciones de una variable. Ejercicios resuelos Inegración indefinida Resolver. d 6 Hacemos

Más detalles

1. Desarrollo Preguntas. Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas

1. Desarrollo Preguntas. Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Universidad Simón Bolívar Deparameno de Maemáicas Puras y Aplicadas Maemáicas IV (MA-5 Sepiembre-Diciembre 8 4 ra Auoevaluación Maerial Cubiero: La presene auoevaluación versa sobre el maerial cubiero

Más detalles