Hacer ejercicios 4 y 48, del libro
|
|
|
- Antonio Peña Saavedra
- hace 8 años
- Vistas:
Transcripción
1 3º ESO E UNIDAD 4.- SUCESIONES. PROGRESIONES PROFESOR: RAFAEL NÚÑEZ Concepto de sucesión Definición de sucesión Una sucesión de números reales es una lista interminable de números que sigue una regla de formación de forma que a partir de los números dados y la regla de formación podemos obtener los siguientes números de la sucesión. 7, 4,,, es una sucesión de números que se forma por la regla de restar 3. Los siguientes números de la sucesión se obtendrían restando 3. Los números de una sucesión se llaman términos de la sucesión y se representan por a, a, a 3, etc. En la sucesión del ejemplo anterior, a 7, a 4, a 3, a 4, etc, etc. La regla de formación puede ser muy variada. Por ejemplo, sumar, restar, multiplicar o dividir por un número, elevar al cuadrado o al cubo, hallar la raíz cuadrada, formar la sucesión de las potencias de, de 3, etc, etc Ejercicio Averigua la regla de formación de las siguientes sucesiones y completa los huecos: a) 64, 6,,, 4,,. b) 5, 4 5, 9 5,,, 36, c), 8, 7, 64,,... 5 Ejercicio Observa la siguiente sucesión de triángulos y calcula cuántos puntos formarán las figuras 4ª, 5ª y 6ª Hacer ejercicios 4 y 48, del libro Término general de una sucesión Es una fórmula que nos permite calcular un término cualquiera de la sucesión sustituyendo la letra n por un número natural determinado. El término general se suele representar por a n, b n, etc 3n 4 Si el término de una sucesión es a n n se sustituye n 5. El quinto término sería entonces: a 5 y queremos calcular, por ejemplo, el quinto término Si tenemos la fórmula del término general podemos calcular cualquier término sin tener que conocer los términos anteriores a él. Por ejemplo, en la sucesión bn 7n 4 b Ejercicio 3 Calcula el vigésimo término de la sucesión a n 5. n 3 Hacer ejercicio 43, del libro Sucesiones recurrentes Son aquellas sucesiones en las que para obtener un término usamos los términos anteriores a él y una regla de recurrencia. Si a 4, a 7 y la regla de recurrencia es sumar los dos términos anteriores, los términos de la sucesión serían: 4, 7,, 8, 9, 47,..
2 La regla de recurrencia puede venir dada por una fórmula, llamada fórmula de recurrencia. Si a 6, a 40 y la fórmula de recurrencia es a n a n 5.a n, entonces según la fórmula cada término se forma restándole al término anterior 5 veces el anterior a él a a 3 0 a a 4 90 etc, etc Ejercicio 4 Descubre la regla de recurrencia de las siguientes sucesiones y calcula tres términos más a), 5,, 8, 5, 5,... b) 3,, 6,,... c) 7, 8,, 9, 0, 9,... Hacer ejercicio de la ficha y ejercicios 49 y 50, del libro.- Progresiones aritméticas y geométricas Progresiones aritméticas Una progresión aritmética (p.a.) es una sucesión cuya regla es sumar un mismo número d, llamado diferencia de la progresión. Ejemplos: 7,, 7,, es una p.a. En este ejemplo, el número que sumamos es 5. La diferencia es d 5 5,, 9, 6, 3,. es una p.a.. En este ejemplo, se resta 3 a cada término, es decir, se suma 3. La diferencia es d 3 La diferencia de una p.a. se puede obtener restando a cada término el término anterior. Término general de una p.a. En una p.a. cada término es igual al término anterior más d. Luego: a +d a 3 a +d (a +d)+d +d a 4 + 3d etc, etc Por tanto, la fórmula del término general de una p.a. es: a n + (n )d 7,, 5,,. es una p.a. La diferencia es d 6 Sustituimos en la fórmula del término general, a 7, d 6 a n 7 + (n ).6 a n 7 + 6n 6 a n 6n 3 Progresiones geométricas Una progresión geométrica (p.g.) es una sucesión cuya regla es multiplicar por un mismo número r, llamada razón de la progresión. Ejemplos:, 6, 8, es una p.g. El número por el que multiplicamos es 3. La razón es r 3 80, 40, 0, 0,. es una p.g. Cada término se divide entre, luego se está multiplicando por. La razón es r La razón de una p.g. se puede obtener dividiendo cada término entre el término anterior. Término general de una p.g. En una p.g. cada término es igual al término anterior multiplicado por r. Luego: a. r a 3 a. r (a. r). r. r a 4. r 3 etc, etc Por tanto, la fórmula del término general de una p.g. es: a n. r n 3, 6,, es una p.g. La razón es r Sustituimos en la fórmula del término general, a 3, r a n 3. ( ) n Página
3 Ejercicio 5 Averigua si las siguientes sucesiones son p.a. o p.g., después halla a n y a 8 : a) 3,, 6, 8,... b) 0 ; 6,5 ; 3 ; 0,5 ;... c) /3, /3, 4/3 ;... Ejercicio 6 Halla el término general de las siguientes sucesiones: a) Los números impares b) Las potencias de 7 de exponente natural c) Los múltiplos de 6 Ejercicio 7 A continuación se muestra la construcción de las cuatro primeras figuras de una serie utilizando cuadraditos grises. a) Cuántos cuadraditos grises harán falta para dibujar la pieza que ocupa el lugar 00? b) Y para dibujar la pieza que ocupa el lugar n? Ejercicio 8 Se tiene una cuba de vino y cada día se saca la mitad de su contenido. El de octubre había 048 litros. Qué cantidad de vino había el día del Pilar? Ejercicio 9 En un cuadrilátero de 46 cm de perímetro, los lados están en p.a. de diferencia 3. Cuánto miden? Ejercicio 0 Una aldea tiene actualmente 600 habitantes. Suponiendo que la población cada año decrece el 0,8%. Qué población tendrá en el 05? Ejercicio Los pesos de los miembros de una familia con dos hijos están en p.a. Entre todos pesan 75 kg. La madre es la que más pesa, 80 kg. Cuánto pesa cada uno? Ejercicio El número de bacterias que hay en un recipiente está aumentando un 5% cada hora. Si al pasar hora hay bacterias Cuántas bacterias habrá al cabo de 6 horas? Ejercicio 3 Una pelota botando alcanza una altura de 4 m en el primer bote. En cada bote la altura es las 3/5 partes que en el bote anterior. Qué altura, en cm, alcanzará en el octavo bote? Ejercicio 4 Halla el término general de una p.a. en los siguientes casos: a) d 7, a3 7 b) a 8 a8 4 c) a5 3 a6 7 d) a7 5 a 30 Ejercicio 5 Halla el lugar que ocupa el término 57 en una p.a. en la que a9 9 y a0 73 Ejercicio 6 Halla el término general de una p.g. en los siguientes casos: a) r, a7 30 b) a a6 486 c) a6 35 a7 565 d) a4 4 a9 9 Ejercicio 7 Halla el lugar que ocupa el término 30 en una p.g. en la que a3 0, a9 80 Hacer ejercicios del al de la ficha y ejercicios 7, 8, 30, 3, 3, 54, 80, 8, 8 y 96, del libro Página 3
4 3.- Suma de los primeros términos en las progresiones Suma de los primeros términos de una p.a. Tomemos los primeros términos de una p.a. cualquiera, por ejemplo: 5, 8,, 4, 7, 0, 3, 6 Observa que En general, en cualquier p.a. a, a,..., a n, a n a a... Usando esta propiedad, se obtiene una fórmula para calcular la suma, Sn, de los "n" primeros términos de una p.a. : + a +... a n a + a (a ) + (a ) (a + a )+ (a n + a ) (a ).n Despejando: Sn () a a n n Hallemos la suma de los 30 primeros términos de la sucesión 50, 4, 3,. (a a).30 S 30. Observa que a 50, d 9. Luego a d ( 9) (50 ).30 Por tanto, S Suma de los primeros términos de una p.g. Vamos a obtener una fórmula para calcular la suma,, de los n primeros términos de una p.g. Observa que + a +... r. r.a + r.a r.a n + r.a n Luego r. a + a Restando: r. a n+ a. r n Sacando factor común en el primer miembro y a en el º miembro: ( r).. ( r n ) Sn n a.() r r Hallemos la suma de los primeros términos de la p.g. : 3, 6,, 4,... a.( r) 3.( ) S. Observa que a r 3, r. Luego S Página 4 3.( 4096) 85
5 Ejercicio 8 Ana y Roberto son dos multimillonarios y acuerdan lo siguiente: Ana le dará a Roberto 000 el primer día del mes, 500 el º día, 000 el tercer día, 500 el 4º día y así hasta llegar al día 30 del mes. Roberto, en cambio sólo le dará a Ana el primer día, el º día, 4 el tercer día, 8 el 4º día y así hasta llegar al día 30 del mes. Quién obtendrá mayor cantidad de dinero? Suma de los infinitos términos de una p.g. Cuando la razón de una p.g. es, en valor absoluto, menor que se puede calcular la suma de los infinitos términos de dicha p.g. Para ello basta con observar que si r < y n es infinitamente grande y r n es aproximadamente cero y podemos eliminarlo en la fórmula de la suma de los n primeros términos. Por tanto, la fórmula de la suma de los infinitos términos de una p.g. en la que r <, es : S a( 0) r a S r Hallemos la suma de los infinitos términos de la p.g.: 8, 4,, Observa que a 8, r 0,5. Luego 8 8 S 0,5 0,5 6 Ejercicio 9 En una sucesión de triángulos, cada triángulo tiene una superficie que es los 3/4 del triángulo anterior. Se sabe que el área del primer triángulo es 48 cm. a) Cuánto vale la suma de las áreas de los 5 primeros triángulos? b) Cuánto vale la suma de los infinitos triángulos? Hacer ejercicios del al 5 de la ficha y ejercicios, 3, 6, 35, 37 y 9, del libro Página 5
EJEMPLO OBJETIVO 1 CALCULAR TÉRMINOS EN UNA SUCESIÓN NOMBRE: CURSO: FECHA:
OBJETIVO 1 CALCULAR TÉRMINOS EN UNA SUCESIÓN NOMBRE: CURSO: ECHA: SUCESIÓN Una sucesión es un conjunto ordenado de números reales: a 1, a 2, a 3, a 4 Cada uno de los números que forman la sucesión es un
Alumno Fecha Actividad 13 Expresiones algebraicas 1º ESO
Alumno Fecha Actividad 1 Expresiones algebraicas 1º ESO Las expresiones que resultan de combinar números y letras relacionándolos con las operaciones habituales se llaman expresiones algebraicas y se utilizan
SUCESIONES Y PROGRESIONES 3º ESO MATEMÁTICAS
SUCESIONES Y PROGRESIONES 3º ESO MATEMÁTICAS Una sucesión es un conjunto de números ordenados que siguen alguna regla. Cada uno de estos números se llama término y se representa por a n, donde n es el
La suma de n términos de una progresión. aritmética es: Sn= El producto de n términos de una progresión. geométrica es: P = ( a a ).
Progresiones INTRODUCCIÓN Las sucesiones aparecen en diversos campos, tales como la medicina (evolución de un cultivo bacteriano), genética (distribución de los caracteres), informática (utilización de
TEMA 3: PROGRESIONES
3. Sucesiones TEMA 3: PROGRESIONES A partir de las sucesiones del libro de la página 60, escribir cuatro términos más:., 5, 9, 3, 7,, 5, 9, 33............................ Vamos sumando cuatro siempre!
1 Sucesiones. Unidad 5. Secuencias numéricas ESO. Página 61
1 Sucesiones Página 61 1. Añade los tres términos siguientes en cada una de estas sucesiones: a) 10, 15, 0, 5, 30, b) 80, 70, 60, 50, 40, c) 3, 6, 1, 4, 48, d) 1, 3, 4, 6, 7, e), 5, 7, 1, 19, f ) 4, 6,
Problemas resueltos. - Términos equidistantes. 2. Hallar el décimo tercer término en la P.G.:
S Progresión geométrica Progresión geométrica Decimos que una sucesión de números están en progresión geométrica (P.G. cuando cada uno de ellos es igual al anterior multiplicado por una cantidad constante
Capítulo 3: POTENCIAS Y RAÍCES. TEORÍA. Matemáticas 1º y 2º de ESO
19 1. POTENCIAS Capítulo 3: POTENCIAS Y RAÍCES.. Matemáticas 1º y 2º de ESO 1.1. Concepto de potencia. Base y exponente Ejemplo 1: María guarda 5 collares en una bolsa, cada 5 bolsas en una caja y cada
Fíjate bien. En el lenguaje algebraico podemos usar las letras que queramos, x, y, z, a, b, c, m, n, p, etc, etc.
2º ESO UNIDAD 5.- EXPRESIONES ALGEBRAICAS ------- 1.- EXPRESIONES ALGEBRAICAS. VALOR NUMÉRICO Objetivo 1.- Traducir del lenguaje natural al algebraico en diversas situaciones Objetivo 2.- Calcular valores
7 4 = Actividades propuestas 1. Calcula mentalmente las siguientes potencias y escribe el resultado en tu cuaderno: exponente. base.
21 21 CAPÍTULO : Potencias y raíces. Matemáticas 2º de ESO 1. POTENCIAS Ya conoces las potencias. En este aparato vamos a revisar la forma de trabajar con ellas. 1.1. Concepto de potencia. Base y exponente
CALCULAR TÉRMINOS EN UNA SUCESIÓN
3 CALCULAR TÉRMINOS EN UNA SUCESIÓN REPASO Y APOYO OBJETIVO 1 SUCESIÓN Una sucesión es un conjunto ordenado de números reales: a 1, a 2, a 3, a 4 Cada uno de los números que forman la sucesión es un término.
GBG ejerciciosyexamenes.com 1
PROGRESIONES PROGRESIONES ARITMÉTICAS 1. Hallar los términos que se indican de las siguientes progresiones aritméticas: a) El término 20 en: 1, 6, 11, 16... b) El término 6 en: 3, 7, 11, 15... c) El 12
E J E R C I C I O S R E S U E L T O S D E S U C E S I O N E S
E J E R C I C I O S R E S U E L T O S D E S U C E S I O N E S EJERCICIO : Halla el término general de cada una de las siguientes sucesiones: a), 8 7, 5, 5,... b) 7, 7, 5 7, 7,... c),5, 0, 7 5,... a), 8
Sucesiones y Progresiones. Guía de Ejercicios
. Módulo 5 Sucesiones y Progresiones Guía de Ejercicios Índice Unidad I. Sucesiones Ejercicios Resueltos... pág. 02 Ejercicios Propuestos... pág. 06 Unidad II. Sumatorias de sucesiones Ejercicios Resueltos...
SUCESIONES Y SERIES MATEMÁTICAS
SUCESIONES Y SERIES MATEMÁTICAS SUCESION.- Es un conjunto de número ordenados de modo que uno es el primer término, otro es el segundo término, otro el tercero y así sucesivamente. Por ejemplo: a) 1,2,3,
PROGRESIONES GEOMÉTRICAS
PROGRESIONES GEOMÉTRICAS. Hallar el número de términos y la razón de una progresión geométrica cuyo primer término es 4 el último 6500 y la suma de todos sus términos 784.. La razón de una progresión geométrica
Progresiones CLAVES PARA EMPEZAR VIDA COTIDIANA. a) b) c) d) a) d) b) e) c) f)
CLAVES PARA EMPEZAR a) b) c) d) a) d) b) e) c) f) VIDA COTIDIANA Contando espacios, «MAÑANA VOY A LA FIESTA» tiene 22 caracteres. Además, hay que contar con un espacio final para la respuesta. Cada respuesta
PROGRESIONES. Matemática IVº. Indicador: Relaciona los elementos de una progresión. PROGRESIONES ARITMÉTICAS. n 2 1 n. a n = a 1 + (n 1) d
Indicador: Relaciona los elementos de una progresión. PROGRESIONES Dentro de las sucesiones existen dos modelos muy importantes y corresponden al nombre genérico de progresiones. PROGRESIONES ARITMÉTICAS
Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:
Una progresión es geométrica, si cada termino después del primero se obtiene multiplicando el anterior por un valor constantes Este valor constante se llama razón geométrica (q) En general: a a : a...
SUCESIONES. Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,...
SUCESIONES DEFINICIÓN DE SUCESIÓN Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,... Los elementos de la sucesión se llaman términos
ECUACIONES DE PRIMER GRADO. 3º ) Pasa todos los términos que contenga la incógnita a un lado de la igualdad y los demás al otro lado.
ECUACIONES DE PRIMER GRADO Para resolver las ecuaciones: 1º ) Quitar denominadores, si los tiene. Para ello se multiplica ambos lados de la igualdad por el mínimo común múltiplo de los denominadores. º
Expresiones algebraicas (1º ESO)
Epresiones algebraicas (º ESO) Lenguaje numérico y lenguaje algebraico. El lenguaje en el que intervienen números y signos de operaciones se denomina lenguaje numérico. Lenguaje usual Lenguaje numérico
u n i d a d Sucesiones. Progresiones aritméticas y geométricas
u n i d a d Sucesiones. Progresiones aritméticas y geométricas Sucesiones Una sucesión es un conjunto ordenado de números u objetos, llamados términos. Cada término de la sucesión se representa con una
1. Progresiones aritméticas
1 PROGRESIONES ARITMÉTICAS 1 1. Progresiones aritméticas Una progresión aritmética es una sucesión en la que cada término es igual al anterior más un número constante llamado diferencia de la progresión.
LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.
Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero
Sucesiones de números reales
Sucesiones de números reales Llamaremos sucesión de números reales a una función a : IN IR. Notaremos a(n) =a n. Para referirnos a la sucesión cuyo término n-ésimo es a n usaremos la notación {a n }. 1.
PÁGINA 30. Una actividad A cuál de las sucesiones de la derecha corresponde esta torre? Corresponde a la sucesión a).
PÁGINA 30 Una actividad A cuál de las sucesiones de la derecha corresponde esta torre? a) 1, 5, 9, 13, 17, b) 170, 10, 70, 0, 30, 80, c), 4, 8, 16, 3, 64, d) 1, 3, 9, 7, 81, 43, e) 1, 1,, 3, 5, 8, f) 1,
Bloque 1. Aritmética y Álgebra
Bloque 1. Aritmética y Álgebra 2. Los números enteros 1. Los números enteros Es el conjunto de los números negativos, el cero y los positivos, y se representan como: Z...,-5,-4,-3,-2,-1,0, 1, 2, 3, 4,
Progresiones Geométricas. tal que. a n+1 a n. = r. para todo entero positivo n.
www.matebrunca.com Profesor Waldo Márquez González Progresiones Geométricas 1 Progresiones Geométricas Una sucesión a 1, a 2, a,..., a n,... es una progresión geométrica si y sólo si si existe un número
IES FONTEXERÍA MUROS. 18-X-2013 Nombre y apellidos:...
IES FONTEXERÍA MUROS MATEMÁTICAS 2º E.S.O-A (Desdoble 1) 1º Examen (1ª Evaluación) 18-X-201 Nombre y apellidos:... 1. Contesta estas cuestiones: a) Qué es un monomio?. Un monomio es una expresión algebraica
5 4 = Potencias de uno y de cero Una potencia, de cualquier base distinta de cero, elevada a cero es igual a 1. exponente. base.
CAPÍTULO 3: POTENCIAS Y RAÍCES 1. POTENCIAS 1.1. Concepto de potencia. Base y exponente María guarda 5 collares en una bolsa, cada 5 bolsas en una caja y cada 5 cajas en un cajón. Tiene 5 cajones con collares,
a) x + 7 = 2 x = 2 7 Solución: x = 5
º ESO REFUERZO DE MATEMÁTICAS UNIDAD.- ECUACIONES Y SISTEMAS CURSO 0/0 Objetivo.- Usar las reglas de equivalencia para despejar variables en fórmulas Reglas de equivalencia. Para despejar una letra en
POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO
POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO Dado que los polinomios se utilizan para describir curvas de diferentes tipos, la gente los utiliza en el mundo real para dibujar curvas. Por ejemplo,
2. Calcula la suma de los 20 primeros términos en cada una de las sucesiones anteriores.
TRABAJO DE RECUPERACIÓN DE MATEMÁTICAS PENDIENTES DE 3º ESO (ACADÉMICAS) ª EVALUACIÓN CURSO: 4º ESO SUCESIONES 1. Di si las siguientes sucesiones son aritméticas o geométricas, calcula el término general
Sucesiones. Concepto de sucesión. Determinación de una sucesión: Por el término general. Por una ley de recurrencia. a 1, a 2, a 3,...
Concepto de sucesión Sucesiones Se llama sucesión a un conjunto de números dispuestos uno a continuación de otro. a 1, a 2, a 3,..., a n 3, 6, 9,..., 3n Los números a 1, a 2, a 3,...; se llaman términos
APÉNDICE MATEMÁTICO DEL MÓDULO DE: GESTIÓN FINANCIERA
APÉNDICE MATEMÁTICO DEL MÓDULO DE: GESTIÓN FINANCIERA 1º CURSO DEL CICLO DE GRADO SUPERIOR DE ADMINISTRACIÓN Y FINANZAS. CONTENIDO: Números enteros Fracciones Potencias Igualdades algebraicas notables
COLEGIO INTERNACIONAL TORREQUEBRADA. Departamento de matemáticas. CUADERNO DE VERANO MATEMÁTICAS 1º ESO ALUMNO: Cuaderno de Verano Matemáticas 1ºESO
CUADERNO DE VERANO MATEMÁTICAS 1º ESO ALUMNO: OPERACIONES COMBINADAS: En estas operaciones en caso que haya paréntesis o corchetes, deberás realizar primero las operaciones indicadas dentro de ellos. Seguirás
TEMA 3. Algebra. Teoría. Matemáticas
1 1 Las expresiones algebraicas Las expresiones algebraicas son operaciones aritméticas, de suma, resta, multiplicación y división, en las que se combinan letras y números. Para entenderlo mejor, vamos
UN PAQUETE DE PROBLEMAS DE DIVISIBILIDAD
UN PAQUETE DE PROBLEMAS DE DIVISIBILIDAD AUTORAS: PATRICIA CUELLO Y ADRIANA RABINO 1. Múltiplo de 7 A una persona cuya edad oscila entre 9 y 100 años se le pide que escriba su edad 3 veces consecutivas,
Partes de un monomio
Monomios Un monomio es una epresión algebraica en la que la únicas operaciones que afectan a las letras son la multiplicación y la potencia de eponente natural. Son monomios: NO son monomios: 1 yz 1 abc
TEMA 3. ECUACIONES DE 1 er GRADO CON UNA INCÓGNITA.
TEMA 3. ECUACIONES DE 1 er GRADO CON UNA INCÓGNITA. 3.1 ECUACIONES Una ecuación es una epresión algebraica relacionada mediante el signo =, en la que las variables se denominan incógnitas. Llamamos primer
Enunciados de los problemas (1)
Enunciados de los problemas (1) Problema 1. El peso de tres manzanas y dos naranjas es de 255 gramos. El peso de dos manzanas y tres naranjas es de 285 gramos. Si todas las manzanas son del mismo peso
TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0
Ficha 0 Un monomio es una expresión algebraica formada por el producto de un número, llamado coeficiente, por una o más variables con exponente natural o cero, llamadas parte literal. El grado es la suma
FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.
FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto
PROGRESIONES ARITMÉTICAS
PROGRESIONES ARITMÉTICAS 1. La suma de los tres primeros términos de una progresión aritmética es 12 y la razón 16. Calcula el primer término. : a 1 + a 2 + a 3 = 12 d = 16 a1 =? a2 = a1 + d a3 = a2 +
EJERCICIOS Y PROBLEMAS RESUELTOS
Ecuaciones de Segundo Grado -- página 1 EJERCICIOS Y PROBLEMAS RESUELTOS Ejercicio 1: Indica si son ecuaciones de segundo grado las siguientes ecuaciones: a) 5 + 8 + b) + + ( )( + ) c) + 1 a) El primer
ECUACIONES Y SISTEMAS
ECUACIONES Y SISTEMAS 1. ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA. Puedes observar en la figura que los platillos de la balanza están equilibrados, de modo que se puede establecer una relación de igualdad
LOGARITMO. Una perfecta comprensión de estas dos expresiones, solucionan la mayoría de los problemas.
LOGARITMO En esta fase de nuestro estudio vamos a profundizar un poco más de lo que ya estudiamos en aritmética. La logaritmación es una operación inversa de la potenciación, es decir: Siendo la potencia...
ECUACIONES E INECUACIONES
ECUACIONES E INECUACIONES 1.- Escribe las expresiones algebraicas que representan los siguientes enunciados: a) Número de ruedas necesarias para fabricar x coches. b) Número de céntimos para cambiar x
Apellidos: Nombre: Curso: 2º Grupo: A Día: 4-X-2015 CURSO ) D = ( 4 2
EXAMEN DE MATEMATICAS II 1ª EVALUACIÓN Apellidos: Nombre: Curso: 2º Grupo: A Día: 4-X-2015 CURSO 2015-16 Opción A 1.- Considera las matrices A = ( 1 2 2 1 ), B = ( 2 1 0) y C = ( 1 5 0 ) a) [1,5 puntos]
EXPRESIONES ALGEBRAICAS. POLINOMIOS
Unidad didáctica 5 EXPRESIONES ALGEBRAICAS. POLINOMIOS. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 3º ESO. (2ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE 3º ESO. (2ª parte) 1 OPERACIONES CON POLINOMIOS 1.-) Dados los polinomios: P(x) = 3x 2 + 3x - 1, Q(x) = 3x 2 + 2x + 1 y R(x) = -x 3 + 2x 2 +1. Calcular: a) P - Q R
Sucesiones. Límite de una sucesión.
1 CONOCIMIENTOS PREVIOS. 1 Sucesiones. Límite de una sucesión. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Repasar las operaciones básicas
Medidas de tendencia central
Medidas de tendencia central Medidas de tendencia central Medidas de Posición: son aquellos valores numéricos que nos permiten o bien dar alguna medida de tendencia central, dividiendo el recorrido de
Una igualdad algebraica está formada por dos expresiones algebraicas separadas por el signo igual (=). Las igualdades algebraicas son de dos tipos:
7. Ecuaciones y sistemas de primer grado 1. Ecuaciones 1.1. Ecuaciones de primer grado 1.2. Transposición de términos 2. Sistemas de ecuaciones lineales 2.1. Ecuaciones lineales con dos incógnitas. 2.2.
Plan de Animación para la enseñanza de las Matemáticas
FIGURAS PLANAS CÓMO DETERMINAR AREAS DE FIGURAS PLANAS Las FIGURAS PLANAS son aquellas que están limitadas por líneas rectas o curvas, además de que todos sus puntos están contenidos en un solo plano.
=22; r = 7 ( ) + (2 + 99) + (3 + 98) +... ( ) + (n - 1)r Cuyo resultado será: a 20. Calcular: S = a 1, a 2, a 3
0 (5 0 ) = 5 050 Progresión aritmética Aquí una historia: - Término enésimo ( ) Se dice que cuando el gran matemático Gauss aún era pequeño e iba al colegio su maestro tenía la costumbre de poner problemas
TORNEO DE PRIMAVERA CUENCA DEL PLATA PRIMER NIVEL Primera Prueba
TORNEO DE PRIMAVERA 2012 CUENCA DEL PLATA PRIMER NIVEL Primera Prueba Lee con atención: 1- Es posible consultar libros o apuntes y usar calculadora. 2- Solamente se pueden usar los elementos propios. 3-
Expresiones algebraicas
Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas
PROGRESIONES ARITMÉTICAS Y GEOMETRICAS
PROGRESIONES ARITMÉTICAS Y GEOMETRICAS 1.- Hallar los términos que se indican de las siguientes progresiones aritméticas: a) El 12 en: -4, 0, 4, 8... b) El término 10 en: 2, 5, 8, 11... 2.- Hallar el término
Criterios de evaluación. Tema 1. Matemáticas. 5º Primaria
Criterios de evaluación. Tema 1. Matemáticas. 5º Primaria Leer, escribir, descomponer y comparar números de hasta nueve cifras Aproximar números naturales a distintos órdenes. Utilizar las aproximaciones
NÚMEROS FRACCIONARIOS (Antes Quebrados)
(Antes Quebrados) Un número fraccionario es una división sin efectuar. Ejemplo: Numerador Se lee tres cuartos Denominador El denominador indica las partes en que se divide la unidad; mientras el numerador,
Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº 1
TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los
Bloque 1. Aritmética y Álgebra
Bloque 1. Aritmética y Álgebra 11. Ecuaciones 1. Ecuaciones polinómicas de primer grado con una incógnita Al comparar dos expresiones algebraicas mediante el signo matemático igual (=), creamos una igualdad.
Una igualdad significa que dos cantidades o expresiones algebraicas tienen el mismo valor. a = b + c 3x 2 = 4x + 15
ECUACIONES ENTERAS DE PRIMER GRADO CON UNA INCÓGNITA El planteamiento de problemas de la vida real requiere para su solución, la representación de números reales mediante símbolos lo cual hace posible
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:
FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS
FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS PARA EMPEZAR, REFLEXIONA Y RESUELVE 1. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora: a) Cuántos
CURSO PROPEDÉUTICO 2017
CURSO PROPEDÉUTICO 2017 1 FUNDAMENTOS DE MATEMÁTICAS OBJETIVO Formar estudiantes altamente capacitados, que cuenten con competencias y conocimientos para construir y utilizar técnicas que contribuyan a
1 Resolución de ecuaciones de 2º grado y ecuaciones bicuadradas. 4ºESO.
1 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación parece,
UNIDAD 1: ESTUDIEMOS SUCECIONES ARITMETICAS Y GEOMETRICAS.
UNIDAD 1: ESTUDIEMOS SUCECIONES ARITMETICAS Y GEOMETRICAS. Sucesiones Una sucesión es un conjunto de números que son imagen de una función, cuyo dominio son, (normalmente), los enteros positivos, comenzando
Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9
Números Naturales Cuando comenzamos a contar los objetos, los años, etc, nos hemos encontrado con los números de forma natural; por eso a este conjunto de números así aprendidos se les denomina números
Tutorial MT-a3. Matemática Tutorial Nivel Avanzado. Probabilidad y estadística
12345678901234567890 M ate m ática Tutorial MT-a3 Matemática 2006 Tutorial Nivel Avanzado Probabilidad y estadística Matemática 2006 Tutorial Probabilidad y estadística Marco Teórico 1. Probabilidad P(#)
Progresiones aritméticas
Progresiones aritméticas Antes de empezar Es muy divertido construir figuras geométricas con estas pequeñas piezas imantadas. Construimos así más y más triángulos, que forman esta sucesión: 1, 4, 7, 10,
Sistemas de Ecuaciones Lineales. Método de Reducción.
Sistemas de Ecuaciones Lineales. Método de Reducción. 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Introducción a los Sistemas de Ecuaciones Lineales... 4 1.1 Tipos de sistemas
Polinomios. 100 Ejercicios para practicar con soluciones
Polinomios. 00 Ejercicios para practicar con soluciones El perímetro de un paralelogramo mide 70 cm. Si dos lados miden cm y los otros dos y cm, escribe la epresión de y en función de. + y 70 + y 5 y 5.
IMPORTANTE SOLO IMPRIMA LO QUE CORRESPONDA A EJERCICIOS, LAS EXPLICACIONES SON OPCIONALES
TRABAJO DE REFUERZO OPERACIONES CON EXPRESIONES ALGEBRAICAS Y GEOMETRIA PERIODO Chía, Mayo de 07 Señores Estudiantes Grados 0,07,0, a continuación encontrarán una serie de ejercicios que han sido bajados
3x = 12 x = 12 3 x = 4. Fíjate bien
1.- ECUACIONES Objetivo 1.- Usar las reglas de equivalencia para despejar incógnitas en una fórmula y aplicarlo para plantear y resolver problemas en diversos contetos Objetivo 2.- Resolver ecuaciones
TEMA 2. Números racionales. Teoría. Matemáticas
1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden
Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }
LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden
PROBLEMAS DE OPTIMIZACIÓN
1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello
ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I
ARITMÉTICA 1. Números naturales 2. Divisibilidad 3. Números enteros 4. Números decimales 5. Fracciones y números racionales 6. Proporcionalidad 7. Sistema métrico decimal 8. Sistema sexagesimal 9. Números
Unidad 8 Áreas y Volúmenes
Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros
POTENCIACIÓN Y RADICACIÓN
LECCIÓN 3: POTENCIACIÓN Y RADICACIÓN 3.1.- POTENCIAS La potenciación es la operación que permite obtener el valor de una potencia. Una potencia es un producto de factores iguales. TÉRMINOS DE UNA POTENCIA
NIVEL 1 (6.º y 7.º grado)
NIVEL 1 (6.º y 7.º grado) 26.ª OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA Nombre y Apellido:.............................................. Colegio:.......................... Grado/Curso:............ E-mail:..............
Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares.
1.- Divisibilidad Teoría (resumen) Múltiplos de un número. Son aquellos que se obtienen al multiplicar dicho número por los números naturales 1, 2, 3,. Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12,
Tema 7. Problemas de ecuaciones de primero y segundo grado
Mat º ESO Tema 7. Problemas de ecuaciones de primero y segundo grado Llámale x La x es la letra más famosa entre los números. La letra x suele emplearse para sustituir a un número del que no se sabe su
Matemáticas B 4º E.S.O.- Ecuaciones, Inecuaciones y Sistemas. 1
Matemáticas B 4º E.S.O.- Ecuaciones, Inecuaciones y Sistemas. 1 ECUACIONES INECUACIONES Y SISTEMAS ECUACIONES Una ecuación es una propuesta de igualdad en la que interviene alguna letra llamada incógnita.
Progresiones. obra incluyó el estudio de las progresiones aritméticas, que no trató Euclides cuatrocientos años antes.
Progresiones Las progresiones geométricas fueron tratadas por primera vez, de forma rigurosa, por Euclides, matemático griego del siglo iii a.c. Fue el fundador y primer director de la gran escuela matemática
2. Determine cuántos términos consecutivos a partir de ), en la progresión #ß %ß ' 11 ß )ß "!ß â se deben considerar para que la suma sea %*%.
1. Halle el décimo término de la progresión: %ß (ß "!ß Þ Þ Þ 2. Determine cuántos términos consecutivos a partir de ), en la progresión ß %ß ' 11 ß )ß "!ß â se deben considerar para que la suma sea %*%.
Es un producto de factores iguales. Ejemplos:
Es un producto de factores iguales. Ejemplos: 3 3 3 3 3 3 3 3 6 6 6 6 6 Abreviadamente escribiríamos: 3 3 3 3 3 3 3 3 = 3 8 6 6 6 6 6 = 6 5 Y leeríamos: 3 8 = 3 elevado a 8 6 5 = 6 elevado a 5 En una potencias
I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS
TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los
PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS
PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS 1. Calcula el término que ocupa el lugar 100 de una progresión aritmética cuyo primer término es igual a 4 y la diferencia es 5. 2. El décimo término de una progresión
TEMA 6: EL LENGUAJE ALGEBRAICO
2009 TEMA 6: EL LENGUAJE ALGEBRAICO Tema para Primer Curso de Educación Secundaria Obligatoria. I.e.s de Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 06: EL LENGUAJE ALGEBRAICO. ECUACIONES
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE º E.S.O. (ª parte) NÚMEROS ENTEROS.-) Realiza las operaciones siguientes () (0) (-) ( ) (-) ( -) (-) ( -) (-) () - - - -0 - - - ( -) ( ) ( -) ( ) ( ) ( - ) ( - ) (
Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.
Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones
UNIDAD DE APRENDIZAJE I
UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.
EXPRESIONES ALGEBRAICAS.
EXPRESIONES ALGEBRAICAS. Se dice expresión algebraica aquella que está formada por números y letras unidos mediante signos. 4x 2 + 1 2 3y Observa que existen dos variables x e y. En la siguiente expresión
