LA INTEGRAL INDEFINIDA
|
|
|
- Pascual Córdoba Sandoval
- hace 9 años
- Vistas:
Transcripción
1 Inegrales LA INTEGRAL INDEFINIDA Inegral indeinida: Primiiva (aniderivada) Primiivas (Aniderivadas) Dada la unción F (, es ácil hallar su derivada F (. El proceso inverso, enconrar F ( a parir de F ( se llama inegración o aniderivación. F ( (derivación) F ( ( (aniderivación) F ( A la aniderivada de ( se le llama primiiva de esa unción. Para ver que la primiiva de una unción es correca basa con derivar, pues: F ( es una primiiva de ( F ( ( Si F(, su derivada es F ( ; enonces: una primiiva de ( será F(. NOTA: Ora primiiva de ( es, por ejemplo, F (, pues derivando: F( ( ) (. Todas la unciones de la orma F( c, donde c es un número, son primiivas de ( Si F ( ln( ), su derivada es F ( ; en consecuencia, una primiiva de ( será F ( ln( ). NOTA: Como en el ejemplo anerior, odas las unciones de la orma F( ln( ) c son primiivas de (. Inegrales indeinidas Dada una unción (, si F ( es una de sus primiivas, la inegral indeinida de ( es la unción F( c, donde c es un número que se llama consane de inegración. Se escribe así: ( d F( c, (d indica la variable de inegración) En consecuencia, la derivada y la inegral son operaciones inversas; de manera análoga a como lo son la raíz cuadrada y el cuadrado o la eponencial y el logarimo. Eso es, al aplicar sucesivamene la inegral y la derivada a una unción se obiene la misma unción: d ( d d ( y d ( d ( d En la segunda igualdad debería sumarse una consane. No lo hacemos para que quede más clara la idea undamenal. NOTA: Nos permiimos adverir que para poner inegrar con ciero éio es absoluamene necesario saber derivar muy bien. Si el lecor no domina las écnicas de derivación debería releionar sobre el valor del iempo anes de seguir adelane. José María Marínez Mediano
2 Inegrales ( ) d c d ln( ) c d d d d. Puede comprobarse que c. Puede comprobarse que ln( ) c Propiedades de la inegral indeinida () La inegral de un número por una unción es igual al número por la inegral de la unción: k ( d k ( d Eso signiica que los números que muliplican a una unción pueden enrar y salir del ( inegrando, según convenga. Así, por ejemplo: ( d k ( d k d. k k () La inegral de una suma de unciones es igual a la suma de las inegrales de cada una de esas unciones: ( ( ) d ( d d Esas propiedades signiican que la inegral se compora como un operador lineal. Número por unción: ( ) d ( ) d ( c) c (da igual poner c que c ). OJO: Esa propiedad sólo se reiere a acores numéricos. Así: ( ) d ( ) d Suma de unciones: ( ) d d d ( c) ( c ) c (las consanes c y c no son necesarias; basaría con poner una sola c). Las propiedades aneriores se uilizan según convenga, de denro a uera o de uera a denro. Así, por ejemplo: 8 d 6 d 6 d 6(ln( ) c) 6ln( ) c Siempre se buscará un inegrando del que sepamos hallar la primiiva. José María Marínez Mediano
3 Inegrales Relación de inegrales inmediaas Conviene saber de memoria la inegral de las unciones elemenales. Las más usuales son las siguienes. TABLA DE INTEGRALES INMEDIATAS Función simple Función compuesa Ejemplos kd k d ; ( )d n n d, n n d d d ln n n d, n d ; d n d d d ln d ln( ) a a a d a d d ; d ln a ln a ln ln e d e e d e e d e ; e ( ) d e cos d sen cos d sen cos( ) d sen ( ) sen d cos sen d cos 8 sen d cos d ag d ag d ag cos cos cos ( ag ) d ag ( ag ) d ag ( ag ( )) d a -) / d arcsen d arcsen d arcsen (ln (ln d arccos d arccos e d arccose e d arcag d arcag d arcag ( NOTA: En odos los casos se omie (por ala de espacio) la suma de la consane de inegración, c. ( ( d c 6 ( ) ( ) 6 d 6 sin cos d sin c c e d e c d ln( 6) c 6 cos d sen c José María Marínez Mediano
4 Inegrales Técnicas y méodos de inegración Descomposición elemenal Siempre que sea posible se operará en el inegrando, buscando escribirlo como ora epresión equivalene que sea ácil de inegral; para ello hay que ener presenes las órmulas de inegrales inmediaas. Las operaciones algebraicas básicas son: muliplicar o dividir por una consane apropiada; sumar o resar; eecuar las operaciones indicadas ( ) d d d d = c d d d d d c ( ) ( ) d d d d d ln c d 6 d c ln( 6 ) d d d d = = d d arcan ln( ) c sen d sen sen d sen cos d send ( sencos d = = cos cos c (En la ª inegral se aplica la órmula n n d c.) n Para aplicar ese méodo es necesario conocer muy bien las órmulas de inegrales inmediaas; ambién es imprescindible operar con solura, como se pone de maniieso a coninuación. Ejemplo: Para calcular d es imprescindible saber que 9 ( ) ( d arcsen ( c. [El elemeno undamenal es que aparece la raíz cuadrada ( ( ) y el érmino ( ) ; de donde supondremos que (.] A coninuación hay que saber ransormar la epresión buscando que aparezca ( ( ) en el inerior de la raíz y ( en el numerador. El proceso puede ser el siguiene: d = d = d = d = 9 ( ) ( ) 9 9 = arcsen c Compruébese, derivando, que el resulado es correco. José María Marínez Mediano
5 Inegrales Descomposición de racciones racionales en racciones simples Si la descomposición en racciones no es an ácil como las visas en ejemplos aneriores, puede uilizarse el proceso que se describe a coninuación. P( Las racciones racionales son de la orma. Si el denominador es de grado menor o igual Q( P( R( que el numerador, la epresión anerior puede escribirse así: C(, donde C( Q( Q( y R( son, respecivamene, el cociene y el reso de la división. (Como debe saberse, el grado de R( es menor que el de Q() Con eso: P( R( d C( d d Q( Q( La inegral que puede presenar diiculades es la úlima. Vamos a resolverla en dos supuesos áciles: m m n () d () d a b a b c La inegral () es inmediaa (se resuelve por descomposición simple), pues: m m a ( m d d d a b c a b a a b ln ( ) ln( ) ( ) a d d c 7 ln(7 ) Para hallar d hay que dividir anes (el méodo de Ruini es adecuado). Se obiene: De donde d d d d Por ano: d ln( ) c Para resolver la inegral () hay que deerminar las raíces del denominador, a b c 0, y pueden darse res casos:.º Hay dos raíces reales simples: =, =..º Hay una sola raíz real doble, =..º El denominador no iene raíces reales. m n A B En el caso.º la descomposición que se hace es: a b c a ) ( m n A B En el caso.º se hace la descomposición: a b c a ) ( ) ( ( ) José María Marínez Mediano
6 Inegrales 6 En el caso.º la descomposición es: donde a b c ( p q) a m n b c k(a b) B a b c ( p q), Caso.º Para hallar la inegral d se procede así: Se hallan las raíces de 0. Son = y =. Por ano, la descomposición en racciones simples será: A B A( ) B( ) = A( ) B( ) ( )( ) Calculamos A y B dando valores a : si = : = A A = / si = : = B B = / También puede hacerse ideniicando coeicienes: A B A A( ) B( ) 0 A B A B 0 A B B / / Con eso: d d d = ln( ) ln( ) c Caso.º d Las raíces de 0 son =, doble. Por ano: A B A B( ) = A B( ) ( ) ( ) Calculamos A y B dando valores a : si = = A A = si = 0 = A + B B = Con eso: d d d = ln( ) c ( ) Caso.º d ( ) Se hace la descomposición: ( ) Obsérvese que el numerador: ( ) ; y que el denominador: ( ) Por ano: d = d d = ( ) = ln( ) arcan( ) c NOTA: Ese méodo de inegración puede usarse para cualquier grado del denominador Q(, aunque su aplicación resula más engorrosa. La mayoría de los libros de cálculo lo raen eplicado. / / José María Marínez Mediano
7 Inegrales 7 Méodo de inegración por pares Si se hace la dierencial del produco de dos unciones, u ( y v, se iene: d ( d ( ( d ( d ( d (Recuérdese que d ( ( d.) Despejando: ( d d ( ( d. Inegrando miembro a miembro se obiene la órmula de inegración por pares: ( ( d d ( d ( d ( ( d. Más escueamene: du v du v u dv vdu udv udv du v vdu ) udv uv vdu NOTA: Para la elección de las pares u y dv no hay un crierio concreo; puede ser recomendable omar dv como la pare más grande del inegrando que se pueda inegral con acilidad. El reso del inegrando será u. Ejemplo: Para inegral send puede omarse: () = u y sen d = dv d = du y v send cos () sen = u y d = dv cos d = du y v d () sen u y d = dv sen cos d du y v d Si se hace (): send cos cos d cos sen c Si se hace (): send sen cos d (La segunda inegral es más complicada que la primera. Por ano, esa parición no es acerada). Si se hace (): send sen ( sen cos d (También la segunda inegral es más complicada que la inicial. Tampoco es acerada esa parición). Oros ejemplos: e d. Tomando: u = du = d e d dv v e Se iene: e d = e e d = e e c ln d ln d ln 9 c José María Marínez Mediano
8 Inegrales 8 u ln du d Hemos omado: dv d v Para calcular e cos d hay que reierar el méodo. Veamos: Haciendo u e y cos d dv, se iene du e d, v = sen e cos d = e sen e sen d. La segunda inegral, e sen d, ambién debe hacerse por el méodo de pares. Tomando: u e y sin d dv du e d y cos v Luego, e cos d = e sen e sen d = e sen e ( cos e ( cos d e cos d = e sen e cos e cos d Por ano, e cos d = e sen e cos e cos d = e c (sen cos ) Ejercicios complemenarios Descomposición elemenal d d d ln( ) arcan c d d ln c Fracciones simples d d d ln( ln( c / 7 / 7 d d d ln( ) ln( ) d ln( 6 0) arcan( ) c 6 0 Inegración por pares ln d ln c cos d sen ln d = ln c cos 6sen 6cos c c José María Marínez Mediano
9 Inegrales 9 Cambio de variable La inegral de la orma ( u) du se puede escribir ( ) d, haciendo u y du d Eso es: ( u) du = ( ) d, Nauralmene, la segunda inegral deberá ser más ácil; y una vez resuela habrá que deshacer el cambio inicial. Para calcular ( ) d puede hacerse: Con eso: u ( ) u ( ) y du d d u du d du 6 u c ( ) 6 c Para calcular e d, si se hace: u du d d du u u Luego, e d e du e c e c La inegral d, hecha aneriormene, se puede resolver haciendo el cambio: 6 u 6 du 6d d du 6 Luego, d du du ln u c ln( 6 c 6 u 6 6 u 6 6 Para hallar d podemos hacer: Luego, u u udu u u du u u ; d udu u u c = ( ( c NOTA: Dependiendo de la unción que haya de inegrarse puede hacerse un cambio u oro; muchos de ellos son esándar. Ese eo no es el lugar para raar de ellos. El lecor ineresado puede consular una gran variedad de libros al respeco; enre oros: SalasHille, Calculus, Ed. Reveré. Piskunov, Calculo dierencial e inegral, Ed Mir Cambios de variable para inegrales rigonoméricas Los cambios más recuenes son:. Si el inegrando es una unción ( impar en cos, se hace el cambio sen =. (Una unción es impar en cos cuando al cambiar cos por cos la epresión cambia de signo. Por ejemplo, ( cos.) Así se obienen las siguienes equivalencias: sen sen = cos sen ; ag ag cos d cos d d d José María Marínez Mediano
10 Inegrales 0 Ejemplo: d (cos (cos d d ( ( ) d c sen cos ) d = = sen sen c. Si el inegrando es una unción ( impar en sen, se hace el cambio cos =. (Una unción es impar en sen cuando al cambiar sen por sen la epresión cambia de signo. Por ejemplo, ( sen.) Así se obiene las siguienes equivalencias: Ejemplo: cos = sen cos ; send d d sen ag ag cos d sen d sen cos ( sen d d ( = ( ) d c cos cos c cos ) d =. Si el inegrando no cambia al susiuir sen por sen y cos por cos, se hace el cambio ag =. Así se obiene las siguienes equivalencias: ag = ag cos cos d ( ag d d d sen ag sen ag cos sen cos Ejemplo: Para inegrar ag d, haciendo ag = se iene: ag d d = d Esa segunda inegral se hace por descomposición, pues dividiendo: Con eso, d = d = ln( ) c Deshaciendo el cambio inicial, se iene: ag ag ag d = ln( ag c ln(cos c José María Marínez Mediano
Matemáticas II TEMA 10 La integral indefinida
nálisis. Inegral Indefinida Maemáicas II TEM 0 La inegral indefinida. oncepo de inegral indefinida La derivada de una función permie conocer la asa de variación (el cambio insanáneo) de un deerminado fenómeno
BLOQUE 2 CÁLCULO INTEGRAL
BLOQUE CÁLCULO INTEGRAL INTEGRALES INDEFINIDAS. Primeras deiniciones.propiedades De: Se dice que F es FUNCIÓN PRIMITIVA de si F = EJEMPLO: Es evidene que es una primiiva de ya que ( ) = Pero ambién + es
INTEGRACIÓN POR CAMBIO DE VARIABLE
INTEGRCIÓN POR CMBIO DE VRIBLE Dada la inegral f( ) d, si consideramos como una función de ora variable, = g(), enonces d = g'() d, y susiuyendo en la inegral inicial se obiene f( g( )) g'( ) d. En el
CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos
CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de
DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función =
DERIVACIÓN BAJO EL SIGNO INTEGRAL. Hallar el puno del inervalo [,] en el que la función F () d alcanza su valor mínimo. El mínimo de una función se alcanza en los punos donde su primera derivada es nula
MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.
Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA
INTEGRAL INDEFINIDA CONCEPTOS BÁSICOS: PRIMITIVA E INTEGRAL INDEFINIDA El cálculo de integrales indefinidas de una función es un proceso inverso del cálculo de derivadas ya que se trata de encontrar una
CAPÍTULO 6. INTEGRACIÓN DE FUNCIONES IRRACIONALES 6.1. Introducción 6.2. Integrales irracionales simples 6.3. Integrales irracionales lineales 6.4.
CAPÍTULO. INTEGRACIÓN DE FUNCIONES IRRACIONALES.. Inroducción.. Inegrales irracionales simples.. Inegrales irracionales lineales.. Inegrales irracionales de polinomios de grado dos no compleos.. Inegrales
ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t
E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe
Integral indefinida (CCSS)
ntegral indeinida SS achillerato SS ntegral indeinida (SS). Primitiva de una unción Deinición: Sea () una unción deinida en el intervalo (a,b), llamaremos primitiva de la unción () a toda unción real de
TEMA 5: INTEGRAL INDEFINIDA.
TEMA : INTEGRAL INDEFINIDA.. Primitivas: propiedades. Integral indefinida.. Integración por partes.. Integración de funciones racionales (denominador con raíces reales simples y múltiples, denominador
MATEMÁTICAS I. TEMA 1: ECUACIONES Y SISTEMAS DE ECUACIONES
Cód. 87 Avda. de San Diego, 8 Madrid Tel: 978997 98 Fa: 9789 Email: [email protected] de No se auoria el uso comercial de ese Documeno. MATEMÁTICAS I. TEMA : ECUACIONES Y SISTEMAS DE ECUACIONES..
TEMA 12.- CÁLCULO DE PRIMITIVAS
TEMA.- CÁLCULO DE PRIMITIVAS.-.- PRIMITIVA DE UNA FUNCIÓN Definición de Función Primitiva Una función F() se dice que es primitiva de otra función f() cuando F'() f() Ejemplos: F() es primitiva de f()
1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia
Cálculo de primitivas MATEMÁTICAS II. PRIMITIVA DE UNA FUNCIÓN. PROPIEDADES DE LA INTEGRAL INDEFINIDA. INTEGRALES INMEDIATAS.. Ejemplos de integrales inmediatas tipo potencia.. Ejemplos de integrales inmediatas
PRIMER EXAMEN EJERCICIOS RESUELTOS
MATEMÁTICAS II (G. I. T. I.) PRIMER EXAMEN 03 04 EJERCICIOS RESUELTOS EJERCICIO. Dada la curva cuya ecuación en coordenadas polares es r θ para 0 θ, se pide: () Deermina la ecuación de la reca angene a
1. Derivadas de funciones de una variable. Recta tangente.
1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias
EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL
EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL Estudiar la continuidad y derivabilidad de las siguientes funciones y escribir su función derivada: si < ( ) f 7 si < 7 si b) f c) f La función f(
Ejercicios de Integrales resueltos
Ejercicios de Integrales resueltos. Resuelve la integral: Ln Ln Llamemos I Ln u du Aplicamos partes: dv v I Ln t t 4 t t t 4 t t 4 t 4 4 4t 4 t t t A t B t A( t) B( t) A ; B 4 t t Ln t Ln t t C Deshaciendo
SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS.
SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS. El objeivo de esas noas complemenarias al ema de solución numérica de ecuaciones diferenciales ordinarias es dar una inroducción simple al ema,
4º ESO ACADÉMICAS ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa ECUACIONES
º ESO ACADÉMICAS ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. ECUACIONES.- ECUACIONES Una ecuación es una igualdad donde se desconoce el valor de una lera (incógnia o variable). El valor de la variable que
IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho
IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara
1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1
Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos
ECUACIONES DE 1º GRADO 1. Resuelve las siguientes ecuaciones de 1º grado en función de los parámetros que llevan: ; ( )
ECUACIONES DE º GRADO. Resuelve las siguienes ecuaciones de º grado en función de los parámeros que llevan a) a b ( c) b) b ( a) a( b) c) ( b a) a b b d) a a 7 a e) a b b a a. a b ( c). Para resolver la
UNIVERSIDAD ARTURO PRAT IQUIQUE CHILE DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES
DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES MARIA ELISA VODNIZZA LIRA e-mail : [email protected] url : www.unap.cl/~mvodnizz SEPTIEMBRE - 00 INTEGRALES Uno de los problemas importantes
Métodos de integración
Integración por partes Métodos de integración De la derivada del producto de dos funciones obtenemos la fórmula de la derivación por partes. (uu. vv) = uu vv + uu vv que se puede escribir dd(uu. vv) =
UNIDAD 3: INTEGRAL INDEFINIDA
UNIDAD : INTEGRAL INDEFINIDA UNIDAD : INTEGRAL INDEFINIDA ÍNDICE DE LA UNIDAD.- INTRODUCCIÓN....- PRIMITIVA DE UNA FUNCIÓN.....- INTEGRAL INDEFINIDA. PROPIEDADES....- INTEGRACIÓN INMEDIATA.....- INTEGRACIÓN
Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales
Soluciones a los ejercicios propuesos Unidad cuaciones inecuaciones sisemas Maemáicas aplicadas a las Ciencias Sociales CUACIONS D SGUNDO GRADO Resuelve e inerprea gráficamene las soluciones de las ecuaciones:
1. CÁLCULO DE PRIMITIVAS
. CÁLCULO DE PRIMITIVAS. Calcular las siguientes integrales indefinidas:. ( + Es inmediata. ( = (ln ln + + C +. + + + Descomponemos el integrando en fracciones parciales y obtenemos. + + = + arc tg + =
Ecuaciones Matriciales y Determinantes.
Ecuaciones Mariciales y Deerminanes. Ecuaciones Mariciales. Tenemos que obener la mariz incógnia, que generalmene se denoa como X, despejándola de la igualdad. Para conseguirlo enemos las siguienes reglas:
Métodos de Previsión de la Demanda Pronóstico para Series Temporales Niveladas Representación Gráfica
Méodos de Previsión de la Demanda Pronósico para Series Temporales Niveladas Represenación Gráfica REPRESENTACIÓN GRÁFICA DE LA SERIE DE DATOS Período i Demanda Di 25 2 2 3 225 4 24 5 22 Para resolver
EJERCICIOS PROPUESTOS
8 Deerminanes. Ejercicio resuelo. EJERCICIOS PROPUESTOS. Calcula el valor de los siguienes deerminanes. 8 4 5 0 0 6 c) 4 5 4 8 6 4 8 4 5 0 6+ 0 0+ 5 00 5 6 0+ 000 0 48 0 6 ( ) ( ) ( ) ( ) ( ) 4 5 5 + 4
1.10 Aplicaciones de las ecuaciones diferenciales de primer orden
. Aplicaciones de las ecuaciones diferenciales de primer orden 55. Aplicaciones de las ecuaciones diferenciales de primer orden Ejemplo.. Decaimieno radiacivo El isóopo radiacivo Torio 24 se desinegra
Y K AN AN AN MODELO SOLOW MODELO
MODELO SOLOW MODELO Rendimienos consanes a escala decrecienes en uso de facores. Tasa de ahorro exógena, s. Crecimieno exógeno, a asa g, de eficiencia del rabajo. Equilibrio mercado de bienes de facores.
USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD
USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD Inroducción. En muchas áreas de ingeniería se uilizan procesos esocásicos o aleaorios para consruir modelos de sisemas ales como conmuadores
INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES
INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES INTEGRACIÓN POR PARTES Este método permite resolver un gran número de integrales no inmediatas. 1. Sean u y v dos funciones dependientes
Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función.
Integral indefinida 1. Integración Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones F(x) que al ser derivadas conducen a f(x). Se dice, entonces,
INTEGRACIÓN INDEFINIDA
1. PRIMITIVA DE UNA FUNCIÓN Definición: Sean F(x) y f(x) dos funciones reales definidas en un mismo dominio D. Se dice, entonces, que F(x) es una primitiva de f(x) si se cumple quef'(x) = f(x), x. Dicho
i = dq dt La relación entre la diferencia de potencial de las armaduras del condensador y su capacidad es V a V b =V ab = q C V c =V bc
aleos Física para iencias e ngeniería APÍTUL 1.09-2 UT 1 1.09 2.1 arga de un condensador a ravés de una resisencia La figura muesra un condensador descargado de capacidad, en un circuio formado por una
Tema 3. Circuitos capacitivos
Inroducción a la Teoría de ircuios Tema 3. ircuios capaciivos. Inroducción... 2. Inerrupores... 3. ondensadores... 2 3.. Asociación de capacidades.... 5 ondensadores en paralelo... 5 ondensadores en serie...
Técnicas de Integración, preparado por: Gil Sandro Gómez
Tema II. Técnicas de Integración. Integración por partes. La integración por partes surge del producto de una función trascendente y una algebraica, una inversa trigonométrica y una algébrica, una trigonométrica
GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA
GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA Una curva C se dice definida paraméricamene por medio de un parámero, si las coordenadas afines de sus punos M se expresan en función de ese parámero, cuando varía
TEMA 2: CINETICA DE LA TRASLACIÓN
TEMA 2: CINETICA DE LA TRASLACIÓN 1.1. Inroducción. Para ener caracerizado un movimieno mecánico cualquiera, hay que esablecer primero respeco a que cuerpo (s) se va a considerar dicho movimieno. Ese cuerpo
Transformada de Laplace
Capíulo 7 Tranformada de Laplace En ea ección inroduciremo y eudiaremo la ranformada de Laplace, dearrollaremo alguna de u propiedade ma báica y úile. Depué veremo alguna aplicacione. 7. Definicione y
UNIDAD 2.- Polinomios (tema 2 del libro)
UNIDAD.- Polinomios tema del libro). OPERACIONES CON POLINOMIOS n Un monomio en la indeterminada es toda epresión de la forma a donde a se llama coeficiente y n grado del monomio. Dos monomios se dicen
EJERCICIOS DE VECTORES
EJERCICIOS DE ESPACIOS VECTORIALES CURSO 0-0 CONCEPTO DE ESPACIO VECTORIAL EJERCICIOS DE VECTORES. En el conjuno se definen las operaciones siguienes: x y x y x x y y x y x Suma + :, ', ' ', ' Produco
MÉTODOS DE INTEGRACION
MÉTODOS DE INTEGRACION En este tema se continúa con los métodos de integración iniciados en el capítulo anterior, en el que a partir del concepto de primitiva y de las derivadas de las funciones elementales
RADICACIÓN EN LOS REALES
RADICACIÓN EN LOS REALES La raíz n ésima de un número real es otro número real tal que: n a b si y solo si b n Donde el signo se llama radical, n es el índice, a es el radicando y b es la raíz. En la radicación
{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar.
. Esudia el dominio de las siguienes unciones: a ( : Función Racional, el dominio son odos los números reales ecepo los que anulen el denominador. R / 0 : 0 : : ± [ ( ] { } R ± { } b ( : Función Racional,
Integral. F es primitiva de f F (x) = f(x)
o Bachillerato, Matemáticas II. Integración. Integrales indefinidas. Métodos de integración. Primitiva de una función. Integral indefinida. Sean f y F dos funciones reales definidas en un mismo dominio.
duv = udv + vdu udv = uv vdu
I. INTEGRACIÓN POR PARTES. Si la integración de una función no es posible encontrarla por alguna de las fórmulas conocidas, es posible que se pueda integrar utilizando el método conocido como integración
Propiedades más importantes de los logaritmos: El logaritmo de una multiplicación es igual el logaritmo de la suma. log =log +log
Para empezar a tratar el tema de los logaritmos tenemos que tener en muy en cuenta, la definición de logaritmo, así como las tres propiedades más importantes de los logaritmos. Definición de logaritmo:
Unidad 10 Integrales definidas. Aplicaciones
Unidad Integrales definidas. Aplicaciones PÁGINA 5 SOLUCIONES. Las áreas quedan: A u A u A 5 u. El área del recinto viene dada por : ( ) ( ) Área d,5 u PÁGINA 9 SOLUCIONES. La solución queda: Directo:
PROBLEMAS RESUELTOS POR EL MÉTODO DE GAUSS
Maemáicas Problemas resuelos por el Méodo de Gauss PROBLEMAS RESUELTOS POR EL MÉTODO DE GAUSS ) Resolver el siguiene sisema por Gauss Para resolver el sisema por el méodo de Gauss, hemos de riangulariarlo.
Sistemas sobredeterminados. Aproximación de cuadrados mínimos. Sistemas subdeterminados. Solución de mínima norma. Aplicaciones.
Méodos Numéricos 0 Prácica 3 Sisemas sobredeerminados. Aproximación de cuadrados mínimos. Sisemas subdeerminados. Solución de mínima norma. Aplicaciones. Resolución de sisemas sobredeerminados por cuadrados
MATEMÁTICAS VI. CÁLCULO INTEGRAL UNIDAD II MÉTODOS DE INTEGRACIÓN
MÉTODOS DE INTEGRACIÓN UNIDAD II MÉTODOS DE INTEGRACIÓN No todas las funciones en un integrando se pueden resolver mediante reglas inmediatas de integración, y requieren ser tratadas con técnicas especiales.
Correlación. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV
Correlación Dr. Luis Javier Morales Mendoza Procesamieno Analógico de Señales FIEC - UV Índice.. Inroducción.. Correlación Cruzada.. Auocorrelación.4. Calculo de la correlación y de la auocorrelación.5.
ANÁLISIS DE FUNCIONES
ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo
Convolución. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV
Dr. Luis Javier Morales Mendoza Procesamieno Analógico de Señales FIEC - UV Índice.. Inroducción.. La función dela de Dirac.3. Definición de la convolución.3.. propiedades de la convolución.3.. Méodo Gráfico
Las señales pueden ser también, señales continuas o señales alternas.
INSIUO ÉCNICO SLESINO LORENZO MSS ema 1: CONCEPOS PRELIMINRES LLER DE MEDICIONES Conenido: Concepo de señal elécrica. Valores caracerísicos de las señales elécricas: Frecuencia (período, Fase, Valor de
Ecuaciones de Primer Orden e Intervalo Maximal
2 Ecuaciones de Primer Orden e Inervalo Maximal 2.1 Algunos Méodos de Resolución En general, es muy difícil resolver ecuaciones diferenciales de primer orden. Pero hay cieros ipos canónicos de ésas para
Matemáticas CCSS LÍMITES DE FUNCIONES 1. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS. Ejercicio nº 1.- Ejercicio nº 2.
LÍMITES DE FUNCIONES. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS Ejercicio nº.- Ejercicio nº.- Página B) LÍMITES APOYÁNDONOS EN LAS GRÁFICAS B.) FUNCIONES POLINÓMICAS De grado : a ) 3 + b ) 3 + c )
La integral indefinida
Apuntes Matemáticas º de bachillerato Leibniz Tema 7 La integral indefinida Matemáticas º de bachillerato 7. Introducción Def.: Dadas dos funciones, F() y f(), si se verifica que: F () f(), para un cierto
Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica Guía para el ETS de Cálculo Vectorial IE ICA ISISA
Funciones Vecoriales Insiuo Poliécnico Nacional 1. Para cada función vecorial, calcule r' ( r ''( 1.1 r( (sin cos i cos j sink (Res r' ( cosi sin j cosk 1. r( (cos i e j (1/ k (Res. r'( sin i e j (1/ k.
INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN
INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN EJERCICIOS RESUELTOS Calcula una función real f : que cumple las condiciones siguientes: f (0) = 5, f (0) =, f (0) = 0 y f () = + Como f () = +, integremos esta
Indicador de tiempo de respuesta a solicitudes de información y calidad de las mismas (ITRC)
Indicador de iempo de respuesa a soliciudes de información y calidad de las mismas (ITRC) Noa meodológica Descripción del Indicador El Indicador de iempo de respuesa a soliciudes de información mide la
RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función
RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN Razón de cambio insanánea y la derivada de una función anerior Reomemos nuevamene el problema del proyecil esudiado en la secuencia
Cálculo Diferencial e Integral - Funciones trascendentales. Prof. Farith J. Briceño N.
Cálculo Diferencial e Inegral - Funciones rascenenales. Prof. Farih J. Briceño N. Objeivos a cubrir Función logarimo y eponencial. Propieaes. Derivaa e inegración. Cóigo : MAT-CDI.5 Ejercicios resuelos
FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.
FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto
Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz.
Ejercicios Selecividad Maemáicas pl. SS II loque: Álgebra lineal. MTRIES Operaciones con marices. Marices inversas. Ecuaciones mariciales. Rango de una mari.. Si son dos marices cualesquiera, es correca
Integración por fracciones parciales
Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA IV : LAS FRACCIONES. OPERACIONES Los siginificados de una fracción. Fracciones propias e impropias. Equivalencias de fracciones. Amplificación y simplificación. Fracción
Cálculo de límites. Continuidad
Chapter 8 Cálculo de límites. Continuidad 8. Definición Una función f () tiene límite l en a, siparatodasucesióndevalores n a las imágines correspondientes f ( n ) l. Sediceentoncesque f () f (a) a 8.2
Problema de Valor Inicial (PVI):
Problema de Valor Inicial (PVI): Con frecuencia nos interesan problemas en los que se busca la solución y () de una ecuación diferencial de modo que y () satifaga condiciones adicionales impuestas a la
ECUACIONES. Una igualdad algebraica está formada por dos expresiones algebraicas (una de ellas puede ser un número), separadas por el signo =.
ECUACIONES IDENTIDADES, IGUALDADES FALSAS Y ECUACIONES.- Una igualdad algebraica está formada por dos epresiones algebraicas (una de ellas puede ser un número), separadas por el signo. Ejemplos.- ( ) ;
45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( )
5 EJERCICIOS de INTEGRAL DEFINIDA º BACH. Inegral definida:. Enunciar la regla de Barrow. Calcular:. Calcular:. (S) Calcular: d (Soluc: ) a + b a ( ) a + b d Soluc : b d (Soluc: 5/). Calcular: 5. Calcular:
1. Algunas primitivas inmediatas (o casi inmediatas).
Cálculo I. o Matemáticas. Curso 00/0. Cálculo de Primitivas. Algunas primitivas inmediatas (o casi inmediatas). (5x 6) = 5 (5x 6) 5 = 5 (5x 6) + C. Nota: Si f(x) = 5x 6 su derivada es 5. En la primera
La transformada de Laplace
Capíulo 8 La ransformada de Laplace 8.. Inroducción a las ransformadas inegrales En ese aparado aprenderemos un méodo alernaivo para resolver el problema de valores iniciales (4.5.) y (x) + py (x) + qy(x)
UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO. Cátedra: ESTRUCTURAS NIVEL 1 Taller: VERTICAL III DELALOYE - NICO - CLIVIO
UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO DNC TP3 Cáedra: ESTRUCTURAS NIVEL 1 Taller: VERTICAL III DELALOYE - NICO - CLIVIO Trabajo Prácico Nº 3: Esfuerzos inernos Diagramas
Matemáticas de 2º de bachillerato página 1 Integral indefinida. Integral indefinida
Matemáticas de º de bachillerato página Integral indefinida Integral indefinida.introducción.- La integración es el proceso recíproco de la derivación, es decir, en la derivación se trata de hallar la
B. Cálculo de primitivas.
50CAPÍTULO 5. INTEGRAL DEFINIDA. CÁLCULO DE PRIMITIVAS y y f(x) x y y F (x) x F (x) 8 >< >: x si x [0, ] x + six (, ] x si x (, ] Figura 5.5: B. Cálculo de primitivas. 5.. Integración inmediata. Definición
Funciones racionales. Tema 5: Integración. Integrales reducibles a racionales. Primera reducción. Primeros ejemplos. Definición
Funciones racionales Funciones racionales Tema 5: Integración. Integrales racionales y reducibles a racionales Análisis Matemático Grado en Física Definición Una función f se dice que es racional si f
Unidad 9 Funciones exponenciales, logarítmicas y trigonométricas
Unidad 9 Funciones eponenciales, logarímicas y rigonoméricas PÁGINA 177 SOLUCIONES 1. En cada uno de los res casos: a) Domf = Imf = Esricamene creciene en odo su dominio. No acoada. Simérica respeco al
