RESOLUCIÓN DE ESTRUCTURAS SIMÉTRICAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "RESOLUCIÓN DE ESTRUCTURAS SIMÉTRICAS"

Transcripción

1 TR STRUTURS III ULT INNIRI U.N.L.P. RSOLUIÓN STRUTURS SIMÉTRIS Se resolverá la siguiente estructura aplicando simetría IO J. RNUSHI yudante lumno átedra de structuras III y IV 5 T m 2 m 3 T/m Ts = 10 o Ti = 30 o 3 T/m 0.01m 3 m 5 T 2 m 3 m Propiedades de las barras Propiedades de los materiales ncho = 0.20 m hormigón = Tn/m 2 ltura = 0.40m acero (tensor)= Tn/m 2 φ tensor ()= 0.05 m λ = / o (ambos materiales) Vínculos externos poyo simple (2 1) 2 grados restringidos mpotramiento (2 3) 6 grados restringidos Vínculo interno + Marco cerrado 3 grados restringidos Total Restricciones 11 grados restringidos cuaciones particulares (2 articulaciones) 2 grados liberados cuaciones generales de la estática 3 grados Total de grados de hiperestaticidad 6 grados ualquier sistema de cargas aplicado sobre una estructura que cumple con simetría de geometría y materiales puede ser descompuesto en un sistema de cargas simétrico y otro antimétrico, de forma tal que la suma de ambos resulta ser el sistema que les dio origen. Se estudiará cada una de las cargas que intervienen en la estructura por separado con el fin de profundizar en el proceso de descomposición. 1

2 TR STRUTURS III ULT INNIRI U.N.L.P. arga concentrada en la barra 5 T Sistema de cargas 2.5 T 2.5 T Sistema de cargas simétricas 2.5 T 2.5 T Sistema de cargas antimétricas Se observa que la superponiendo ambos sistemas se obtiene el sistema de cargas original (en este caso la carga de 5 toneladas ubicada en la barra ) 5 T Sist. cargas simétricas + antimétricas Seguidamente se procederá a descomponer cada una de las cargas restantes en cargas simétricas y antimétricas. 2

3 TR STRUTURS III arga distribuida en la barra ULT INNIRI U.N.L.P. 3 T /m Sistema de cargas 1.5 T /m 1.5 T /m Sistema de cargas simétricas 1.5 T /m 1.5 T /m Sistema de cargas antimétricas arga distribuida en la barra 3 T/m Sistema de cargas 3

4 TR STRUTURS III ULT INNIRI U.N.L.P. 1.5 T/m 1.5 T/m Sistema de cargas simétricas 1.5 T/m 1.5 T/m Sistema de cargas antimétricas Momento en el nudo ste es un caso especial donde la carga se encuentra ubicada sobre el eje de simetría. s válido considerar una mitad del par ubicada un infinitésimo a la izquierda del eje de simetría y la otra mitad un infinitésimo a la derecha del eje, resultando un sistema de cargas antimétrico 5 T m Sistema de cargas Sistema de cargas simétricas 4

5 TR STRUTURS III ULT INNIRI U.N.L.P. 2.5 T m 2.5 T m Sistema de cargas antimétricas Puede observarse que en el sistema simétrico esta carga da como resultado la ausencia de cargas. Se analizarán otros casos particulares, más adelante, con un ejemplo. arga térmica en la barra Ts=10 Ti=30 Sistema de cargas Ts=5 Ts=5 Ti=15 Ti=15 Sistema de carga simétrico Ts=5 Ts= 5 Ti=15 Ti= 15 Sistema de carga antimétrico 5

6 TR STRUTURS III esplazamiento de vínculo en el apoyo ULT INNIRI U.N.L.P m Sistema de cargas m m Sistema de cargas simétrico m m Sistema de cargas antimétrico squema de cálculo Sistema de cargas simétricas onociendo que para un sistema de cargas simétrico en una estructura simétrica no habrá desplazamientos horizontales ni rotaciones sobre el eje de simetría, es posible plantear la semiestructura para cargas simétricas y resolver el sistema sobre la misma, para después aplicar el concepto de simetría y reproducir la parte faltante de la estructura. n el caso de la estructura planteada, tomando la semiestructura para cargas simétricas que se encuentra a la izquierda del eje de simetría es la siguiente 6

7 TR STRUTURS III ULT INNIRI U.N.L.P. Semiestructura para cargas simétricas Se analiza a continuación el grado de hiperestaticidad de esta semiestructura Vínculos externos poyo simple 1 grado restringido poyo doble (2 2) 4 grados restringidos mpotramiento 3 grados restringidos Total Restricciones 8 grados restringidos cuaciones particulares (1 articulación) 1 grado liberado cuaciones generales de la estática 3 grados Total de grados de hiperestaticidad 4 grados Se puede ver que el grado de hiperestaticidad (4 grados) es menor que el de la estructura completa (6 grados) siendo más sencilla su resolución. l esquema de cálculo surgirá de cargar esta semiestructura con las correspondientes al sistema de cargas simétrico ubicado a la izquierda del eje de simetría 1.5 T/m Ts = 5 o 1.5 T/m Ti = 15 o m 2.5 T Semiestructura con cargas simétricas sta estructura hiperestática puede resolverse utilizando el método de las fuerzas o el método de las deformaciones. Se incluyen a continuación los diagramas resultantes de su cálculo. 7

8 TR STRUTURS III ULT INNIRI U.N.L.P iagrama de axil en semiestructura con carga simétrica iagrama de corte para semiestructura con cargas simétricas iagrama de momentos para semiestructura con cargas simétricas Sistema de cargas antimétricas Para un sistema de cargas antimétrico en una estructura simétrica no habrá desplazamientos verticales sobre el eje de simetría. partir de esto, es posible plantear la semiestructura para cargas antimétricas y resolverla, aplicando el concepto de antimetría para obtener los esfuerzos en la parte restante de la 8

9 TR STRUTURS III ULT INNIRI U.N.L.P. estructura. n el caso de la estructura planteada, tomando la semiestructura para cargas antimétricas que se encuentra a la izquierda del eje de simetría, se tiene: Semiestructura para cargas antimétricas Haciendo el análisis de los grados de hiperestaticidad de la semiestructura Vínculos externos poyo simple (3 1) 3 grados restringidos mpotramiento 3 grados restringidos Total Restricciones 6 grados restringidos cuaciones particulares (1 articulación) 1 grado liberado cuaciones generales de la estática 3 grados Total de grados de hiperestaticidad 2 grados Nuevamente se observa que el grado de hiperestaticidad de la semiestructura (2 grados) es menor que el de la estructura completa (6 grados) Para el sistema de cargas antimétrico, el esquema de cargas será 2.5 T m m 1.5 T/m Ts = 5 o Ti = 15 o 1.5 T/m 2.5 T Semiestructura con cargas antimétricas La resolución de esta estructura hiperestática da como resultado los siguientes diagramas de esfuerzos internos: 9

10 TR STRUTURS III ULT INNIRI U.N.L.P iagrama de axil en semiestructura con cargas antimétricas iagrama de corte en semiestructura con cargas antimétricas iagrama de momentos en semiestructura con cargas antimétricas iagramas de esfuerzos en la estructura completa Los diagramas de esfuerzo en la estructura completa surgen de aplicar los conceptos de simetría y antimetría para los esfuerzos internos 10

11 TR STRUTURS III iagrama de esfuerzos para sistema simétrico ULT INNIRI U.N.L.P. Semiestructura erecha Semiestructura Izquierda arra horizontal o barra inclinada M (+) Q (+) N (+) M (+) Q ( ) N (+) arra vertical M (+) Q (+) N (+) M ( ) Q ( ) N (+) iagrama de axil para cargas simétricas

12 TR STRUTURS III ULT INNIRI U.N.L.P iagrama de corte para cargas simétricas iagrama de momentos para cargas simétricas m eformada para cargas simétricas iagrama de esfuerzos para sistema antimétrico 12

13 TR STRUTURS III Semiestructura erecha ULT INNIRI U.N.L.P. Semiestructura Izquierda arra horizontal o barra inclinada M (+) Q (+) N (+) M ( ) Q (+) N ( ) arra vertical M (+) Q (+) N (+) M (+) Q (+) N ( ) iagrama de axil para cargas antimétricas iagrama de corte para cargas antimétricas 13

14 TR STRUTURS III ULT INNIRI U.N.L.P iagrama de momentos para cargas antimétricas m structura deformada para cargas antimétricas iagrama de esfuerzos finales Los diagramas de esfuerzo finales para la estructura completa surgirán de superponer los diagramas para el sistema de cargas simétricas con el de las antimétricas iagrama de axil final

15 TR STRUTURS III ULT INNIRI U.N.L.P iagrama de corte final iagrama de momentos final eformada de la estructura 15

16 TR STRUTURS III ULT INNIRI U.N.L.P. on el fin de analizar los casos particulares con cargas sobre el eje de simetría y de barras coincidentes con el mismo se analizará la siguiente estructura. Se planteará el sistema de cargas simétrico y antimétrico sin llegar a dibujar sus diagramas de esfuerzos. 5 T 10 T m Ts=30 Ti=10 10 T 0.02 m continuación se plantean los sistemas de carga simétrico y antimétrico en la estructura completa. 5 T m 2.5 T 2.5 T 5 T m T=15 T=15 T=5 T=5 Sistema de cargas simétrico 5 T m 5 T m T=15 T=-15 T=-5 T=5 5 T 5 T 0.01 m Sistema de cargas antimétrico 0.01 m Puede verse en estos sistemas que para las cargas que se encuentran ubicadas sobre el eje de simetría se considera que una mitad se ubica un infinitésimo a la izquierda del eje de simetría y la otra mitad un infinitésimo a la derecha del eje. sí, por ejemplo, resulta que la carga vertical ubicada en el nudo es de por sí un sistema simétrico por lo que no toma valor en el sistema antimétrico. n el caso de la carga horizontal en la barra y del desplazamiento horizontal en el nudo, al separarlas en dos mitades a cada lado del eje, forman un sistema antimétrico y no aparecen en el sistema de cargas simétrico. 16

17 TR STRUTURS III ULT INNIRI U.N.L.P. También puede notarse que la carga térmica queda descompuesta en la temperatura en el centro de gravedad ( Tg=20 o ) para el sistema simétrico y en el gradiente de temperaturas ( Ti= 10, Ts=10 resultando Tg=0 o ) para el sistema antimétrico. e este modo en la semiestructura simétrica sólo habrá un estiramiento o acortamiento uniforme de la barra ubicada sobre el eje mientras que en la semiestructura antimétrica solamente se evidenciará la flexión. Para hacer el análisis sobre las semiestructuras se plantea como condición que los desplazamientos en la semiestructura deben ser iguales a los desplazamientos de la estructura completa. sto se logra tomando la mitad del área y del momento de inercia en la barra ubicada en el eje de simetría en las semiestructuras. J structura completa * =/2 J * =J/2 * =/2 J * =J/2 ivisión de la estructura completa continuación se plantean las semiestructuras para cargas simétrica y antimétrica. 5 T m 2.5 T T=20 T=20 * =/2 J * =J/2 Semiestructura con cargas simétricas 17

18 TR STRUTURS III ULT INNIRI U.N.L.P. 5 T m T=10 T= 10 5 T * =/2 J * =J/ m Semiestructura con cargas antimétricas n la semiestructura con cargas antimétricas, sabiendo que debemos obtener los desplazamientos reales de la estructura completa, es necesario considerar el desplazamiento de vínculo horizontal (carga antimétrica) con su valor real de 0.02 metros. Para obtener las solicitaciones en la barra coincidente con el eje de simetría se deberán duplicar los valores obtenidos sobre la misma. ajo un sistema de cargas simétrico, en la barra que coincide con el eje, no existen esfuerzos de corte ni momentos como puede deducirse de acuerdo a sus cargas y vinculación externa. e igual forma, bajo un sistema de cargas antimétrico no existe esfuerzo axil. n las siguientes figuras se ilustra lo enunciado. Semiestructura erecha Semiestructura Izquierda Semiestructura erecha Semiestructura Izquierda N/2 (+) + N/2 (+) = N(+) M/2 (+) + M/2 (+) = M (+) Q/2 (+) + Q/2 (+) = Q (+) Solicitaciones en el sistema simétrico Solicitaciones en el sistema antimétrico n la estructura completa, los diagramas resultantes en la barra coincidente con el eje tendrán el mismo signo que en la semiestructura pero su valor será el doble. 18

ESTRUCTURAS SIMETRICAS

ESTRUCTURAS SIMETRICAS ESTRUCTURAS SIMETRICAS Las estructuras reales presentan con mucha frecuencia diseños que tienen la característica de ser simétricas con relación a algún plano, como por ejemplo las estructuras de muchos

Más detalles

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR Problemas eformación ngular T : PROLS RSULTOS ORÓN NGULR.. plicando el método de la deformación angular obtener el diagrama de momentos flectores y dibujar aproximadamente la deformada de la estructura

Más detalles

Obra: Pista de patinaje sobre hielo

Obra: Pista de patinaje sobre hielo Obra: Pista de patinaje sobre hielo Cubierta colgante pesada que cubre una luz libre de 95 metros. Su estructura está conformada por cables colocados cada 2 metros con apoyos a distinta altura. Completan

Más detalles

Ejercicios de repaso

Ejercicios de repaso Ejercicios de repaso Ejercicio 0.1 a) Hallar la resultante del sistema de fuerzas de la figura. (Indicar valor y recta de aplicación) b) Sustituir el sistema dado por dos fuerzas cuyas rectas de acción

Más detalles

CONCEPTOS GENERALES DEL ANÁLISIS ESTRUCTURAL

CONCEPTOS GENERALES DEL ANÁLISIS ESTRUCTURAL CONCEPTOS GENERALES DEL ANÁLISIS ESTRUCTURAL Prof. Carlos Navarro Departamento de Mecánica de Medios Continuos y Teoría de Estructuras LAS CONDICIONES DE SUSTENTACIÓN DE UNA ESTRUCTURA LIBERACIÓN DE ESFUERZOS

Más detalles

Estructuras de Edificación: Tema 19 - Estructuras articuladas hiperestáticas.

Estructuras de Edificación: Tema 19 - Estructuras articuladas hiperestáticas. Estructuras de Edificación: Tema 19 - Estructuras articuladas hiperestáticas. David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado en Ingeniería de

Más detalles

CARGAS NO APLICADAS EN NUDOS

CARGAS NO APLICADAS EN NUDOS Capítulo 9 Cargas no aplicadas en los nudos 9.1- Cargas en el interior de un tramo Hasta ahora sólo se consideraron casos en que las cargas eteriores están aplicadas sobre los nudos; en el caso que actúen

Más detalles

Folio EST VIGAS HIPERESTATICAS. Folio: EST Fecha: Noviembre/2000. Autores: Arqto. Verónica Veas B. Arqto.

Folio EST VIGAS HIPERESTATICAS. Folio: EST Fecha: Noviembre/2000. Autores: Arqto. Verónica Veas B. Arqto. Folio EST 0-0 VIGAS HIPERESTATICAS Materia: Estructura II Folio: Fecha: EST -0 Noviembre/000 Autores: Arqto. Verónica Veas B. Arqto. Jing Chang Lou Folio EST -0 MORFOLOGÍA ESTRUCTURAL I.- INTRODUCCION

Más detalles

Aplicación del Principio de las Fuerzas Virtuales a la resolución estática de estructuras hiperestáticas

Aplicación del Principio de las Fuerzas Virtuales a la resolución estática de estructuras hiperestáticas Aplicación del Principio de las Fuerzas Virtuales a la resolución estática de estructuras hiperestáticas Apellidos, nombre asset Salom, Luisa ([email protected]) Departamento Centro Mecánica de Medios

Más detalles

En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente.

En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. TORQUE Y EQUILIBRIO DE CUERPO RÍGIDO. En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. De traslación a lo largo de una trayectoria, de rotación mientras se está trasladando,

Más detalles

El Principio de las Fuerzas Virtuales: ejemplo de aplicación

El Principio de las Fuerzas Virtuales: ejemplo de aplicación El Principio de las Fuerzas Virtuales: ejemplo de aplicación pellidos, nombre asset Salom, Luisa ([email protected]) Departamento entro Mecánica de Medios ontinuos y Teoría de Estructuras Escuela Técnica

Más detalles

TEMA 3: PROBLEMAS RESUELTOS DE LÍNEAS DE INFLUENCIA

TEMA 3: PROBLEMAS RESUELTOS DE LÍNEAS DE INFLUENCIA Problemas Líneas de nfluencia TM 3: PROBLMS RSULTOS LÍNS NLUN 3.1. ada la celosía de la figura, dibujar las líneas de influencia de las barras B, y. B Barra B: B Barra : B Barra : B 1 Teoría de structuras

Más detalles

APLICACIONES DE LAS LEYES DE NEWTON

APLICACIONES DE LAS LEYES DE NEWTON APLICACIOES DE LAS LEYES DE EWTO Peso Fuerzas normales Cuerpos apoyados sobre una superficie horizontal Cuerpos apoyados sobre una superficie inclinada Fuerza de rozamiento Cuerpos en movimiento Cuerpos

Más detalles

TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE)

TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE) EXAMEN DE TEORÍA DE ESTRUCTURAS 03-09-2009 E.T.S.I. MINAS U.P.M. TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE) Duración: 1 hora 15 minutos Fecha de publicación de las calificaciones provisionales:

Más detalles

6. ESTRUCTURAS RETICULADAS PLANAS.

6. ESTRUCTURAS RETICULADAS PLANAS. 6. ESTRUTURS RETIULS LNS. Se califica a una estructura plana de barras de reticulada cuando por estar las barras que confluyen en un mismo nodo empotradas entre sí formando un ángulo constructivo invariable,

Más detalles

Solución: (esfuerzos en KN) 200 kn. 400 kn. 300 kn. 100 kn. 5 m A C. 2 x 5m = 10 m. 1 cm 1,2 cm 1 cm

Solución: (esfuerzos en KN) 200 kn. 400 kn. 300 kn. 100 kn. 5 m A C. 2 x 5m = 10 m. 1 cm 1,2 cm 1 cm Problema 1. n la celosía de la figura, calcular los esfuerzos en todas las barras y reacciones en los apoyos, debido a la actuación simultánea de todas las acciones indicadas (cargas exteriores y asientos

Más detalles

ESTABILIDAD II A (6402)

ESTABILIDAD II A (6402) 1 ESTABILIDAD II A (6402) GUIA DE TRABAJOS PRÁCTICOS COMPLEMENTARIOS DE SOLICITACIÓN POR TORSIÓN, FLEXIÓN, FLEXIÓN VARIABLE Y COMPUESTA Y CÁLCULO DE DESPLAZAMIENTOS POR TTV.: Por Ing. H.Eduardo Rofrano

Más detalles

TEMA 11: ESTRUCTURA DE BARRAS

TEMA 11: ESTRUCTURA DE BARRAS TEMA 11: ESTRUCTURA DE BARRAS ESTRUCTURAS 1 ENRIQUE DE JUSTO MOSCARDÓ ANTONIO DELGADO TRUJILLOh ANTONIA FERNÁNDEZ SERRANO MARÍA CONCEPCIÓN BASCÓN HURTADO Departamento de Mecánica de Medios Continuos, Teoría

Más detalles

El Principio de las Fuerzas Virtuales

El Principio de las Fuerzas Virtuales El Principio de las Fuerzas Virtuales Apellidos, nombre Basset Salom, uisa ([email protected]) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior de Arquitectura

Más detalles

Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos.

Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos. Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos. David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado

Más detalles

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO 1. Objetivo El objetivo de esta aplicación es ilustrar cómo se pueden integrar las ecuaciones diferenciales

Más detalles

E.T.S. Ingenieros de Caminos, Canales y Puertos

E.T.S. Ingenieros de Caminos, Canales y Puertos E.T.S. Ingenieros de aminos, anales y Puertos Universidad de Granada ONVOATORIA JUNIO TEORÍA DE ESTRUTURAS 1 JULIO 2013 TEORÍA Tiempo: 1 hora. APELLIDOS: FIRMA: NOMBRE: DNI: La Teoría representa 1/3 de

Más detalles

CAPÍTULO 14. TABIQUES

CAPÍTULO 14. TABIQUES CAPÍTULO 14. TABIQUES 14.0. SIMBOLOGÍA A g área total o bruta de la sección de hormigón, en mm 2. En una sección hueca, A g es el área de hormigon solamente y no incluye el área del o los vacíos. Ver el

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO PROBEMAS DE RESISTENCIA DE MATERIAES MÓDUO 5: FEXIÓN DE VIGAS CURSO 016-17 5.1( ).- Halle, en MPa, la tensión normal máxima de compresión en la viga cuya sección y diagrama de momentos flectores se muestran

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1 Si la sección de un perfil metálico es la que aparece en la figura, suponiendo que la chapa que une los círculos es de espesor e inercia despreciables, determina la relación entre las secciones A 1 y A

Más detalles

E.T.S.I. Caminos, Canales y Puertos I.C.C.P. Universidad de Granada

E.T.S.I. Caminos, Canales y Puertos I.C.C.P. Universidad de Granada E.T.S.I. aminos, anales y Puertos I...P. Universidad de Granada ONVO. SEPTIEMBRE TEORÍA DE ESTRUTURAS 16 SEPTIEMBRE 2013 TEORÍA Tiempo: 1 hora. APELLIDOS: FIRMA: NOMBRE: DNI: La Teoría representa 1/3 de

Más detalles

Análisis cinemático de estructuras planas

Análisis cinemático de estructuras planas Análisis cinemático de estructuras planas Apellidos, nombre Basset Salom, Luisa ([email protected]) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior de

Más detalles

EJERCICIO 1. Trazar diagramas de momento flector y corte, y calcular las máximas tensiones que ocurren en la viga simplemente apoyada m. 0.

EJERCICIO 1. Trazar diagramas de momento flector y corte, y calcular las máximas tensiones que ocurren en la viga simplemente apoyada m. 0. EJERCICIOS DE APLICACION EJERCICIO 1. razar diagramas de momento flector y corte, y calcular las máximas tensiones que ocurren en la viga simplemente apoyada. θ.8 m y x 15. m p.1 m θ.1 m La carga axial

Más detalles

Flexión Compuesta. Flexión Esviada.

Flexión Compuesta. Flexión Esviada. RESISTENCIA DE MATERIALES. ESTRUCTURAS BOLETÍN DE PROBLEMAS Tema 6 Flexión Compuesta. Flexión Esviada. Problema 1 Un elemento resistente está formado por tres chapas soldadas, resultando la sección indicada

Más detalles

De acuerdo al capítulo A (sección A.4.2), la resistencia requerida surge de la combinación crítica de las siguientes combinaciones de acciones:

De acuerdo al capítulo A (sección A.4.2), la resistencia requerida surge de la combinación crítica de las siguientes combinaciones de acciones: 37 EJEMLO N 9 Cálculo de solicitaciones requeridas en columnas de pórtico no arriostrado (de nudos desplazables) Cálculo de los factores de longitud efectiva k de columnas de pórtico no arriostrado (de

Más detalles

Curso: RESISTENCIA DE MATERIALES 1

Curso: RESISTENCIA DE MATERIALES 1 Curso: RESISTENCIA DE MATERIALES 1 Módulo 3: TEORÍA DE VIGAS Luis Segura ([email protected]) º Semestre - 015 Universidad de la República - Uruguay Módulo 3 Teoría de vigas º Semestre 015 Luis Segura

Más detalles

Práctico 10: Desplazamientos en vigas isostáticas

Práctico 10: Desplazamientos en vigas isostáticas Práctico 10: Desplazamientos en vigas isostáticas Ejercicio 1: Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud

Más detalles

CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES

CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES Fig. 2.a Cuando se estudia el fenómeno que ocasionan las fuerzas normales a la sección transversal de un elemento, se puede encontrar dos

Más detalles

ESTRUCTURAS EL METODO GENERAL

ESTRUCTURAS EL METODO GENERAL ESTRUCTURAS EL METODO GENERAL MODULO INSTRUCCIONAL MI-E4 Ing.N.VILLASECA C. Trabajo elaborado bajo la coordinación, orientación y supervisión del Autor, con la participación de: Responsable : Ing. N.Villaseca

Más detalles

ESTÁTICA ESTRUCTURAL ELEMENTOS MECÁNICOS EN ESTRUCTURAS FORMADAS POR BARRAS RECTAS

ESTÁTICA ESTRUCTURAL ELEMENTOS MECÁNICOS EN ESTRUCTURAS FORMADAS POR BARRAS RECTAS ELEMENTOS MECÁNICOS EN ESTRUCTURAS FORMADAS POR BARRAS RECTAS CONSIDERANDO LA SIGUIENTE ESTRUCTURA, UNA BARRAS RECTA. CON APOYO FIJO Y UNO LIBRE DONDE SE INDICA. ESTÁTICA ESTRUCTURAL CARACTERÍSTICAS DE

Más detalles

El Principio de los Desplazamientos Virtuales (PDV)

El Principio de los Desplazamientos Virtuales (PDV) El Principio de los Desplazamientos Virtuales (PDV) Apellidos, nombre Basset Salom, uisa ([email protected]) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior

Más detalles

Análisis estático de estructuras planas

Análisis estático de estructuras planas Análisis estático de estructuras planas Apellidos, nombre Basset Salom, Luisa ([email protected]) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior de Arquitectura

Más detalles

CIV302 A y B 5 II-2013 G. Elias Belmonte C. 05/08/ /12/ /07/2013. Tema Objetivo Actividades de Enseñanza Recursos Didácticos

CIV302 A y B 5 II-2013 G. Elias Belmonte C. 05/08/ /12/ /07/2013. Tema Objetivo Actividades de Enseñanza Recursos Didácticos CARTA DESCRIPTIVA (PLANIFICACION DIDACTICA) Materia Grupo Nivel Semestre Docente Fecha de Inicio del calendario acad. Fecha de conclusión calendario acad. Fecha de Elaboración de la carta CIV302 A y B

Más detalles

T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA-

T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- 1. Dadas las siguientes vigas, A) clasificarlas según su sustentación en : empotradas, simplemente

Más detalles

CAPÍTULO F. VIGAS Y OTRAS BARRAS EN FLEXIÓN

CAPÍTULO F. VIGAS Y OTRAS BARRAS EN FLEXIÓN CAPÍTUO F. VIGAS Y OTRAS BARRAS N FXIÓN ste Capítulo es aplicale a arras prismáticas, con secciones compactas no compactas, sujetas a flexión corte. as arras formadas por un solo perfil ángulo (de ángulo

Más detalles

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDD DE JÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

INDICE. e h Introducción Flexión compuesta. Tensiones normales Esfuerzo Cortante. Tensiones tangenciales

INDICE. e h Introducción Flexión compuesta. Tensiones normales Esfuerzo Cortante. Tensiones tangenciales INDICE 13.1 Introducción. 13.2 Flexión compuesta. Tensiones normales. a2 r2 13.3 Esfuerzo Cortante. Tensiones tangenciales r2 e h e2 13.4 Centro de Esfuerzos Cortantes. 13.5 Torsión libre. Analogía de

Más detalles

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO 4. ESTÁTIC FORMULRIO 4.1) La viga de la figura, que pesa 1.000 kg. y tiene 8 m de larga, hace de carril aéreo. Sobre ella desliza un colgador en el que colocamos 2.000 kg. de carga. Calcular la tensión

Más detalles

ANALISIS DE VIGAS ESTATICAMENTE INDETERMINADAS

ANALISIS DE VIGAS ESTATICAMENTE INDETERMINADAS NISIS DE VIGS ESTTICENTE INDETERINDS.. DEFINICIÓN. Se denomina de esta manera a una barra sujeta a carga lateral; perpendicular a su eje longitudinal, en la que el número de reacciones en los soportes

Más detalles

Cálculo de deformaciones. Método energético

Cálculo de deformaciones. Método energético álculo de deformaciones. Método energético N K xil puro N d N N L L L d L L Trabajo externo (W): n el gráfico de la derecha, es el realizado por la carga N conforme varía su valor desde cero hasta el máximo

Más detalles

Programa del curso de Estructuras I

Programa del curso de Estructuras I Programa del curso de Estructuras I Presentación del curso - Información sobre calendario, objetivo, sistema de evaluación. - Relación entre estructura y Arquitectura. Modelos - Concepto de modelo, se

Más detalles

Respuesta estructural de un puente de tirantes de gran luz variando las condiciones de los vanos laterales ANEJO 1 PLANOS

Respuesta estructural de un puente de tirantes de gran luz variando las condiciones de los vanos laterales ANEJO 1 PLANOS ANEJO 1 PLANOS Ing. Víctor Josué Gutiérrez Gracia 111 112 Ing. Víctor Josué Gutiérrez Gracia Ing. Víctor Josué Gutiérrez Gracia 113 114 Ing. Víctor Josué Gutiérrez Gracia ANEJO 2 RESULTADOS DEL MODELO

Más detalles

TEMA 4: ESFUERZOS Y SOLICITACIONES

TEMA 4: ESFUERZOS Y SOLICITACIONES TEMA 4: ESFUERZOS Y SOLICITACIONES ESTRUCTURAS 1 ANTONIO DELGADO TRUJILLO ENRIQUE DE JUSTO MOSCARDÓ JAVIER LOZANO MOHEDANO MARÍA CONCEPCIÓN BASCÓN HURTADO Departamento de Mecánica de Medios Continuos,

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre MECÁNICA.

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre MECÁNICA. PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre 2005. MECÁNICA. C1) Determina la resultante del sistema de fuerzas coplanarias mostrado en la figura inferior izquierda.

Más detalles

Estructuras de Edificación: Tema 18 - Estructuras articuladas. Cálculo de desplazamientos.

Estructuras de Edificación: Tema 18 - Estructuras articuladas. Cálculo de desplazamientos. Estructuras de Edificación: Tema 18 - Estructuras articuladas. Cálculo de desplazamientos. David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado en Ingeniería

Más detalles

Deflexión DE vigas. Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV

Deflexión DE vigas. Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV Deflexión DE vigas Profesor: Cristian Castillo Realizado por: Barrios, Yasnahir Campos,

Más detalles

Universidad de los Andes Facultada de ingeniería Escuela Básica. Tema 4: Equilibrio de Cuerpos Rígidos. Prof. Nayive Jaramillo

Universidad de los Andes Facultada de ingeniería Escuela Básica. Tema 4: Equilibrio de Cuerpos Rígidos. Prof. Nayive Jaramillo Universidad de los Andes Facultada de ingeniería Escuela Básica Tema 4: Equilibrio de Cuerpos Rígidos Prof. Nayive Jaramillo Contenido: Equilibrio de Cuerpos Rígidos Tema Contenido objetivos Introduccion

Más detalles

TRABAJO PRACTICO Nº 3: APOYOS Y REACCIONES DE VINCULO

TRABAJO PRACTICO Nº 3: APOYOS Y REACCIONES DE VINCULO TRABAJO PRACTICO Nº 3: APOYOS Y REACCIONES DE VINCULO 1. A) En cada uno de los cinco ejemplos siguientes se presenta en la ilustración de la izquierda el cuerpo a aislar, mientras que a la derecha se presenta

Más detalles

C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE

C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE COMENTARIOS AL CAPÍTULO 6. BARRAS EN FLEXIÓN SIMPLE Para tener una respuesta simétrica de la sección en flexión simple y evitar efectos torsionales, se exige que cuando sean más de una las arras de los

Más detalles

000 INTRODUCCION Verónica Veas B. Gabriela Muñoz S.

000 INTRODUCCION Verónica Veas B. Gabriela Muñoz S. 000 INTRODUCCION Verónica Veas B. Gabriela Muñoz S. ESTRUCTURAS 2 Prof.: Verónica Veas Ayud.: Preeti Bellani ESTRUCTURAS 1 ESTRUCTURAS 2 ESTRUCTURAS 3 3º semestre 5º semestre 7º semestre Estática Deformaciones

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 4.- ESTATICA. 3.1.- Centro de gravedad de un cuerpo. Un cuerpo de masa M, se puede considerar compuesto por multitud de partículas

Más detalles

INDICE. Primera Parte VIGAS CONTINUAS Y ESTRUCTURAS APORTICADAS

INDICE. Primera Parte VIGAS CONTINUAS Y ESTRUCTURAS APORTICADAS INDICE Primera Parte VIGAS CONTINUAS Y ESTRUCTURAS APORTICADAS 1 La barra elástica 1.1 Introducción 1.2 Ley de Hooke. 1.3 Teorema de Mohr 1.4 EI concepto «rigidez de resorte» 1.5 Relación entre rigidez

Más detalles

Criterios evaluación mínimos

Criterios evaluación mínimos ETAPA: E.P. CICLO: 1 CURSO: 1º ÁREA: MATEMÁTICAS Evaluación 1 01. NÚMEROS: Conoce y utiliza los números del 0 al 19. Lee y escribe los números del 0 al 19. T.1 Identifica unidades y decenas. T.4 Reconoce

Más detalles

Elementos Uniaxiales Sometidos a Carga Axial Pura

Elementos Uniaxiales Sometidos a Carga Axial Pura Elementos Uniaiales Sometidos a Carga ial ura Definición: La Tensión representa la intensidad de las fuerzas internas por unidad de área en diferentes puntos de una sección del sólido aislada (Fig. 1a).

Más detalles

Ejemplo 10-3: Tanque Intze

Ejemplo 10-3: Tanque Intze Ejemplo 10-3: Tanque Intze En la figura se muestra un típico tanque de deposito de agua, conocido como Tanque Intze. Analizar el comportamiento estructural del tanque para bajo la acción del peso propio

Más detalles

UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO. Cátedra: ESTRUCTURAS NIVEL 3 Taller: VERTICAL III DELALOYE - NICO - CLIVIO

UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO. Cátedra: ESTRUCTURAS NIVEL 3 Taller: VERTICAL III DELALOYE - NICO - CLIVIO UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO DNC GE Cátedra: ESTRUCTURAS NIVEL 3 Taller: VERTICAL III DELALOYE - NICO - CLIVIO : Viga Vierendeel Curso 2008 Elaboró: xx Revisión:

Más detalles

15.5. Torsión uniforme en barras prismáticas de sección de

15.5. Torsión uniforme en barras prismáticas de sección de Lección 15 Torsión uniforme Contenidos 15.1. Distribución de tensiones tangenciales estáticamente equivalentes a un momento torsor................ 186 15.2. Torsión uniforme en barras prismáticas de sección

Más detalles

Problema 1. Vista general del problema. Modelo - Vista longitudinal. Sección cajón. φ= m m m

Problema 1. Vista general del problema. Modelo - Vista longitudinal. Sección cajón. φ= m m m Problema 1 Sea el puente de la Figura 1 consistente en una sección cajón de hormigón armado simplemente apoyado en sus extremos y que apoya al centro sobre una columna circular empotrada en la base. La

Más detalles

60kN/m 50kNm 50kNm. 60kN/m. 50kNm D D D CC. C C 2 2 m 5 m

60kN/m 50kNm 50kNm. 60kN/m. 50kNm D D D CC. C C 2 2 m 5 m Ejercicio 6.1 Para las vigas de la figura: a) Bosquejar cualitativamente el diagrama momento flector, el diagrama del giro y el diagrama de la deformada. b) Determinar la flecha en C y el ángulo de giro

Más detalles

Leonardo Da Vinci (Siglo XV)

Leonardo Da Vinci (Siglo XV) UN POCO DE HISTORIA Leonardo Da Vinci (Siglo XV) Los 6 puentes de Leonardo Leonardo Da Vinci (Siglo XV) El método para doblar vigas de madera para darles forma de arco sin romper sus fibras Galileo (Siglo

Más detalles

Capítulo 8. DEFORMACIONES EN LAS VIGAS

Capítulo 8. DEFORMACIONES EN LAS VIGAS Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 8. DEFORMACIONES EN LAS VIGAS 1. APLICACIÓN DEL CÁLCULO DE LAS DEFORMACIONES A LA RESOLUCIÓN DE ESTRUCTURAS

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 12 Nombre... El mecanismo de la figura es un cuadrilátero articulado manivela-balancín. La distancia entre los puntos fijos A y D es 4L/ 3. En la mitad del balancín

Más detalles

Tema 5 TRACCIÓN-COMPRESIÓN

Tema 5 TRACCIÓN-COMPRESIÓN Tema 5 TRACCIÓN-COMPRESIÓN Problema 5.1 Obtenga el descenso del centro de gravedad de la barra, de longitud L, de la figura sometida a su propio peso y a la fuerza que se indica. El peso específico es

Más detalles

Elementos comprimidos - Columnas

Elementos comprimidos - Columnas Elementos comprimidos - Columnas Columnas simples: Barras prismáticas formadas por perfiles laminados o secciones armadas donde todos los elementos están conectados en forma continua. Secciones compactas

Más detalles

Cálculo estático de una estructura isostática

Cálculo estático de una estructura isostática Cálculo estático de una estructura isostática Apellidos, nombre Basset Salom, Luisa ([email protected]) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior

Más detalles

**********************************************************************

********************************************************************** 13.1.- Representar las leyes de variación del momento flector, el esfuerzo cortante y el esfuerzo normal en la viga de la figura, acotando los valores más característicos. Hallar además la epresión analítica

Más detalles

a) Teoría: Teoría y problemas de examen para alumnos regulares y previos: Mecánica Técnica E. E. T. P. Nº 466

a) Teoría: Teoría y problemas de examen para alumnos regulares y previos: Mecánica Técnica E. E. T. P. Nº 466 Asignatura: Mecánica Técnica Teoría y problemas de examen para alumnos regulares y previos: a) Teoría: 1) Hipótesis de la Estática. 2) Definición de fuerza. Características. Unidades. 3) Resultante de

Más detalles

Termoelasticidad lineal

Termoelasticidad lineal Capítulo 5 Termoelasticidad lineal n el capítulo anterior estudiamos el modelo más sencillo de la mecánica de sólidos, a saber, el de los cuerpos elásticos. n este análisis encontramos la relación que

Más detalles

Manual de Diseño para la Construcción con Acero 216

Manual de Diseño para la Construcción con Acero  216 Manual de Diseño para la Construcción con Acero www.ahmsa.com 216 Manual de Diseño para la Construcción con Acero www.ahmsa.com 217 VI.1.1 Notación especial a, b, c, m, n, da, db, dc, dx E f h Ha-Hb, etc.

Más detalles

Nombre de la asignatura: Resistencia de los materiales. Carrera : Ingeniería Mecánica. Clave de la asignatura: ACC

Nombre de la asignatura: Resistencia de los materiales. Carrera : Ingeniería Mecánica. Clave de la asignatura: ACC Nombre de la asignatura: Resistencia de los materiales. Carrera : Ingeniería Mecánica Clave de la asignatura: ACC- 96 Clave local: Horas teoría horas practicas créditos: 4--0.- UBICACIÓN DE LA ASIGNATURA

Más detalles

DPTO. FISICA APLICADA II - EUAT

DPTO. FISICA APLICADA II - EUAT Práctica 2 Estructuras articuladas 2.1. Objetivos conceptuales Profundizar en el estudio de la Estática mediante el análisis de una estructura articulada. 2.2. Fundamento teórico Se llama estructura articulada,

Más detalles

TEMA 1: ROZAMIENTO POR DESLIZAMIENTO

TEMA 1: ROZAMIENTO POR DESLIZAMIENTO TEMA 1: ROZAMIENTO POR DESLIZAMIENTO Objetivo de aprendizaje. 1.Calcular el coeficiente de fricción estática y la fuerza de rozamiento estática máxima. Criterio de aprendizaje 1.1 Estructurar los datos

Más detalles

442 HORMIGON ARMADO

442 HORMIGON ARMADO DIMENSIONADO DE ARMADURAS POR RESISTENCIA A FLEXION Una vez obtenidas las solicitaciones actuantes en nuestra estructura, se procede al cálculo de la armadura requerida. Cabe aclarar que, debido a que

Más detalles

TEMA 3: ENLACES Y EQUILIBRIO

TEMA 3: ENLACES Y EQUILIBRIO TEMA 3: ENLACES Y EQUILIBRIO ESTRUCTURAS I ANTONIO DELGADO TRUJILLO ENRIQUE DE JUSTO MOSCARDÓ PURIFICACIÓN ALARCÓN RAMÍREZ Departamento de Mecánica de Medios Continuos, Teoría de Estructuras e Ingeniería

Más detalles

MATEMÁTICAS III CICLO COMÚN III PARCIAL UNIDDA DIDÁCTICA #3 FUNCIÓN CUADRÁTICA RESOLUCIÓN DE PROBLEMAS APLICANDO ECUACIONES CUADRÁTICAS

MATEMÁTICAS III CICLO COMÚN III PARCIAL UNIDDA DIDÁCTICA #3 FUNCIÓN CUADRÁTICA RESOLUCIÓN DE PROBLEMAS APLICANDO ECUACIONES CUADRÁTICAS UNIDDA DIDÁCTICA #3 CONTENIDO FUNCIÓN CUADRÁTICA RESOLUCIÓN DE PROBLEMAS APLICANDO ECUACIONES CUADRÁTICAS OBJETIVOS Conocer la definición de la función cuadrática. Estudiar las propiedades de las funciones

Más detalles

ESCUELA TECNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. MADRID CURSO 2010/2011 PUENTES I PRACTICA 1

ESCUELA TECNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. MADRID CURSO 2010/2011 PUENTES I PRACTICA 1 CURSO 2010/2011 PUENTES I PRACTICA 1 En la figura se muestra la sección transversal de un puente formado por cinco vigas prefabricadas doble T de hormigón pretensado separadas 2,635 metros entre sí. La

Más detalles

Academia Ingnova ÍNDICE 3. EJEMPLO BÁSICO DE UNA VIGA EN VOLADIZO Introducción...

Academia Ingnova ÍNDICE 3. EJEMPLO BÁSICO DE UNA VIGA EN VOLADIZO Introducción... CURSO BÁSICO ANSYS ÍNDICE 3. EJEMPLO BÁSICO DE UNA VIGA EN VOLADIZO... 2 3.1. Introducción... 2 3.2. Resolución de una viga en voladizo utilizando el programa de cálculo ANSYS... 2 3.2.1. Modelado de la

Más detalles

Aplicación del Principio de Conservación de la Energía y del Teorema de la Carga Unidad para la obtención de movimientos

Aplicación del Principio de Conservación de la Energía y del Teorema de la Carga Unidad para la obtención de movimientos Aplicación del Principio de Conservación de la Energía y del Teorema de la Carga Unidad para la obtención de movimientos Apellidos, nombre Basset Salom, Luisa ([email protected]) Departamento Centro Mecánica

Más detalles

SÓLIDOS SOLICITADOS A CARGA AXIAL.

SÓLIDOS SOLICITADOS A CARGA AXIAL. SÓLIDOS SOLICITADOS A CARGA AXIAL. 1.- Definición. Se define como Sólido Solicitado a Carga Axial, a un sólido de eje recto, el cual se denomina eje longitudinal o eje axial, y en el que dicha dimensión

Más detalles

TEMA II CENTRO DE GRAVEDAD Y CENTROIDES

TEMA II CENTRO DE GRAVEDAD Y CENTROIDES Universidad de los Andes Facultad de Ingeniería Departamento de Ciencias Aplicadas y Humanísticas. Mecánica Racional 10 TEMA II CENTRO DE GRAVEDAD Y CENTROIDES Apuntes de clases, de la profesora Nayive

Más detalles

1.1. De los momentos de segundo orden y los ejes principales de inercia

1.1. De los momentos de segundo orden y los ejes principales de inercia I 1. ASPECTOS TEÓRICOS 1.1. De los momentos de segundo orden y los ejes principales de inercia Sea una sección plana de área como la de la figura 1 definido cualquier pareja de ejes perpendiculares en

Más detalles

CONCLUSIONES 5. CONCLUSIONES.

CONCLUSIONES 5. CONCLUSIONES. 5. CONCLUSIONES. Entre los sistemas de referencia empleados para el cálculo de las fuerzas elásticas, para un elemento finito de dos nodos que utiliza la teoría de Euler- Bernoulli [11], basándose en las

Más detalles

UNIDAD 5 Parte 2 de 3. Bases Excéntricas

UNIDAD 5 Parte 2 de 3. Bases Excéntricas UNIDAD 5 Parte 2 de 3 Bases Excéntricas Bibliografía consultada Manual de cálculo de estructuras de hormigón armado Zapatas de hormigón Armado Hormigón Armado Apuntes Cátedra Hormigón I-II Reglamento CIRSOC

Más detalles

Asentamiento de cimentación de un silo circular

Asentamiento de cimentación de un silo circular Manual de Ingeniería No. 22 Actualización: 09/2016 Asentamiento de cimentación de un silo circular Programa: Archivo: MEF Demo_manual_22.gmk El objetivo de este manual es describir la solución para asentamiento

Más detalles

UNIDAD 4. La Parábola

UNIDAD 4. La Parábola UNIDAD 4. La Parábola Practicando con la parábola Juan Adolfo Álvarez Martínez Autor Es el lugar geométrico de un punto que se mueve en un plano de tal manera que su distancia a una recta fija, situada

Más detalles

1. Hallar por el método de Cross los diagramas de momento flector y de esfuerzo

1. Hallar por el método de Cross los diagramas de momento flector y de esfuerzo 1. allar por el método de ross los diagramas de momento flector y de esfuerzo cortante, así como las reacciones de la estructura de la figura, empleando el método de superposición en las barras cargadas.

Más detalles

MCU. Transmisión de movimiento. Igual rapidez. tangencial. Posee. Velocidad. Aceleración centrípeta variable. Velocidad angular constante

MCU. Transmisión de movimiento. Igual rapidez. tangencial. Posee. Velocidad. Aceleración centrípeta variable. Velocidad angular constante DINÁMICA ROTACIONAL MCU Transmisión de movimiento Igual rapidez tangencial Posee 1 R1 2 R2 Velocidad angular constante Velocidad tangencial variable Aceleración centrípeta variable Fuerza centrípeta variable

Más detalles

II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL

II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL 2.1.- Introducción Los métodos fundamentales disponibles para el analista estructural son el método de la flexibilidad (o de las fuerzas), y el método

Más detalles

ANÁLISIS DE UN RETICULADO

ANÁLISIS DE UN RETICULADO 1. Antecedentes: 1.1. Reticulado: 1.1.1. Características: ANÁLISIS DE UN RETICULADO Presentan una solución práctica y además de ser más económicos que otro tipo de estructuras por lo cual son muy usados

Más detalles

Estatica. Carrera: Participantes Academia de Ing. Civil del ITN. Asignaturas Temas Asignaturas Temas Resistencia de Materiales.

Estatica. Carrera: Participantes Academia de Ing. Civil del ITN. Asignaturas Temas Asignaturas Temas Resistencia de Materiales. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Estatica Ingeniería Civil Clave de la asignatura: Horas teoría-horas práctica-créditos 3 2 8 2.- HISTORIA DEL PROGRAMA Lugar y fecha de elaboración

Más detalles