SOLUCIONES. LÓGICA 1: CUESTIONES TIPO TEST (3 ptos)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SOLUCIONES. LÓGICA 1: CUESTIONES TIPO TEST (3 ptos)"

Transcripción

1 Ingenierías Informáticas-UA Curso SOLUCIONES Examen de la convocatoria de febrero 2009 LEE: para poder aprobar es necesario que en cada parte del examen (lógica, 1, 2 y 3) se obtenga al menos la cuarta parte de la puntuación de cada una de ellas. LÓGICA 1: CUESTIONES TIPO TEST (3 ptos) 1. La Forma Normal de Skolem de la fbf: xp(x) xq(x) xr(f(a),x), es: a) xp(x) Q(b) R(f(a),a) b) xp(x) Q(g(x)) R(f(a),a) c) x P(x) zq(z) yr(f(a),y) d) P(c) Q(b) R(f(a),d) 1º) Normalizar la fbf x P(x) xq(x) xr(f(a),x) NU 2º) Normalizar variables x P(x) yq(y) zr(f(a),z) 3º) Eliminar existenciales: en este caso, ninguno de los 3 se encuentra dentro del ámbito de un cuantificador universal, por lo que se sustituyen las variables por constantes de Skolem (una constante diferente para cada variable) P(c) Q(b) R(f(a),d) 2. Se sabe que Para que una función sea derivable es necesario que sea continua. Con esto, si demuestras la derivabilidad de una función puedes asegurar que la misma es continua, pero si demuestras que la función no es derivable qué puedes asegurar? a) Que al no ser la función derivable entonces no es continua b) Que no puedo asegurar si es continua o no hasta que no lo demuestre c) Que aparece una contradicción en la información porque por un lado me aseguran que es derivable y por otro que no lo es d) La función no es continua aunque no sea derivable Marco conceptual: Una función es derivable: der; Una función es continua: con Formalización: P1: der con P2: der Rept a) es errónea puesto que si Q= con podemos encontrar un contraejemplo al argumento P1,P2=>Q - sería la interpretación {con=v, der=f} - Rept b) es correcta. Si tenemos una implicación cierta y el antecedente es F, no podemos asegurar nada sobre el consecuente hasta que no lo demostremos. Rept c) es errónea puesto que no me están asegurando que sea derivable, todo lo contrario. Rept d) es errónea puesto que en ese caso Q= con der, y entonces, al igual que en a), podríamos encontrar un contraejemplo al argumento P1,P2=>Q - sería la interpretación {con=v, der=f} - 3. Con el Marco Conceptual: Es(x,y): x estudia y; In(x): x es inteligente; Si(x): x es simpático; Lógica:lo; Álgebra:al; La formalización de la sentencia: Sólo los que estudian Lógica pero no Álgebra son inteligentes aunque no simpáticos es: a) x [Es(x,lo) Es(x,al) In(x) Si(x)] b) x [In(x) Si(x) Es(x,lo) Es(x,al)] c) x [In(x) Si(x) Es(x,lo) Es(x,al)]

2 d) x [In(x) Si(x) Es(x,lo) Es(x,al)] Solución del Examen de Febrero 4. Dadas las fbfs P1: x [Al(x,lo) Al(x,ca) Fe(x)]; P2: x [Fe(x) Op(x)]; P3: x Op(x) Cuál de las siguientes fbf podemos deducir de ellas? a) x [ Op(x) Al(x,lo) Al(x,ca)] b) x Op(x) c) x [Fe(x) Op(x)] d) Ninguna de las anteriores -1 x [Al(x,lo) Al(x,ca) Fe(x)] -2 x [Fe(x) Op(x)] -3 x Op(x) 4 Op(a) Sup. 5 Fe(a) Op(a) EU 2 6 Fe(a) MT 4,5 7 Al(a,lo) Al(a,ca) Fe(a) EU 1 8 (Al(a,lo) Al(a,ca)) MT 6,7 9 Al(a,lo) Al(a,ca) DM 8 10 Op(a) Al(a,lo) Al(a,ca) TD x [ Op(x) Al(x,lo) Al(x,ca)] IU Dadas las premisas P1: x [Op(x) Al(x,ca) Fe(x)]; P2: x [Bo(x) Op(x)] Cuál de las siguientes fbf podemos deducir de ellas? a) x [Bo(x) Op(x)] b) Fe(a) Bo(a) c) x Op(x) d) x [Fe(x) Bo(x)] -1 x [Op(x) Al(x,ca) Fe(x)] -2 x [Bo(x) Op(x)] 3 Bo(a) Op(a) Sup. 4 Op(a) EC 3 5 Op(a) Al(a,ca) Fe(a) EU 1 6 Op(a) Al(a,ca) ID 4 7 Fe(a) MP 5,6 8 Bo(a) EC 3 9 Fe(a) Bo(a) IC 7,8 10 x [Fe(x) Bo(x)] IE 9 11 x [Fe(x) Bo(x)] EE 2, Dadas las premisas P1: x [(Al(x,lo) Al(x,ca)) Fe(x)]; P2: x [Fe(x) Op(x)] Cuál de las siguientes fbf podemos deducir de ellas? a) x Al(x,lo) b) x [(Al(x,lo) Al(x,ca)) Op(x)] c) Fe(a) Op(a) 2

3 d) x Fe(x) -1 x [(Al(x,lo) Al(x,ca)) Fe(x)] -2 x [Fe(x) Op(x)] 3 Fe(a) Op(a) Sup. 4 Fe(a) EC 3 5 x Fe(x) IE 4 6 x Fe(x) EE 2, 3-5 LÓGICA 2: FORMALIZACIÓN E INTERPRETACIÓN DE SENTENCIAS (3 ptos) S1: Para que Pacman se coma o triture los cocos es necesario que se mueva por el mapa M. Conceptual Pacman se come los cocos: cm Pacman tritura los cocos: tr Pacman se mueve por el mapa: mp Fbf-S1 cm tr mp S2: Para que pacman no gane la partida y caiga en el letargo es suficiente con que le fulminen los enemigos peligrosos o no se suba en el virtu-transportador. Marco C. Fbf-S2 Pacman gana la partida: ga Pacman cae en el letargo: le A Pacman le fulminan los enemigos peligrosos: fu; Pacman se sube en el virtud-transportador: vt fu vt ga le S3: A menos que Pacman gane la partida o no caiga en el letargo, no se mueve por el mapa. Fbf-S3 mp ga le S4: O Pacman no se mueve por el mapa o no gana la partida. Fbf-S4 mp ga S5: Pacman no tritura los cocos y no gana la partida. Fbf-S5 tr ga 3

4 Preguntas sobre interpretación de sentencias Preg-1.- Bajo la interpretación I = {es cierto que Pacman se mueve por el mapa} cómo se interpreta la sentencia S1? a) Verdadera y satisfacible b) No se sabe c) Satisfacible y tautología d) Modelo y verdadera Rept a) es correcta puesto que según la formalización de S1: cm tr mp al ser cierto el consecuente la fbf es verdadera y tb satisfacible. Rept b) es errónea. Si has formalizado mal y has cambiado el antecedente por el consecuente ésta será tu respuesta correcta. Rept c) es errónea puesto que aunque es cierto que la fbf es satisfacible al ser verdadera, sin embargo bajo una interpretación no se puede clasificar semántica/ una fbf como tautología. Rept d) es errónea puesto que Modelo clasifica a una interpretación no a una fbf. Preg-2.- Cómo se puede clasificar semánticamente la fbf S3 para todas sus interpretaciones? a) Como tautología, contradicción o contingencia b) Como verdadera o falsa c) Como Satisfacible y por lo tanto será un modelo o Insatisfacible y por lo tanto será un contramodelo de S3 d) Como modelo o como contramodelo Rept a) es correcta puesto que una fbf molecular se interpreta o bien como tautología, como contradicción o como contingente. Rept b) es errónea puesto que Modelo y Contramodelo clasifican a una interpretación no a una fbf. Rept c) es errónea puesto que decir que satisfacible implica modelo relaciona conceptos diferentes, satisfacible clasifica a fbf y modelo a interpretaciones. Rept d) es errónea puesto que verdadera o falsa es la forma en que se interpreta una fbf para una interpretación. Preg-3.- La expresión, S2 es suficiente, pero no necesario, para que se dé S1 se interpreta como: a) Falsa si es cierto S1 pero no S2 b) Verdadera si no sucede que no es cierto S1 ni S2 c) Insatisfacible si es cierto S2 y no lo es S1 d) Verdadera si no sucede que si es cierto S1 sea cierto S2 La expresión se formalizaría como (S2 S1) (S1 S2) Rept a) es errónea puesto que si S1=V y S2=F la expresión se interpretaría como (F V) (V F) = V V = V 4

5 Rept b) es errónea puesto que en ese caso ( S1 S2) = S1 S2 y así, no siempre es verdadera, pues si S1=F y S2=V la expresión se interpretaría como (V F) (F V) = F F = F Rept c) es errónea puesto que decir que no se puede decir que una fbf sea insatisfacible con respecto a una sola interpretación. Rept d) es correcta puesto que en ese caso (S1 S2) = ( S1 S2) = S1 S2 - igual que en a), S1=V y S2=F - por lo que la expresión se interpretaría como (F V) (V F) = V V = V Preg-4.- Estudia y clasifica semánticamente el conjunto de fbf C = {S1, S2, S3, S5}. Escribe la interpretación con la que consigues el resultado de su estudio semántico. 1º.- Un conjunto de fbfs se puede interpretar como: satisfacible o insatisfacible. 2º.- Describe cada uno de los conceptos indicados en 1) C es satisfacible si todas sus fbfs son verdaderas bajo la misma interpretación. C es insatisfacible cuando no existe ninguna interpretación que hace sus fbfs verdaderas bajo la misma interpretación 3º.- Describe la forma en que llevarás a cabo dicho estudio Compruebo si C es satisfacible. Para ello supongo que todas las fbfs son verdaderas. mp ga le =V fu vt ga le=v cm tr mp=v tr ga=v 4º.- Clasifica C: 5º.- Escribe la interpretación que demuestra el resultado: satisfacible I={cm=F, tr=f, mp=f, fu=f, vt=f, ga=f, le=v} 5

6 LÓGICA 3: EJERCICIOS SOBRE VALIDEZ DE RAZONAMIENTOS (4 ptos) Ejercicio 1 Demuestra la validez del siguiente razonamiento con el método del contraejemplo: A B, C A, D B C D Para hacer la demostración del problema suponemos la existencia de una interpretación I llamada: contraejemplo. Bajo esta interpretación I las sentencias se clasifican semánticamente (interpretan) como: FBF INTERPRETACIÓN DE CADA FBF BAJO I P1: A B V P2: C A V P3: D B V Q: C D F En el siguiente paso de la demostración debes comprobar la existencia, o no, de I Si C D=F, entonces C=F (C=V) y D=F (D=V); Con estos valores P2 y P3 hacen que A, B=V. Esto se contradice con los valores semánticos de la fbf P1. Luego no se establece el contraejemplo. Existe la interpretación I? SI Escríbela I = { } NO, porque: no se puede sostener que en el razonamiento las premisas se interpreten como verdaderas y la conclusión falsa. Por lo tanto: El razonamiento es correcto SI porque: no existe ninguna interpretación contramodelo NO porque: 6

7 Ejercicio 2 Demuestra con el método del contraejemplo si la sentencia S5 es consecuencia lógica de las sentencias S1, S2 y S3. Sigue los pasos indicados. Sol Paso 1: Escribe las fbfs de cada una de las sentencia que intervienen en el problema a resolver. Fbf-S1: cm tr mp Fbf-S2: Fbf-S3: Fbf-S5: fu vt ga le mp ga le tr ga Paso 2: Plantea la demostración del problema. Para hacer la demostración del problema suponemos la existencia de una interpretación I llamada: contramodelo o contraejemplo. Bajo esta interpretación I las sentencias se clasifican semánticamente (interpretan) como: FBF-SENTENCIAS INTERPRETACIÓN DE CADA FBF BAJO I Fbf-S1: cm tr mp Fbf-S2: fu vt ga le Fbf-S3: mp ga le Fbf-S5: tr ga Verdadera (V) Verdadera (V) Verdadera (V) Falsa (F) Paso 3: Demostración. Debes comprobar la existencia, o no, de I cm tr mp =V fu vt ga le=v mp ga le = V tr ga=f Existe la interpretación I? SI Escríbela I = {cm=f, vt= V, tr=v, mp=v, fu=f, ga=v. le=v} NO, porque: Por lo tanto SI porque: S5 es consecuencia lógica de S1, S2 y S3? NO porque: S5 es falsa cuando las sentencias S1,S2 y S3 son verdaderas, esto contradice el concepto de consecuencia lógica 7

8 Ejercicio 3 Demuestra si el argumento 2: S1, S2, S3 S4 es correcto a partir del estudio semántico de su fbf asociada. Ésta debe validarse mediante el método del Cuadro. Sigue los pasos indicados. Paso 1- Explicación del proceso que llevarás a cabo para resolver el problema. Para validar el argumento procederemos a estudiar la valoración semántica de su fbf asociada. Dicha fbf se obtiene por sucesivas aplicaciones del: teorema de Deducción Paso 2:- Esquema de la fbf asociada al argumento 2. Escribe aquí el esquema de la fbf asociada al argumento 2: S1 (S2 (S3 S4)) Paso 3.- Si el resultado de la valoración semántica de la fbf demuestra que ésta es: una tautología por el: teorema 1 podremos afirmar que el argumento 2 es: correcto. Paso 4.- Valoración semántica de la fbf aplicando el método de Cuadro. Para valorar semántica/ una fbf con dicho método es necesario que la misma está formalizada bajo el esquema (escríbelo): S1 S2 S3 S4 A partir de este esquema escribimos la fbf en: Forma Normal Disyuntiva: Paso 5- Escribe aquí las fbfs correspondientes al argumento 2: Fbf-S1: cm tr mp Fbf-S2: fu vt ga le Fbf-S3: mp ga le Fbf-S4: mp ga Paso 6.- Escribe la Fbf A asociada al Argumento 2 según el esquema del Paso 5: Hay que transformar la fbf a FND: A: (cm tr mp) ( fu vt ga le) (mp ga le) mp FND: (cm mp) (tr mp) (fu vt ga) ( vt ga le) (mp ga le) mp ga Escribe la fbf A que debe ser validada por el m. Cuadro: A- (cm mp) (tr mp) (fu vt ga) ( vt ga le) (mp ga le) mp ga Paso 7.- Aplicación del método del Cuadro. Paso 1: la fbf A no es contradicción porque al menos una conjunción elemental, como - mp que no es contradicción. Paso 2: A- (cm mp) (tr mp) (fu vt ga) ( vt ga le) (mp ga le) mp ga mp =F fbf A: (cm F) (tr F) (fu vt ga) ( vt ga le) (V ga le) F ga = (fu vt ga) ( vt ga le) ( ga le) ga ga =F fbf A: (fu vt V) ( vt V le) (F le) F = (fu vt) ( vt le) 8

9 Descomponemos la fbf A A=A1 A2= [fu ( vt le)] [ vt ( vt le)] Evaluamos la fbf A1= fu ( vt le) fu =F fbf A1: =F ( vt le) = vt le A1 es contingente 8º.Análisis de resultados: Independiente/ del valor semántico de A1 el valor de A es contingente. Luego el argumento S1, S2, S3 S4 no es correcto. 9

Tema 6: Teoría Semántica

Tema 6: Teoría Semántica Tema 6: Teoría Semántica Sintáxis Lenguaje de de las las proposiciones Lenguaje de de los los predicados Semántica Valores Valores de de verdad verdad Tablas Tablas de de verdad verdad Tautologías Satisfacibilidad

Más detalles

EJERCICIOS RESUELTOS 6

EJERCICIOS RESUELTOS 6 LÓGICA I EJERCICIOS RESUELTOS 6 TEMA 6 SEMÁNTICA: TABLAS DE ERDAD Y RESOLUCIÓN ERITATIO-UNCIONAL EJERCICIO 6.01 Comprobar por tablas de verdad si la siguiente fbf es o no satisfacible: ( p q) p q ( p q)

Más detalles

Tema 9: Cálculo Deductivo

Tema 9: Cálculo Deductivo Facultad de Informática Grado en Ingeniería Informática Lógica PARTE 2: LÓGICA DE PRIMER ORDEN Tema 9: Cálculo Deductivo Profesor: Javier Bajo jbajo@fi.upm.es Madrid, España 24/10/2012 Introducción a la

Más detalles

Proposicional. Curso Mari Carmen Suárez de Figueroa Baonza

Proposicional. Curso Mari Carmen Suárez de Figueroa Baonza Semántica Proposicional Curso 2014 2015 Mari Carmen Suárez de Figueroa Baonza mcsuarez@fi.upm.es Contenidos Introducción Interpretación de FBFs proposicionales Validez Satisfacibilidad Validez y Satisfacibilidad

Más detalles

Introducción a la Lógica

Introducción a la Lógica Tema 0 Introducción a la Lógica En cualquier disciplina científica se necesita distinguir entre argumentos válidos y no válidos. Para ello, se utilizan, a menudo sin saberlo, las reglas de la lógica. Aquí

Más detalles

Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012

Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

MATEMÁTICAS I GRADO EN INGENIERÍA INFORMÁTICA

MATEMÁTICAS I GRADO EN INGENIERÍA INFORMÁTICA TEMA 3: INTERPRETACIÓN DE RAZONAMIENTOS LÓGICOS MATEMÁTICAS I. 2011 12 GRADO EN INGENIERÍA INORMÁTICA 3.1. Interpretación del lenguaje formal de la lógica de primer orden. 3.2. Evaluación semántica de

Más detalles

Lógica de Predicados de Primer Orden

Lógica de Predicados de Primer Orden Lógica de Predicados: Motivación Todo natural es entero y 2 es un natural. Luego 2 es entero. p q r p, q r es claramente un razonamiento válido pero no es posible demostrarlo desde la Lógica Proposicional

Más detalles

Tema 2: Equivalencias y formas normales

Tema 2: Equivalencias y formas normales Lógica informática Curso 2003 04 Tema 2: Equivalencias y formas normales José A. Alonso Jiménez Andrés Cordón Franco Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.

Más detalles

Ejercicios de Lógica Proposicional *

Ejercicios de Lógica Proposicional * Ejercicios de Lógica Proposicional * FernandoRVelazquezQ@gmail.com Notación. El lenguaje proposicional que hemos definido, aquel que utiliza los cinco conectivos,,, y, se denota como L {,,,, }. Los términos

Más detalles

Lógica proposicional. Ivan Olmos Pineda

Lógica proposicional. Ivan Olmos Pineda Lógica proposicional Ivan Olmos Pineda Introducción Originalmente, la lógica trataba con argumentos en el lenguaje natural es el siguiente argumento válido? Todos los hombres son mortales Sócrates es hombre

Más detalles

SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia.

SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. SOBRE LOGICA MATEMATICA Sandra M. Perilla-Monroy Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. Resumen. sandraperilla@usantotomas.edu.co Carrera 9 No 51-11 Bogotá Colombia

Más detalles

MATEMÁTICAS BÁSICAS. 23 de febrero de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS

MATEMÁTICAS BÁSICAS. 23 de febrero de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS 23 de febrero de 2009 Parte I Lógica Proposiciones Considere las siguientes frases Páseme el lápiz. 2 + 3 = 5 1 2 + 1 3 = 2 5 Qué hora es? En Bogotá todos los días llueve Yo estoy mintiendo Maradona fue

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.

Más detalles

APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN

APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN LOGICA (FCE-UBA) APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN Una regla lógica, o regla de inferencia (deductiva), es una forma válida de razonamiento que es empleada para inferir deductivamente

Más detalles

Universidad Nacional Abierta y a Distancia UNAD-Lógica Matemática - Georffrey Acevedo G. A que viene la lógica?

Universidad Nacional Abierta y a Distancia UNAD-Lógica Matemática - Georffrey Acevedo G. A que viene la lógica? A que viene la lógica? Autor: Georffrey Acevedo G. Noviembre 16 de 2008. Los conceptos de proposiciones, conectivos e inferencias confluyen al analizar un razonamiento. Para tener claridad sobre los conceptos

Más detalles

Lógica de Predicados

Lógica de Predicados Lógica de Predicados En las últimas décadas, ha aumentado considerablemente el interés de la informática por la aplicación de la lógica a la programación. De hecho, ha aparecido un nuevo paradigma de programación,

Más detalles

REGLAS Y LEYES LOGICAS

REGLAS Y LEYES LOGICAS LOGICA II REGLAS Y LEYES LOGICAS Una regla lógica, o regla de inferencia (deductiva), es una forma válida de razonamiento que es empleada para inferir deductivamente ciertos enunciados a partir de otros.

Más detalles

Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur

Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Lógica para Ciencias de la Computación Trabajo Práctico N 4 Cálculo de Predicados Primer Cuatrimestre de 2009 Observación

Más detalles

Resumen de deducción natural

Resumen de deducción natural Resumen de deducción natural F. Javier Gil Chica 2010 1. Orientación de estas notas El cálculo de argumentos mediante tablas de verdad es un método rápido y seguro. También mecánico, puesto que se puede

Más detalles

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1 Teoremas de continuidad y derivabilidad Ejercicios resueltos.- Demostrar que la siguiente ecuación tiene una solución en el intervalo, : 4 º. Se considera la función 4 continua en R luego continua en cualquier

Más detalles

ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I

ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I ESCUELA MILITAR DE INGENIERÍA Elaborado por: Lic. Bismar Choque Nina MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I A pesar de que la refutación por ejemplo del contrario es un procedimiento válido, los teoremas

Más detalles

Benemérita Universidad Autónoma de Puebla

Benemérita Universidad Autónoma de Puebla Tarea No. 1 Matemáticas Elementales Profesor Fco. Javier Robles Mendoza Benemérita Universidad Autónoma de Puebla Facultad de Ciencias de la Computación Lógica y Conjuntos 1. Considere las proposiciones

Más detalles

Capítulo 1 Lógica Proposicional

Capítulo 1 Lógica Proposicional Capítulo 1 Lógica Proposicional 1.1 Introducción El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de frases

Más detalles

Cálculo Proposicional

Cálculo Proposicional Universidad Técnica ederico Santa María Departamento de Informática undamentos de Informática 1 Cálculo Proposicional Dr. Gonzalo Hernández Oliva Dr. Gonzalo Hernández USM I-1 Cálculo Proposicional 1 1)

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 42 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

2. Si P; Q; R son verdaderas y S; T son falsas, determine el valor de verdad de la proposición: [P =) (R =) T )] () [(:P ^ S) =) (Q =) :T )]

2. Si P; Q; R son verdaderas y S; T son falsas, determine el valor de verdad de la proposición: [P =) (R =) T )] () [(:P ^ S) =) (Q =) :T )] Instituto Tecnológico de Costa Rica Escuela de Matemática I semestre 2012 Cálculo Diferencial e Integral. Prof. Juan José fallas. 1 Leyes de la lógica y reglas de inferencia 2 Ejercicios 1 Leyes de la

Más detalles

Inteligencia en Redes de Comunicaciones. Razonamiento lógico. Julio Villena Román.

Inteligencia en Redes de Comunicaciones. Razonamiento lógico. Julio Villena Román. Inteligencia en Redes de Comunicaciones Razonamiento lógico Julio Villena Román jvillena@it.uc3m.es Índice La programación lógica Lógica de predicados de primer orden Sistemas inferenciales IRC 2009 -

Más detalles

Escuela de Ingeniería - Universidad de Chile Escuela de Verano 2011 Matemáticas III. Guía de Problemas N 1 *

Escuela de Ingeniería - Universidad de Chile Escuela de Verano 2011 Matemáticas III. Guía de Problemas N 1 * Escuela de Ingeniería - Universidad de Chile Escuela de Verano 2011 Matemáticas III Profesor: Pablo Dartnell Auxiliares: Roberto Castillo y Andrés Zúñiga Guía de Problemas N 1 * P1.- Sean p, q y r proposiciones.

Más detalles

Material diseñado para los estudiantes del NUTULA, alumnos del profesor Álvaro Moreno.01/10/2010 Lógica Proposicional

Material diseñado para los estudiantes del NUTULA, alumnos del profesor Álvaro Moreno.01/10/2010 Lógica Proposicional Lógica Proposicional INTRODUCCIÓN El humano se comunica con sus semejantes a través de un lenguaje determinado (oral, simbólico, escrito, etc.) construido por frases y oraciones. Estas pueden tener diferentes

Más detalles

Una proposición es una afirmación que debe ser cierta o falsa (aunque no lo sepamos).

Una proposición es una afirmación que debe ser cierta o falsa (aunque no lo sepamos). Lógica intuitiva Una proposición es una afirmación que debe ser cierta o falsa (aunque no lo sepamos). A : Las águilas vuelan B : El cielo es rosa C : No existe vida extraterrestre D : 5 < 3 E : Algunos

Más detalles

ESCUELA PREPARATORIA OFICIAL NÚM. 11

ESCUELA PREPARATORIA OFICIAL NÚM. 11 EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11 CUAUTITLAN IZCALLI, MEX. PROGRAMA DEL ESTUDIANTE POR MATERIA DEL TURNO VESPERTINO PRIMER PERIODO DE TRABAJO DEL PRIMER SEMESTRE DEL CICLO ESCOLAR 2015-2016 Materia:

Más detalles

Historia y Filosofía de la Lógica

Historia y Filosofía de la Lógica Historia y Filosofía de la Lógica Pablo Cobreros pcobreros@unav.es Tema 1: El objeto de la lógica La lógica proposicional clásica El objeto de la lógica Consecuencia lógica La lógica proposicional El lenguaje

Más detalles

Matemáticas Básicas para Computación

Matemáticas Básicas para Computación Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 5 Nombre: Tablas de verdad Objetivo Al término de la sesión el participante aplicará los conceptos de lógica a través

Más detalles

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 45 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

Límite superior y límite inferior de una sucesión

Límite superior y límite inferior de una sucesión Límite superior y límite inferior de una sucesión Objetivos. Definir las nociones de los límites superior e inferior de una sucesión y estudiar sus propiedades básicas. Requisitos. Supremo e ínfimo de

Más detalles

Lógica. Matemática discreta. Matemática discreta. Lógica

Lógica. Matemática discreta. Matemática discreta. Lógica Lógica Matemática discreta Lógica: rama de las matemáticas instrumento para representar el lenguaje natural proporciona un mecanismo de deducción 2 y de predicados Razonamientos Cálculo proposicional Cálculo

Más detalles

LICENCIATURA EN MATEMÁTICA. Práctico N 1 Lenguaje de la lógica. proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 /

LICENCIATURA EN MATEMÁTICA. Práctico N 1 Lenguaje de la lógica. proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 / Práctico N 1 Lenguaje de la lógica LICENCIATURA EN MATEMÁTICA proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 / 2 0 1 0 PRÁCTICO N 1 1. Fundamentación: fundamentar la expresión Por lo tanto del siguiente

Más detalles

Asignatura: Matemática Fundamental [405036M-02] Taller 1 Lenguaje Simbólico y lógica proposicional

Asignatura: Matemática Fundamental [405036M-02] Taller 1 Lenguaje Simbólico y lógica proposicional Asignatura: Matemática Fundamental [405036M-02] Taller 1 Lenguaje Simbólico y lógica proposicional 1. Responda las siguientes preguntas: a) Qué es un lenguaje formal? b) Qué es lenguaje matemático? c)

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Lógica : Proposiciones, Conectivos, Tablas de Verdad y Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Lógica Matemáticas Discretas - p. 1/43 En esta lectura

Más detalles

LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA

LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA La lógica formal o simbólica, a diferencia de la lógica clásica, utiliza un lenguaje artificial, es decir, está rigurosamente construido, no admite cambios en el

Más detalles

Introd. al Pens. Científico Nociones básicas de la lógica ClasesATodaHora.com.ar

Introd. al Pens. Científico Nociones básicas de la lógica ClasesATodaHora.com.ar ClasesATodaHora.com.ar > Exámenes > UBA - UBA XXI > Introd. al Pensamiento Científico Introd. al Pens. Científico Nociones básicas de la lógica ClasesATodaHora.com.ar Razonamientos: Conjunto de propiedades

Más detalles

1 CONCAVIDAD Y CONVEXIDAD

1 CONCAVIDAD Y CONVEXIDAD 1 CONCAVIDAD Y CONVEXIDAD Ya sabemos como determinar si una función es estric. creciente o decreciente en un punto. Pero nos interesa determinar si la función crece o decrece de forma cóncava o convexa.

Más detalles

Significado de las f.b.f (fórmulas bien formadas) en términos de objetos, propiedades y relaciones en el mundo

Significado de las f.b.f (fórmulas bien formadas) en términos de objetos, propiedades y relaciones en el mundo Significado de las f.b.f (fórmulas bien formadas) en términos de objetos, propiedades y relaciones en el mundo Semánticas del cálculo de predicados proporcionan las bases formales para determinar el valor

Más detalles

Lógica Matemática, Sistemas Formales, Cláusulas de Horn

Lógica Matemática, Sistemas Formales, Cláusulas de Horn Lógica Matemática, Sistemas Formales, Cláusulas de Horn Lic. José Manuel Alvarado La lógica se ocupa de las argumentaciones válidas. Las argumentaciones ocurren cuando se quiere justificar una proposición

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

LÓGICA DE PREDICADOS DE PRIMER ORDEN INTRODUCCIÓN A LOS SISTEMAS FORMALES

LÓGICA DE PREDICADOS DE PRIMER ORDEN INTRODUCCIÓN A LOS SISTEMAS FORMALES LÓGICA DE PREDICADOS DE PRIMER ORDEN INTRODUCCIÓN A LOS SISTEMAS FORMALES POR QUÉ INTRODUCIR UN NUEVO SISTEMA? Todos los hombres son mortales Sócrates es hombre Sócrates es mortal Se trata de un razonamiento

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

Si..., siempre que, con tal que, puesto que, ya que, porque, cuando, de, a menos que, a no ser que, salvo que, solamente.

Si..., siempre que, con tal que, puesto que, ya que, porque, cuando, de, a menos que, a no ser que, salvo que, solamente. 1.2 Proposiciones condicionales y equivalencia lógica. Proposición Condicional o implicación lógica Una proposición condicional, es aquella que está formada por dos proposiciones atómicas o moleculares,

Más detalles

PLAN GLOBAL ÁLGEBRA I PRIMER SEMESTRE. Lic. Bladimir Arias Mejia. Gestión: I/2016. Cochabamba Bolivia

PLAN GLOBAL ÁLGEBRA I PRIMER SEMESTRE. Lic. Bladimir Arias Mejia. Gestión: I/2016. Cochabamba Bolivia PLAN GLOBAL ÁLGEBRA I PRIMER SEMESTRE Lic. Bladimir Arias Mejia Gestión: I/2016 Cochabamba Bolivia 1 PLAN GLOBAL I. INFORMACIÓN GENERAL NOMBRE DE LA ASIGNATURA: Álgebra I CARRERA(S): Ingeniería Civil,

Más detalles

Capítulo 4. Lógica matemática. Continuar

Capítulo 4. Lógica matemática. Continuar Capítulo 4. Lógica matemática Continuar Introducción La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un teorema es falso o verdadero, además

Más detalles

Curso Extraordinario INTELIGENCIA ARTIFICIAL Y SISTEMAS EXPERTOS

Curso Extraordinario INTELIGENCIA ARTIFICIAL Y SISTEMAS EXPERTOS Curso Extraordinario INTELIGENCIA ARTIFICIAL Y SISTEMAS EXPERTOS Contenidos del Curso Introducción a la I.A. Cómo razonamos?. Algunas experiencias con el razonamiento automático El problema de representación

Más detalles

CÁLCULO DE DERIVADAS

CÁLCULO DE DERIVADAS TEMA 4 CÁLCULO DE DERIVADAS Contenidos Criterios de Evaluación 1. Función derivada.. Derivadas sucesivas. 3. Derivadas elementales. 4. Álgebra de derivadas. 5. La Regla de la Cadena. 6. Continuidad y derivabilidad.

Más detalles

UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGÍAS L Ó G I C A Carrera: Programador Universitario en Informática Equipo Docente: Miriam Alagastino Ximena Villarreal

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 5 Nombre: Desigualdades lineales, cuadráticas y valor absoluto Objetivo de la asignatura: En esta sesión el estudiante conocerá las características y métodos de

Más detalles

Capítulo 7: Lógica de predicados y cuantificadores

Capítulo 7: Lógica de predicados y cuantificadores Capítulo 7: Lógica de predicados y cuantificadores por G 3 Agosto 2014 Resumen A menudo interesa afirmar que todos, o que solo algunos individuos de cierto universo, o solo uno, cumplen alguna propiedad.

Más detalles

MATERIAL DE APOYO PARA EL PRIMER CURSO DE MATEMÁTICAS COMPUTACIONALES.

MATERIAL DE APOYO PARA EL PRIMER CURSO DE MATEMÁTICAS COMPUTACIONALES. MATERIAL DE APOYO PARA EL PRIMER CURSO DE MATEMÁTICAS COMPUTACIONALES. Ing. HUGO HUMBERTO MORALES PEÑA MAESTRÍA EN ENSEÑANZA DE LAS MATEMÁTICAS Línea de Matemáticas Computacionales UNIVERSIDAD TECNOLÓGICA

Más detalles

Tema 2 Resolución de EcuacionesNo Lineales

Tema 2 Resolución de EcuacionesNo Lineales Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación

Más detalles

Cálculo vs Análisis. Trabajos

Cálculo vs Análisis. Trabajos 1. Analizar los dos libros que aparecen en la bibliografía del curso, Cálculo Vectorial, de Marsden, J.E. y Tromba, A.J., y Análisis clásico elemental, de Marsden, J.E. y Hoffman, M.J. Hacer un informe

Más detalles

NOCIONES ELEMENTALES DE LÓGICA MATEMÁTICA

NOCIONES ELEMENTALES DE LÓGICA MATEMÁTICA NOCIONES ELEMENTALES DE LÓGICA MATEMÁTICA Estudiaremos brevemente un lenguaje no contradictorio ni ambivalente que nos permitirá introducirnos a la Matemática: la Lógica Matemática, que estudia las leyes

Más detalles

Grado en Ingeniería Informática Fundamentos matemáticos para la informática Curso Introducción a la lógica matemática

Grado en Ingeniería Informática Fundamentos matemáticos para la informática Curso Introducción a la lógica matemática Grado en Ingeniería Informática Fundamentos matemáticos para la informática Curso 2009-10 Introducción a la lógica matemática Lógica es la disciplina que se ocupa de los métodos de razonamiento, suministrando

Más detalles

SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA

SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA I. CONTENIDOS: 1. Derivadas sucesivas de una función 2. Concavidad

Más detalles

RESUMEN PARA EL ESTUDIO

RESUMEN PARA EL ESTUDIO RESUMEN PARA EL ESTUDIO 1. Números de siete cifras U. millón CM DM UM C D U Cómo se lee 2 8 9 6 7 8 2 Cómo se descompone: 2.896.782 = 2 U. millón + 8 CM + 9 DM + 6 UM + 7 C + 8 D + 2 U Cómo se compone:

Más detalles

Métodos de Inteligencia Artificial

Métodos de Inteligencia Artificial Métodos de Inteligencia Artificial L. Enrique Sucar (INAOE) esucar@inaoep.mx ccc.inaoep.mx/esucar Tecnologías de Información UPAEP Contenido Lógica proposicional Lógica de predicados Inferencia en lógica

Más detalles

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a)

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a) DERIVADAS. TEMA 2. BLOQUE 1 1.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO Se llama derivada de la función y = f ( en el punto de abscisa x = a al límite f ( f ( a f ( a = lím x a x a Si existe f (a entonces

Más detalles

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV Profesor: Cristian Castillo Bachilleres: Yessica Flores María Palma Roselvis Flores Ciudad Bolívar; Marzo de 2010 Movimiento

Más detalles

* e e Propiedades de la potenciación.

* e e Propiedades de la potenciación. ECUACIONES DIFERENCIALES 1 REPASO DE ALGUNOS CONCEPTOS PREVIOS AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES 1. Cuando hablamos de una función en una variable escribíamos esta relación como y = f(x), esta

Más detalles

Semántica de Primer Orden. Semántica de Primer Orden

Semántica de Primer Orden. Semántica de Primer Orden Para interpretar una fórmula de la lógica de predicados de primer orden: determinar qué objetos representan los términos (Dominio) definir las funciones y qué propiedades/relaciones representan los predicados

Más detalles

IIC2213. IIC2213 Teorías 1 / 42

IIC2213. IIC2213 Teorías 1 / 42 Teorías IIC2213 IIC2213 Teorías 1 / 42 Qué es una teoría? Una teoría es un cúmulo de información. Debe estar libre de contradicciones. Debe ser cerrada con respecto a lo que se puede deducir de ella. Inicialmente

Más detalles

Ejercicio 1(10 puntos)

Ejercicio 1(10 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Segundo Parcial Montevideo, 4 de julio de 2015. Nombre: Horario del grupo: C.I.: Profesor: Ejercicio 1(10 puntos) La tasa de desperdicio en una empresa

Más detalles

Límites y continuidad. Cálculo 1

Límites y continuidad. Cálculo 1 Límites y continuidad Cálculo 1 Razones de cambio y límites La rapidez promedio de un móvil es la distancia recorrida durante un intervalo de tiempo dividida entre la longitud del intervalo. Ejemplo 1

Más detalles

DETERMINANTES UNIDAD 3. Página 76

DETERMINANTES UNIDAD 3. Página 76 UNIDAD 3 DETERMINANTE Página 76 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes: 2x + 3y 29 5x 3y 8 4x + y

Más detalles

MLM 1000 - Matemática Discreta

MLM 1000 - Matemática Discreta MLM 1000 - Matemática Discreta L. Dissett Clase 04 Resolución. Lógica de predicados c Luis Dissett V. P.U.C. Chile, 2003 Aspectos administrativos Sobre el tema vacantes: 26 personas solicitaron ingreso

Más detalles

1 LIMITES Y DERIVADAS

1 LIMITES Y DERIVADAS 1 LIMITES Y DERIVADAS 2.1 LA TANGENTE Y PROBLEMAS DE LA VELOCIDAD Problema de la tangente Se dice que la pendiente de la recta tangente a una curva en el punto P es el ite de las rectas secantes PQ a medida

Más detalles

CURSO NIVELACIÓN LÓGICA MATEMÁTICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA LAS PROPOSICIONES

CURSO NIVELACIÓN LÓGICA MATEMÁTICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA LAS PROPOSICIONES LAS PROPOSICIONES Objetivo Brindar al estudiante un concepto claro en la formulación, interpretación y aplicabilidad de las proposiciones. La interpretación de las proposiciones compuestas permite al estudiante

Más detalles

LOGICA DE ENUNCIADOS

LOGICA DE ENUNCIADOS Lógica - FCE LOGICA DE ENUNCIADOS 1. El lenguaje de enunciados Si se restringe el lenguaje de primer orden (o lenguaje de predicados) eliminando los cuantificadores y se toma como ultima unidad de análisis

Más detalles

Eje 2. Razonamiento lógico matemático

Eje 2. Razonamiento lógico matemático Razonamiento deductivo e inductivo La historia de las matemáticas se remonta al antiguo Egipto y Babilonia. Ante la necesidad de resolver problemas a través de errores y victorias, estas culturas lograron

Más detalles

Cómo se interpretan las leyes fiscales?

Cómo se interpretan las leyes fiscales? 9 Cómo se interpretan las leyes fiscales? Cómo se interpretan las leyes fiscales? Índice I. II. III. IV. V. Introducción Interpretación de normas jurídicas Métodos de interpretación Interpretación de

Más detalles

UNIDAD 4: INTRODUCCIÓN A LA LÓGICA

UNIDAD 4: INTRODUCCIÓN A LA LÓGICA UNIDAD 4: INTRODUCCIÓN A LA LÓGICA Bien! hemos pasado a la segunda parte de los contenidos, espero que esos ánimos sigan predispuestos a continuar con el estudio de estos nuevos contenidos. Lo invitamos

Más detalles

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}.

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}. SECCIÓN 5. Funciones inversas 5. Funciones inversas Verificar que una función es la inversa de otra. Determinar si una función tiene una función inversa. Encontrar la derivada de una función inversa. f

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO CONJUNTOS Y LÓGICA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO CONJUNTOS Y LÓGICA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO CONJUNTOS Y LÓGICA SEMESTRE: Segundo a cuarto CLAVE: 0271 HORAS A LA SEMANA/SEMESTRE TEÓRICAS PRÁCTICAS CRÉDITOS 5/80

Más detalles

TEMA I. INTRODUCCIÓN A LA LÓGICA Y AL RAZONAMIENTO DEDUCTIVO.

TEMA I. INTRODUCCIÓN A LA LÓGICA Y AL RAZONAMIENTO DEDUCTIVO. Lógica y razonamiento. La lógica es el estudio de los métodos que permiten establecer la validez de un razonamiento, entendiendo como tal al proceso mental que, partiendo de ciertas premisas, deriva en

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Topología

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Topología - Fernando Sánchez - - 6 Topología Cálculo I en R 26 10 2015 Elementos de la topología en R. Una topología en un conjunto da un criterio para poder hablar de proximidad entre los elementos de un conjunto.

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2011

PRUEBA ESPECÍFICA PRUEBA 2011 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 011 PRUEBA SOLUCIONARIO Aclaraciones previas Tiempo de duración de la prueba: 1 hora Contesta cinco de los seis ejercicios propuestos.

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Derivadas de Orden superior

Derivadas de Orden superior Derivadas de Orden superior Para una función cualquiera f, al tomar la derivada, obtenemos una nueva función f y podemos aplicar la derivada a f. La función f se suele escrbir f y recibe el nombre de derivada

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES Y MATRICES

1 SISTEMAS DE ECUACIONES LINEALES Y MATRICES Capítulo 1 SISTEMAS DE ECUACIONES LINEALES Y MATRICES 1.1 INTRODUCCIÓN Este libro trata del álgebra lineal. Al buscar la palabra lineal en el diccionario se encuentra, entre otras definiciones, la siguiente:

Más detalles

Límite de funciones. Por otra parte se dice que una función es discontínua si para algún (os) valor (es) de x no existe valor de y.

Límite de funciones. Por otra parte se dice que una función es discontínua si para algún (os) valor (es) de x no existe valor de y. Límite de funciones El concepto de límite se explica y define desde diferentes perspectivas en los libros de cálculo. Se habla por ejemplo del límite de una sucesión (como ya se explicó), o bien del límite

Más detalles

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL LÓGICA PROPOSICIONAL QUE ES LA LÓGICA? El sentido ordinario de la palabra lógica se refiere a lo que es congruente, ordenado, bien estructurado. Lo ilógico es lo mismo que incongruente, desordenado, incoherente.

Más detalles

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos

Más detalles

Tema 1: MATRICES. OPERACIONES CON MATRICES

Tema 1: MATRICES. OPERACIONES CON MATRICES Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos

Más detalles

INTRODUCCION AL ALGEBRA.

INTRODUCCION AL ALGEBRA. INTRODUCCION AL ALGEBRA. 2- TEORIA DE CONJUNTOS. Apuntes de la Cátedra. Alberto Serritella. Colaboraron: Cristian Mascetti. Vanesa Bergonzi Edición Previa CECANA CECEJS CET Junín 2010. UNNOBA Universidad

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles