Introducción a la computación. Charlie

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Introducción a la computación. Charlie"

Transcripción

1 Introducción a la computación Charlie

2 Estado Se denomina estado en un modelo de cómputo a un punto en la ejecución de un programa en dicho modelo. En el modelo de Von Neumann esto responde al valor de las variables, constantes y la instrucción del programa que corresponde a dicho punto de la ejecución.

3 Especificación de algoritmos Especificar un algoritmo es describir qué es lo que hace a partir de detallar cuál es el estado posterior a su ejecución en función del estado anterior a la misma. pre = {precondición} P post = {postcondición}

4 Instrucción (Otra oportunidad) Una instrucción es una operación que produce una transformación del estado en que se encuentra la ejecución del programa (recordar que la instrucción en la que se encuentra la ejecución es parte del estado y por lo tanto la alteración del flujo de control es una transformación del estado tanto como la modificación del contenido de una posición de memoria).

5 Corrección Repetición: while ([expr1][comp][expr2]) { [prog] } Supongamos que tenemos la siguiente situación, S1={...} while (cond){[prog]} S2={...} y queremos saber si el ciclo es correcto respecto de los estados S1 y S2. Luego, debemos ver que:

6 Corrección Repetición: while ([expr1][comp][expr2]) { [prog] } Supongamos que tenemos la siguiente situación, S1={...} while (cond){[prog]} S2={...} y queremos saber si el ciclo es correcto respecto de los estados S1 y S2. Luego, debemos ver que: Pero primero...

7 Invariante Un invariante de un programa/algoritmo es un predicado cuyo valor de verdad no se ve afectado a lo largo de la ejecución de dicho programa/algoritmo.

8 Invariante Un invariante de un programa/algoritmo es un predicado cuyo valor de verdad no se ve afectado a lo largo de la ejecución de dicho programa/algoritmo. x=22; x=2*x; y=x/22; x>=22 && y < 3 x=x+1;

9 Invariante Un invariante de un programa/algoritmo es un predicado cuyo valor de verdad no se ve afectado a lo largo de la ejecución de dicho programa/algoritmo.

10 Invariante Un invariante de un programa/algoritmo es un predicado cuyo valor de verdad no se ve afectado a lo largo de la ejecución de dicho programa/algoritmo. x=1; y=0; while (x<11){ y=y+x; x<=11 && y == Sum (i, 1<=i<x) x++; }

11 Invariante Un invariante de un programa/algoritmo es un predicado cuyo valor de verdad no se ve afectado a lo largo de la ejecución de dicho programa/algoritmo.

12 Invariante Un invariante de un programa/algoritmo es un predicado cuyo valor de verdad no se ve afectado a lo largo de la ejecución de dicho programa/algoritmo. Un invariante va a ser la herramienta a partir de la cual transferiremos información desde el estado de comienzo de un ciclo hacia el estado de finalización.

13 Función variante y cota A los efectos prácticos sólo nos interesará la corrección de algoritmos con lo que para que un ciclo sea correcto debe terminar. Cómo garantizamos que un ciclo termina?

14 Función variante y cota A los efectos prácticos sólo nos interesará la corrección de algoritmos con lo que para que un ciclo sea correcto debe terminar. Cómo garantizamos que un ciclo termina? Demostrando que la condición del ciclo se hace falsa en algún momento.

15 Función variante y cota Formalmente esto implica encontrar una función monótona decreciente para la que existe una cota que una vez alcanzada la condición del ciclo deja de valer...

16 Función variante y cota Formalmente esto implica encontrar una función monótona decreciente para la que existe una cota que una vez alcanzada la condición del ciclo deja de valer... Dicho de otra forma:

17 Función variante y cota Formalmente esto implica encontrar una función monótona decreciente para la que existe una cota que una vez alcanzada la condición del ciclo deja de valer... x=1; y=0; while (x<11){ y=y+x; x++; } f(x) = 11-x, cota: 0

18 Función variante y cota Formalmente esto implica encontrar una función monótona decreciente para la que existe una cota que una vez alcanzada la condición del ciclo deja de valer... x=1; y=0; while (x<11){ y=y+x; x++; } f(x) = 11-x, cota: 0 Ahora sí!

19 Función variante y cota Al final del día: lo que vamos a hacer es argumentar que existe un estado alcanzable en la ejecución de nuestro programa para el cual la condición del ciclo deja de ser verdadera y consecuentemente, el ciclo termina.

20 Corrección Repetición: while ([expr1][comp][expr2]) { [prog] } S1={...} while (cond){[prog]} S2={...} Si vale S1, entonces vale Inv Inv && cond [prog] Inv Si vale Inv &&!cond, entonces vale S2 Existe una cota para la validez de cond

21 Corrección (Ejemplos) Repetición: while ([expr1][comp][expr2]) { [prog] } S1={x==1 && y==0} while (x < 11) {y = y + x;x=x+1;} S2={x==11 && y==55} Y el invariante?

22 Corrección (Ejemplos) Repetición: while ([expr1][comp][expr2]) { [prog] } S1={x==1 && y==0} while (x < 11) {y = y + x;x=x+1;} S2={x==11 && y==55} Y el invariante? Ya lo vimos pero tratemos de deducir qué necesitamos para llegar a S2 desde S1.

23 Corrección (Ejemplos) Repetición: while ([expr1][comp][expr2]) { [prog] } S1={x==1 && y==0} while (x < 11) {y = y + x;x=x+1;} S2={x==11 && y==55} Y el invariante? Ya lo vimos pero tratemos de deducir qué necesitamos para llegar a S2 desde S1. Sabemos que siempre que el ciclo ejecute x<=11 (1) y es la suma entre 1 y x

24 Corrección (Ejemplos) Repetición: while ([expr1][comp][expr2]) { [prog] } 1.- Si vale S1, entonces vale Inv S1={x==1 && y==0}, Inv: x<=11 && y es la suma entre 1 y x (no inclusive)

25 Corrección (Ejemplos) Repetición: while ([expr1][comp][expr2]) { [prog] } 1.- Si vale S1, entonces vale Inv S1={x==1 && y==0}, Inv: x<=11 && y es la suma entre 1 y x (no inclusive) Es trivial ver que x==1 implica x<=11. Luego, si x==1, entonces la suma de los números entre 1 y 1 (no inclusive) da como resultado 0, y considerando que S1 afirma y==0, implicamos trivialmente que y==0.

26 Corrección (Ejemplos) Repetición: while ([expr1][comp][expr2]) { [prog] } 2.- Inv && cond [prog] Inv Inv: x<=11 && y es la suma entre 1 y x (no inclusive), cond: x<11 Esto lo saben hacer, asi que les queda como tarea ;-)

27 Corrección (Ejemplos) Repetición: while ([expr1][comp][expr2]) { [prog] } 3.- Si vale Inv &&!cond, entonces vale S2 Inv: x<=11 && y es la suma entre 1 y x (no inclusive),!cond: x>=11 S2={x==11 && y==55}

28 Corrección (Ejemplos) Repetición: while ([expr1][comp][expr2]) { [prog] } 3.- Si vale Inv &&!cond, entonces vale S2 Inv: x<=11 && y es la suma entre 1 y x (no inclusive),!cond: x>=11 S2={x==11 && y==55} Si vale Inv y!cond, entonces vale {x<=11 && y es la suma entre 1 y x (no inclusive) && x>=11}, que es equivalente a {x==11 && y es la suma entre 1 y x (no inclusive)}. Luego, reemplazando en la expresión de y, se tiene que {x==11 && y= }, que es equivalente a {x==11 && y==55}

29 Corrección (Ejemplos) Repetición: while ([expr1][comp][expr2]) { [prog] } 4.- Existe una cota para la validez de cond

30 Corrección (Ejemplos) Repetición: while ([expr1][comp][expr2]) { [prog] } 4.- Existe una cota para la validez de cond Como mencionamos anteriormente en el ejemplo, se puede ver que la función f(x)=11-x decrece en cada iteración del ciclo por efecto de la asignación x=x+1 de forma que en algún momento f(x) queda acotada por 0, precisamente cuando x==11, en la última iteración.

31 Resumen Ufffffffffffffffffff... corrección para: - Ciclos

Algoritmos para determinar Caminos Mínimos en Grafos

Algoritmos para determinar Caminos Mínimos en Grafos Problemas de camino mínimo Algoritmos para determinar Caminos Mínimos en Grafos Algoritmos y Estructuras de Datos III DC, FCEN, UBA, C 202 Problemas de camino mínimo Dado un grafo orientado G = (V, E)

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo

Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo Autómatas Mínimos Encontrar el autómata mínimo. Universidad de Cantabria Introducción Dado un lenguaje regular sabemos encontrar un autómata finito. Pero, hay autómatas más sencillos que aceptan el mismo

Más detalles

Taller de Resolución de Problemas Computacionales

Taller de Resolución de Problemas Computacionales Taller de Resolución de Problemas Computacionales Clase1: 27/9 Presentación: Equipo de Trabajo Encuentros Certificación del Taller: Por Asistencia Por Aprobación Sitio Web. Etapas en la Resolución de Problemas

Más detalles

Diseño por Contratos y Aserciones

Diseño por Contratos y Aserciones UNIVERSIDAD DE CHILE DEPARTAMENTO DE CIENCIAS DE COMPUTACION Diseño por Contratos y Aserciones Bertrand Meyer. Construcción de Software Orientado a Objetos EDUARDO JARA Diseño por Contratos y Aserciones

Más detalles

Algoritmos y programas. Algoritmos y Estructuras de Datos I

Algoritmos y programas. Algoritmos y Estructuras de Datos I Algoritmos y programas Algoritmos y Estructuras de Datos I Primer cuatrimestre de 2012 Departamento de Computación - FCEyN - UBA Programación funcional - clase 1 Funciones Simples - Recursión - Tipos de

Más detalles

Diseño Estructurado de Algoritmos

Diseño Estructurado de Algoritmos Diseño Estructurado de Algoritmos 1 Sesión No. 11 Nombre: Estructuras algorítmicas. Tercera parte. Objetivo de la sesión: Al concluir la sesión el estudiante aplicará las estructuras algorítmicas repetitivas

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.

Más detalles

ESTRUCTURAS REPETITIVAS EN PHP

ESTRUCTURAS REPETITIVAS EN PHP ESTRUCTURAS REPETITIVAS EN PHP Los bucles nos permiten iterar conjuntos de instrucciones, es decir repetir la ejecución de un conjunto de instrucciones mientras se cumpla una condición. Sentencia while

Más detalles

!"#! "$%"&'(&) *('(+, -)"%!.(-

!#! $%&'(&) *('(+, -)%!.(- - - S. Neumann - - - - - - - - - - - - - - - - - - - - - - - - 3 3 3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Más detalles

NOTACIÓN O GRANDE. El análisis de algoritmos estima el consumo de recursos de un algoritmo.

NOTACIÓN O GRANDE. El análisis de algoritmos estima el consumo de recursos de un algoritmo. NOTACIÓN O GRANDE El análisis de algoritmos estima el consumo de recursos de un algoritmo. Esto nos permite comparar los costos relativos de dos o más algoritmos para resolver el mismo problema. El análisis

Más detalles

Métodos para escribir algoritmos: Diagramas de Flujo y pseudocódigo

Métodos para escribir algoritmos: Diagramas de Flujo y pseudocódigo TEMA 2: CONCEPTOS BÁSICOS DE ALGORÍTMICA 1. Definición de Algoritmo 1.1. Propiedades de los Algoritmos 2. Qué es un Programa? 2.1. Cómo se construye un Programa 3. Definición y uso de herramientas para

Más detalles

SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia.

SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. SOBRE LOGICA MATEMATICA Sandra M. Perilla-Monroy Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. Resumen. sandraperilla@usantotomas.edu.co Carrera 9 No 51-11 Bogotá Colombia

Más detalles

Es importante recordar el concepto de intervalo abierto notado. (a, b)={x R/a x bt} donde a y b no pertenecen al intervalo abierto

Es importante recordar el concepto de intervalo abierto notado. (a, b)={x R/a x bt} donde a y b no pertenecen al intervalo abierto INICIACION AL CALCULO LIMITE DE UNA FUNCION EN UN PUNTO Cuando se inicia un trabajo de cálculo, es importante aclarar,que históricamente a partir del siglo xviii y con los trabajos de Newton en Inglaterra

Más detalles

PROGRAMACIÓN LINEAL ENTERA

PROGRAMACIÓN LINEAL ENTERA PROGRAMACIÓN LINEAL ENTERA Programación lineal: hipótesis de perfecta divisibilidad Así pues decimos que un problema es de programación lineal entera, cuando prescindiendo de las condiciones de integridad,

Más detalles

Resumen sobre mecánica analítica

Resumen sobre mecánica analítica Resumen sobre mecánica analítica Ecuaciones de Lagrange. Supongamos una partícula, cuyo movimiento se puede describir mediante una sóla coordenada x, de modo que en el instante t la posición de la partícula

Más detalles

ALGORITMOS GENÉTICOS

ALGORITMOS GENÉTICOS ALGORITMOS GENÉTICOS Autor: Miguel Ángel Muñoz Pérez. Primera versión: Noviembre, 1997. Última modificación: Abril, 2005. ADVERTENCIA Si ya sabes lo que es un algoritmo genético y esperas hallar algo novedoso

Más detalles

Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción

Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción Curso 0: Matemáticas y sus Aplicaciones Tema 5. Lógica y Formalismo Matemático Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Proposiciones y Conectores Lógicos 2 Tablas de Verdad

Más detalles

Estructuras de Repetición (Hacer-Mientras)

Estructuras de Repetición (Hacer-Mientras) Estructuras de Repetición (Hacer-Mientras) Material Original: Prof. Flor Narciso Modificaciones: Prof. Andrés Arcia Departamento de Computación Escuela de Ingeniería de Sistemas Facultad de Ingeniería

Más detalles

UNIDAD ACADÉMICA PROFESIONAL TIANGUISTENCO

UNIDAD ACADÉMICA PROFESIONAL TIANGUISTENCO UNIDAD ACADÉMICA PROFESIONAL TIANGUISTENCO LICENCIATURA EN PRODUCCIÓN INDUSTRIAL. UNIDAD DE APRENDIZAJE: PROGRAMACIÓN Créditos institucionales de la UA: 6 Material visual: Diapositivas Unidad de competencia

Más detalles

Clases e instancias. Algoritmos y Estructuras de Datos I. Clases e instancias. memoria dinámica.

Clases e instancias. Algoritmos y Estructuras de Datos I. Clases e instancias. memoria dinámica. Algoritmos Estructuras de Datos I Primer cuatrimestre de 2014 Departamento de Computación - FCEN - UBA Programación imperativa - clase 10 Memoria dinámica listas enlazadas Clases e instancias El paquete

Más detalles

Matemá'cas generales

Matemá'cas generales Matemá'cas generales Funciones y Límites Patricia Gómez García José Antonio Álvarez García DPTO. DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN Este tema se publica bajo Licencia: Crea've Commons

Más detalles

MATERIAL RECOPILADO POR E.A.D. PRÁCTICAS PROFESIONALES (2014)

MATERIAL RECOPILADO POR E.A.D. PRÁCTICAS PROFESIONALES (2014) CONECTORES PARA REDACCION DE TEXTOS INTRODUCIR EL TEMA El tema del texto El objetivo principal de Nos proponemos exponer Este texto trata de Nos dirigimos a usted para INICIAR UN TEMA NUEVO Con respecto

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

Algoritmos glotones. mat-151

Algoritmos glotones. mat-151 Algoritmos glotones (greedy) mat-151 Alonso Ramirez Manzanares Computación y Algoritmos 04.06.2009 Algoritmos glotones Algoritmos utilizados en problemas de optimización. Estos algoritmos siguen típicamente

Más detalles

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)

Más detalles

EJERCICIOS ADICIONALES.

EJERCICIOS ADICIONALES. UNIVERSIDAD SIMON BOLIVAR PREPARADURIA DE MATEMATICAS MATEMATICAS 4 (MA-5) Miguel Guzmán (magt_3@hotmail.com) Tema: SUCESIONES EJERCICIOS ADICIONALES..- Considere la sucesión establecida por la relación

Más detalles

Diagnóstico de fallas en circuitos digitales

Diagnóstico de fallas en circuitos digitales Diagnóstico de fallas en circuitos digitales Circuito digital: Construido usando las siguientes compuertas. NOT: OR: AND: 1 Ejemplo: Sumador binario Un sumador binario recibe como entrada dos bits a y

Más detalles

Diagramas de secuencia

Diagramas de secuencia Facultad de Ingeniería Departamento de Ingeniería de Sistemas y Computación Diagramas de secuencia Fragmentos Combinados: caminos alternativos Departamento de Ingeniería de Sistemas y Computación - Universidad

Más detalles

CONCAVIDAD. Supongamos que tenemos la siguiente información, referente a una curva derivable: Cómo la graficaríamos?

CONCAVIDAD. Supongamos que tenemos la siguiente información, referente a una curva derivable: Cómo la graficaríamos? CAPÍTULO 14 CONCAVIDAD Supongamos que tenemos la siguiente información, referente a una curva derivable: Intervalo Signo de f F (-00,3) + Creciente (3,8) - Decreciente (8, + ) + Creciente Cómo la graficaríamos?

Más detalles

Inteligencia en Redes de Comunicaciones. Razonamiento lógico. Julio Villena Román.

Inteligencia en Redes de Comunicaciones. Razonamiento lógico. Julio Villena Román. Inteligencia en Redes de Comunicaciones Razonamiento lógico Julio Villena Román jvillena@it.uc3m.es Índice La programación lógica Lógica de predicados de primer orden Sistemas inferenciales IRC 2009 -

Más detalles

Modelos de dinámica de poblaciones aisladas Ecología (1861 y 1812) Grado de Biología y de Ciencias Ambientales. UMU

Modelos de dinámica de poblaciones aisladas Ecología (1861 y 1812) Grado de Biología y de Ciencias Ambientales. UMU Modelos de dinámica de poblaciones aisladas Ecología (1861 y 1812) 215 16 Grado de Biología y de Ciencias Ambientales. UMU Contents 1 Introducción 1 2 Modelos de crecimiento 1 2.1 Érase una vez..............................................

Más detalles

Tema 6: Teoría Semántica

Tema 6: Teoría Semántica Tema 6: Teoría Semántica Sintáxis Lenguaje de de las las proposiciones Lenguaje de de los los predicados Semántica Valores Valores de de verdad verdad Tablas Tablas de de verdad verdad Tautologías Satisfacibilidad

Más detalles

Estructuras Repetitivas

Estructuras Repetitivas Estructuras Repetitivas Se solicita al operador que ingrese tres números enteros cualesquiera. En base a estos números, mostrar por pantalla cual es el mayor de todos. Diag. De Flujos Pseudocódigo Matlab

Más detalles

Notación Asintótica 2

Notación Asintótica 2 Notación Asintótica 2 mat-151 1 Éxamen Rápido (6 minutos) Cada operación fundamental usa c milisegundos, cuánto tiempo toma contar hasta 1,000,000? Cuál es el valor de N? Cuál es el órden de complejidad

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

Tipos de datos en S. Lógica y Computabilidad. Codificación de variables y etiquetas de S. Codificación de programas en S

Tipos de datos en S. Lógica y Computabilidad. Codificación de variables y etiquetas de S. Codificación de programas en S Tipos de datos en S Lógica y Computabilidad Verano 2011 Departamento de Computación - FCEyN - UBA Computabilidad - clase 5 Codificación de programas, Halting problem, diagonalización, tesis de Church,

Más detalles

Expliquemos con exactitud qué queremos decir con valores máximos y mínimos.

Expliquemos con exactitud qué queremos decir con valores máximos y mínimos. Introducción: Ahora que conocemos las reglas de derivación nos encontramos en mejor posición para continuar con las aplicaciones de la derivada. Veremos cómo afectan las derivadas la forma de la gráfica

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN S

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN S ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 014 1S PRIMERA EVALUACIÓN DE MATEMÁTICAS PARA CIENCIAS, INGENIERÍAS

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

Ecuaciones Diofánticas

Ecuaciones Diofánticas 2 Ecuaciones Diofánticas (c) 2011 leandromarin.com 1. Introducción Una ecuación diofántica es una ecuación con coeficientes enteros y de la que tenemos que calcular las soluciones enteras. En este tema

Más detalles

Operadores de comparación

Operadores de comparación Operadores de comparación Los operadores de comparación en C son: Igual (==) Distinto (!=) Mayor (>) y Mayor o igual (>=) Menor (

Más detalles

Proceso Selectivo para la XXII IMC, Bulgaria

Proceso Selectivo para la XXII IMC, Bulgaria Proceso Selectivo para la XXII IMC, Bulgaria Facultad de Ciencias UNAM Instituto de Matemáticas UNAM SUMEM Indicaciones Espera la indicación para voltear esta hoja. Mientras tanto, lee estas instrucciones

Más detalles

Guía práctica de estudio 03: Algoritmos

Guía práctica de estudio 03: Algoritmos Guía práctica de estudio 03: Algoritmos Elaborado por: M.C. Edgar E. García Cano Ing. Jorge A. Solano Gálvez Revisado por: Ing. Laura Sandoval Montaño Guía práctica de estudio 03: Algoritmos Objetivo:

Más detalles

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)

Más detalles

PHP: Lenguaje de programación

PHP: Lenguaje de programación Francisco J. Martín Mateos Carmen Graciani Diaz Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Tipos de datos Enteros Con base decimal: 45, -43 Con base octal: 043, -054

Más detalles

Métodos que devuelven valor Dado el siguiente triángulo rectángulo:

Métodos que devuelven valor Dado el siguiente triángulo rectángulo: Métodos que devuelven valor Dado el siguiente triángulo rectángulo: hipotenusa altura base Para dibujar este triángulo necesitamos los siguientes datos: base y altura La base y la altura, se utilizarán

Más detalles

Producto de matrices triangulares superiores

Producto de matrices triangulares superiores Producto de matrices triangulares superiores Ejercicios Objetivos Demostrar que el producto de dos matrices triangulares superiores es una matriz triangular superior Deducir una fórmula para las entradas

Más detalles

Guía práctica de estudio 03: Algoritmos

Guía práctica de estudio 03: Algoritmos Guía práctica de estudio 03: Algoritmos Elaborado por: M.C. Edgar E. García Cano Ing. Jorge A. Solano Gálvez Revisado por: Ing. Laura Sandoval Montaño Guía práctica de estudio 03: Algoritmos Objetivo:

Más detalles

Distinguir las diferentes estructuras de repetición utilizadas en problemas con bucles: mientras, repetir mientras, para.

Distinguir las diferentes estructuras de repetición utilizadas en problemas con bucles: mientras, repetir mientras, para. ESTRUCTURAS ITERATIVAS 1 ESTRUCTURAS ITERATIVAS OBJETIVOS Aprender a resolver problemas mediante la ejecución repetida de una secuencia de proposiciones llamados bucle o estructuras repetitivas o iterativas.

Más detalles

Demostraciones a Teoremas de Límites

Demostraciones a Teoremas de Límites Demostraciones a Teoremas de Límites Programa de Bachillerato.Universidad de Chile. Otoño, 009 En esta sección solo daremos los fundamentos teóricos que nos permiten resolver los problemas que se nos plantean,

Más detalles

Especificación y uso de módulos en C++(II)

Especificación y uso de módulos en C++(II) Sesión 3 Especificación y uso de módulos en C++(II) 3.1 La clase Poli para representar polinomios Disponemos de la clase Poli que permite operar con polinomios de coeficientes enteros. Se basa en el módulo

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

Ciclos. Recordando Estructuras de Control Básicas: SELECCIÓN (condición) SECUENCIAL

Ciclos. Recordando Estructuras de Control Básicas: SELECCIÓN (condición) SECUENCIAL Ciclos Fundamentos de Programación Recordando Estructuras de Control Básicas: Una secuencia es una serie de estatutos que se ejecutan uno después de otro. Selección (condición) ejecuta diferentes estatutos

Más detalles

PREPARACION OLIMPIADA MATEMATICA CURSO

PREPARACION OLIMPIADA MATEMATICA CURSO Comenzaremos recordando algunos conocimientos matemáticos que nos son necesarios. Para ello veamos el concepto de factorial de un número natural. Es decir, es un producto decreciente desde el número que

Más detalles

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios. Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS E.A.P. DE. MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 Preg. 1. Para comparar la variabilidad relativa de la tensión arterial diastólica y el nivel de colesterol en sangre de una serie de individuos, utilizamos

Más detalles

POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES.

POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES. POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES. Una de las hipótesis básicas de los problemas lineales es la constancia de los coeficientes que aparecen en el problema. Esta hipótesis solamente

Más detalles

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R}

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R} Proposición. Sea un rectángulo en R n, y sea f : R una función continua. Entonces f es integrable en. Conjuntos de Demostración: Como f es continua en, y es compacto, f es acotada en, y uniformemente continua.

Más detalles

MATERIALES DIDÁCTICOS

MATERIALES DIDÁCTICOS MATERIALES DIDÁCTICOS LUIS QUINTANAR MEDINA* Ejercitaremos el despeje en ecuaciones de primer grado y lo haremos a tres niveles: El primero en que solo se consideran expresiones directas, la habilidad

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

LEER Y ESCRIBIR ARCHIVOS DE TEXTO CON PHP. FUNCIONES FOPEN (MODOS), FGETS, FPUTS, FCLOSE Y FEOF. EJEMPLOS (CU00836B)

LEER Y ESCRIBIR ARCHIVOS DE TEXTO CON PHP. FUNCIONES FOPEN (MODOS), FGETS, FPUTS, FCLOSE Y FEOF. EJEMPLOS (CU00836B) APRENDERAPROGRAMAR.COM LEER Y ESCRIBIR ARCHIVOS DE TEXTO CON PHP. FUNCIONES FOPEN (MODOS), FGETS, FPUTS, FCLOSE Y FEOF. EJEMPLOS (CU00836B) Sección: Cursos Categoría: Tutorial básico del programador web:

Más detalles

Enunciados de los problemas (1)

Enunciados de los problemas (1) Enunciados de los problemas (1) Problema 1. El peso de tres manzanas y dos naranjas es de 255 gramos. El peso de dos manzanas y tres naranjas es de 285 gramos. Si todas las manzanas son del mismo peso

Más detalles

ESTRUCTURAS REPETITIVAS

ESTRUCTURAS REPETITIVAS DOCENTE: Ing. Ronald Rentería Ayquipa MARCO TEÓRICO: ESTRUCTURAS REPETITIVAS La programación estructurada es un paradigma que consiste en la organización de un código en bloques conformados por estructuras

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS TEOREMA DE EXTENSIÓN DE KRONECKER. Los polinomios irreducibles sobre un cuerpo no tienen raíces sobre ese cuerpo, salvo que sean de grado uno. Ya hemos visto que Ejemplo 1. x

Más detalles

Reemplazos Algebraicos. Gabriel Darío Uribe Guerra Universidad de Antioquia. XIII COLOQUIO REGIONAL DE MATEMÁTICAS y III SIMPOSIO DE ESTADÍSTICA.

Reemplazos Algebraicos. Gabriel Darío Uribe Guerra Universidad de Antioquia. XIII COLOQUIO REGIONAL DE MATEMÁTICAS y III SIMPOSIO DE ESTADÍSTICA. Reemplazos Algebraicos Gabriel Darío Uribe Guerra Universidad de Antioquia XIII COLOQUIO REGIONAL DE MATEMÁTICAS y III SIMPOSIO DE ESTADÍSTICA. Universidad de Nariño San Juan de Pasto Mayo 2016 1/23 Introducción

Más detalles

T I T U L O I N O R M A S G E N E R A L E S 1/21

T I T U L O I N O R M A S G E N E R A L E S 1/21 B O R R A D O R D E A N T E P R O Y E C T O D E L R E G L A M E N T O D E F U N C I O N A M I E N T O D E L D E P A R T A M E N T O D E F I S I O L O G I A, A N A T O M I A Y B I O L O G I A C E L U L

Más detalles

3. Estructuras iterativas

3. Estructuras iterativas 3. Estructuras iterativas Fundamentos de Informática Dpto. Lenguajes y Sistemas Informáticos Curso 2012 / 2013 Índice Estructura iterativas 1. Análisis de algoritmos iterativos 2. Ej11: While 3. Ej12:

Más detalles

Sucesiones Introducción

Sucesiones Introducción Temas Límites de sucesiones. convergentes. Sucesiones divergentes. Sucesiones Capacidades Conocer y manejar conceptos de sucesiones convergentes y divergentes. Conocer las principales propiedades de las

Más detalles

CI 2125, Computación I

CI 2125, Computación I Universidad Simón Bolívar Dpto. de Computación y Tecnología de la Información CI 2125, Computación I Práctica 5: ESTRUCTURAS DE REPETICIÓN Como ya hemos visto, el procedimiento desarrollado para resolver

Más detalles

Estructuras de Control

Estructuras de Control Algorítmica y Lenguajes de Programación Estructuras de Control Estructuras de Control. Introducción Hasta ahora algoritmos han consistido en simples secuencias de instrucciones Existen tareas más complejas

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

PRÁCTICA ALGORÍTMICA: EJERCICIOS PROPUESTOS

PRÁCTICA ALGORÍTMICA: EJERCICIOS PROPUESTOS Página 1 de 7 PRÁCTICA ALGORÍTMICA: EJERCICIOS PROPUESTOS EJERCICIOS DE ESTRUCTURA REPETITIVA 1. (Problema 4) Escriba un algoritmo que lea del teclado un número entero y que compruebe si es menor que 5.

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio TRABAJO PRÁCTICO Nº 5. MONOMIOS Y POLINOMIOS TEORÍA Y PRÁCTICA Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por

Más detalles

Práctica IV: Métodos de Newton-Raphson y de la secante, para encontrar las raíces de una función.

Práctica IV: Métodos de Newton-Raphson y de la secante, para encontrar las raíces de una función. Práctica IV: Métodos de Newton-Raphson y de la secante, para encontrar las raíces de una función. Se suele llamar método de Newton-Raphson al método de Newton cuando se utiliza para calcular los ceros

Más detalles

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A APENDICE Relaciones y Operaciones Compatibles 1 Definición: a) Sea A un conjunto y una relación entre elementos de A. Decimos que es una relación de equivalencia si es: i Reflexiva: a A, a a. ii Simétrica:

Más detalles

Herramientas de Programación. M.C. Juan Carlos Olivares Rojas

Herramientas de Programación. M.C. Juan Carlos Olivares Rojas Herramientas de Programación M.C. Juan Carlos Olivares Rojas Febrero 2011 Temario Simbología Reglas para la construcción de Diagramas Pseudocódigo Temario Tipos de Datos y Expresiones Estructuras lógicas

Más detalles

Clase 4 Funciones polinomiales y racionales

Clase 4 Funciones polinomiales y racionales Clase 4 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo de 2014 Polinomios Definición Se llama polinomio en x a toda expresión de la forma p(x) = a 0 + a 1x+ +a n

Más detalles

PROGRAMACION CONCURRENTE Y DISTRIBUIDA

PROGRAMACION CONCURRENTE Y DISTRIBUIDA PROGRAMACION CONCURRENTE Y DISTRIBUIDA V.2 Redes de Petri: Análisis y validación. J.M. Drake 1 Capacidad de modelado y capacidad de análisis El éxito de un método de modelado es consecuencia de su capacidad

Más detalles

Aritmética entera. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15

Aritmética entera. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15 Aritmética entera AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15 Objetivos Al finalizar este tema tendréis que: Calcular el máximo común divisor de

Más detalles

FUNCIONES REALES 1º DE BACHILLERATO CURSO

FUNCIONES REALES 1º DE BACHILLERATO CURSO FUNCIONES REALES 1º DE BACHILLERATO CURSO 2007-2008 Funciones reales Definición Clasificación Igual de funciones Dominio Propiedades Monotonía Extremos relativos Acotación. Extremos absolutos Simetría

Más detalles

Un ejemplo de casos de uso. Sokoban

Un ejemplo de casos de uso. Sokoban Un ejemplo de casos de uso. Sokoban Índice Descripción del problema Identificación de requisitos.. Conclusiones. 1 Descripción del problema Descripción del problema Sokoban es un juego de varios niveles.

Más detalles

Ecuaciones no Algebraicas

Ecuaciones no Algebraicas Capítulo 6 Ecuaciones no Algebraicas G eneralmente para lograr resolver problemas de la vida cotidiana utilizando matemática, se ocupan ecuaciones algebraicas, ya que estas son suficientes para la mayoría

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

PASO 1: Poner el problema en forma estandar.

PASO 1: Poner el problema en forma estandar. MÉTODO DEL SIMPLEX PASO Poner el problema en forma estandar: La función objetivo se minimiza y las restricciones son de igualdad PASO 2 Encontrar una solución básica factible SBF PASO 3 Testar la optimalidad

Más detalles

INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS " GONZALO VAZQUEZ VELA "

INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS  GONZALO VAZQUEZ VELA INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS " GONZALO VAZQUEZ VELA " GUIA DE ESTUDIOS DE ANALISIS Y DISEÑO DE ALGORITMOS. 1. Qué es un algoritmo? 2. Qué es un Pseudocódigo?

Más detalles

Parte II CALCULO DIFERENCIAL.

Parte II CALCULO DIFERENCIAL. Parte II CALCULO DIFERENCIAL. 165 En esta parte veremos el Cálculo diferencial en forma precisa. 167 168 Capítulo 1 Axiomas Para los Números Reales. En este capítulo daremos las bases en las cuales se

Más detalles

= 310 (1 + 5) : 2 2 = = = 12 ( 3) ( 5) = = 2 = ( 4) + ( 20) + 3 = = 21

= 310 (1 + 5) : 2 2 = = = 12 ( 3) ( 5) = = 2 = ( 4) + ( 20) + 3 = = 21 Unidad I, NÚMEROS NATURALES Y ENTEROS A continuación se enuncian las claves de cada pregunta hechas por mí (César Ortiz). Con esto, asumo cualquier responsabilidad, entiéndase por si alguna solución está

Más detalles

PROGRAMACIÓN. UNIDAD II. ALGORITMO PROFA : HAU MOY

PROGRAMACIÓN. UNIDAD II. ALGORITMO PROFA : HAU MOY PROGRAMACIÓN. UNIDAD II. ALGORITMO PROFA : HAU MOY ALGORITMO DEFINICIÓN: CONSISTE EN LA DESCRIPCIÓN CLARA Y DETALLADA DEL PROCEDIMIENTO A SEGUIR PARA ALCANZAR LA SOLUCIÓN A UN PROBLEMA EN DONDE SE ESTABLECE

Más detalles

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo,

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo, 2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO Una señal puede ser definida como una portadora física de información. Por ejemplo, las señales de audio son variaciones en la presión del aire llevando consigo

Más detalles

Crédito efectivo con garantía líquida

Crédito efectivo con garantía líquida Crédito efectivo con garantía líquida I. Cómo calcular los intereses de un crédito efectivo con garantía líquida? 1. El monto total de la deuda del cliente con el BCP es el importe del préstamo (S) y está

Más detalles

La Lección de hoy es sobre Ángulos formados por las Cuerdas, Secantes, y Tangentes.

La Lección de hoy es sobre Ángulos formados por las Cuerdas, Secantes, y Tangentes. Angles Formed by Chords, Secants, and Tangents. R.4.G.5- Kelly Clayton. La Lección de hoy es sobre Ángulos formados por las Cuerdas, Secantes, y Tangentes. El cuál es la expectativa para el aprendizaje

Más detalles

=, una sucesión de intervalos cerrados. f x una función continua en el punto x = x0. = 0, el teorema queda demostrado. Si ( )

=, una sucesión de intervalos cerrados. f x una función continua en el punto x = x0. = 0, el teorema queda demostrado. Si ( ) CONTINUIDAD DE FUNCIONES. TEOREMAS FUNDAMENTALES. Cuando una función es continua en un intervalo cerrado [ a, ] y en un extremo es positiva y en otro negativa, la intuición indica que, en algún punto intermedio

Más detalles

Los números, operaciones y sus propiedades

Los números, operaciones y sus propiedades Los números, operaciones y sus propiedades Números Reales En principio podemos definir a los números reales como aquellos números que tienen expansión decimal periódica o tienen expansión decimal no periódica.

Más detalles

Problema Cinemático Directo

Problema Cinemático Directo Problema Cinemático Directo Parámetros Denavit-Hartenberg Denavit-Hartenberg notación Craig Denavit-Hartenberg notación Craig Denavit-Hartenberg notación Craig Denavit-Hartenberg notación Craig Denavit-Hartenberg

Más detalles

Guía práctica de estudio 05: Diagramas de flujo

Guía práctica de estudio 05: Diagramas de flujo Guía práctica de estudio 05: Diagramas de flujo Elaborado por: M.C. Edgar E. García Cano Ing. Jorge A. Solano Gálvez Revisado por: Ing. Laura Sandoval Montaño Guía práctica de estudio 05: Diagramas de

Más detalles

Tema II: Metodología para la construcción de programas. Profesora: Nelly García Mora

Tema II: Metodología para la construcción de programas. Profesora: Nelly García Mora Tema II: Metodología para la construcción de programas Profesora: Nelly García Mora 1. Metodologías de Programación Metodología de programación: es un conjunto o sistema de métodos, principios y reglas,

Más detalles