PROGRESIONES ARITMÉTICAS Y GEOMETRICAS
|
|
|
- Óscar Revuelta Flores
- hace 9 años
- Vistas:
Transcripción
1 PROGRESIONES ARITMÉTICAS Y GEOMETRICAS 1.- Hallar los términos que se indican de las siguientes progresiones aritméticas: a) El 12 en: -4, 0, 4, 8... b) El término 10 en: 2, 5, 8, Hallar el término a10 en una progresión aritmética en la que a1 = 5 y la diferencia es d = -3. Sol: a) 40; b) 29 Sol: Completa la siguiente tabla: a1 a2 a3 a4 a5 a6 an Sol: 7,9,11,2n-1; 7,10,13,...,3n+1; 1,4,7,...,3n Calcula el primer término de una progresión aritmética que consta de 10 términos, si se sabe que el último es 34 y la diferencia es 3. Sol: En una progresión aritmética d = 5 y a25 = 110, hallar a20. Sol: a 20 = Cuántos términos tiene una progresión aritmética cuyo primer término es 8 y el último 36, si se sabe que la diferencia es 2. Sol: Interpolar los términos que se indican, de modo que resulte una progresión aritmética: a) Cuatro términos entre 15 y 30 b) Cuatro términos entre 15 y 5 Sol: a) d = 3; b) d = Halla la suma de los 12 primeros términos de una progresión aritmética sabiendo que a3 = 7 y a10 = 21. Sol: S = La suma de x números naturales consecutivos tomados a partir de 35 es Calcular x. Sol: x = Cuántos números impares consecutivos a partir de 1 es preciso tomar para que su suma sea igual a 1521?. Sol: 39 1
2 11.- Si consideramos 9 términos consecutivos de una progresión aritmética, a5 = 27, a7 = 39. Halla la suma de los 9 términos. Sol: Hallar el término décimo de la progresión: 2, 4, 8,... Sol: a 10 = Determinar los seis primeros términos de una progresión geométrica si los dos primeros valen 5 y 3, respectivamente. Sol: 5, 3, 9/5, 27/25, 81/125, 243/ En una progresión geométrica a10 = 64 y la razón es 1/2. Hallar el término octavo. Sol: a 8 = Dos términos consecutivos de una progresión geométrica son 54 y 81, respectivamente. Hallar el lugar que ocupan en la progresión, si el primer término vale 24. Sol: puestos 3 y En una progresión geométrica a5 = 2 y a7 = 8. Hallar la razón y los primeros 5 términos. Sol: a) r = 2; b) 1/8, 1/4, 1/2, 1, Halla el primer término de una progresión geométrica sabiendo que la razón es 1/2 y el octavo término es 17/64. Sol: Calcula la razón de una progresión geométrica donde el primer término es 5 y el quinto es Halla el primer término de una progresión geométrica de razón 3 y cuyo sexto término es 27. Sol: 3 Sol: 1/ Interpolar 6 términos entre 64 y 1/2 de modo que formen progresión geométrica. Sol: r = 1/2. 32, 16, 8, 4, 2, Halla la suma de los diez primeros términos de la progresión geométrica: 768, 384, Halla la suma de los seis primeros términos de la progresión geométrica: 1/4, 1/8, 1/ Halla la suma de los términos de las siguientes progresiones decrecientes e ilimitadas: a) 18, 6, 2, 2/3... b) 27, 9, 3, 1,... 2 Sol: 3069/2 Sol: 63/128 Sol: a) 27; b) 81/2
3 24.- Cuál es la suma de los 10 primeros términos de la sucesión: 2, 10, 50...? 25.- Cuánto es la suma de los infinitos términos de la sucesión: 6, 3, 3/2, 3/4...? Sol: Sol: Tres números en progresión geométrica suman 155 y su producto vale Calcular dichos números. Sol: 5, 25, 125 PROBLEMAS 27.- Un joven ahorra cada mes 5 más que el mes anterior. En 5 años sus ahorros sumarán Determinar: a) lo que ahorró el primer mes. b) lo que ahorró el último mes. Sol: a) 8, b) Un padre proyecta colocar en un baúl 1 el día que su hijo cumpla un año, e ir duplicando la cantidad sucesivamente en todos los cumpleaños. Cuánto tendrá que colocar el día que su hijo cumpla 18 años? Cuánto habrá en el baúl? Sol: a) , b) Una máquina costó Se calcula que al final de cada año sufre una depreciación igual al 15 % del valor que tiene al principio de ese año. Cuál será su valor al cabo de 5 años? Sol:3993, El número de bacterias de un cultivo está aumentando un 25 % cada hora. Si al principio había Cuántas bacterias habrá al cabo de 5 horas? Sol:915527, El valor de un auto se deprecia 18 % cada año. Su precio original fue Cuánto valdrá al cabo de 9 años? Sol:3184, Una ciudad tiene habitantes. La tasa de crecimiento de esa población es 8 % anual. Cuántos habitantes tendrá dentro de tres años? Sol:755827, El valor de una mercadería se deprecia 4 % cada año. Su precio original fue de 19000$. Cuánto valdrá al cabo de 4 años? Sol: 16137,58$ 34.- La población de una ciudad aumenta en 35 % cada 10 años. Si su población en 1940 era de habitantes, cuál será su población en el año 2000? Sol:242137, El teatro de un instituto tiene 25 asientos en la primera fila, 27 en la segunda, 29 en la tercera, y así sucesivamente. Cuántos asientos hay hasta la fila 15?. Sol: 585 asientos 36.- Una persona deposita 900 euros en una cuenta bancaria que le produce un 6 % de interés compuesto anual. Qué cantidad tendrá al cabo de 10 años?. Sol: 1611,76 3
4 37.- En una finca en forma de trapecio hay plantadas 19 filas de limoneros, en la primera hay 39 árboles y en la última, 93. Cuántos limoneros tiene la finca?. Cuántos árboles hay en la fila central?. Sol: 1254 limoneros; 66 árboles 38.- Durante los últimos diez años se ha realizado un censo forestal que consiste en contar cada año el número de árboles de un bosque, obteniéndose los siguientes resultados: 12545, 13172, 13831, 14522, 15249, 16011, 16811, 17652, 18535, a) Indica de qué tipo es la sucesión. b) Suponiendo que sigue esta tendencia, cuántos árboles tendrá el bosque el próximo año? Y dentro de cinco años? Sol: a) Es una progresión geométrica de razón 1,05; b) a 11 = árboles; a 15 = árboles Alicia ha depositado en un banco a un tipo de interés compuesto del 5% anual. Qué cantidad tendrá Begoña al cabo de 8 años? Qué beneficios habrá obtenido en dicho periodo de tiempo?. Sol: 22161,83 ; 7161, En un cine la segunda fila de butacas está a 10 m de la pantalla y la séptima fila a 15 m. En que fila debe sentarse una persona que le guste ver la pantalla a una distancia de 22 m? Sol: En la fila decimosexta 41.- En un campo hay 51 filas de árboles, cada fila tiene dos árboles menos que la siguiente y la fila vigésimo sexta tiene 57 árboles. a) Cuántos árboles tiene la primera fila? Y la última?. b) Cuál es el número total de árboles de ese campo?. Sol: a) a 1 = 109 árboles a 51 = 9 árboles; b) 3009 árboles 42.- A dos personas a las nueve de la mañana les han contado un secreto con la advertencia de que no se lo cuenten a nadie. Cada uno de ellos, al cuarto de hora, se lo ha contado solamente a tres amigos, por supuesto, de toda confianza, que no lo sabían y que un cuarto de hora después, se lo han contado, cada uno de ellos, a otros tres amigos. Cada uno de éstos, a su vez, lo vuelve a contar a otros tres. Y así sucesivamente cada cuarto de hora. Cuánta gente lo sabía a las dos de la tarde?. Sol: personas 43.- En una playa encontramos un puesto de alquiler de bicicletas con el siguiente anuncio: Primera hora: 4,5. Cada una de las siguientes horas: dos tercios de lo que costó la hora anterior. Si quieres alquilar una bicicleta desde las 10 de la mañana a las siete de la tarde, cuánto has de pagar?. Sol: 13, Alberto quiere ahorrar de la siguiente manera: la primera semana ahorraré 0,60, la segunda 0,72, la tercera 0,84, y así sucesivamente durante 15 semanas. Acaba de echar 1,92 en la hucha. Cuántas semanas le quedan para finalizar su plan de ahorro?. Sol: Le faltarán tres semanas 45.- Al comienzo de un año y del siguiente se depositan en un banco 6010 euros y al comienzo del tercer año se retiran euros. Qué cantidad de dinero queda en la cuenta si se había puesto a un 3 % de interés compuesto?. Sol: 546,3 euros 46.- Un comerciante coloca euros en el banco. Al cabo de 10 meses retira euros. Cuál ha sido el interés?. Sol: 7,3 % anual 4
5 47.- Un coronel está al mando de 5050 soldados y quiere formar con ellos un triángulo para una exhibición, de modo que la primera fila tenga un soldado, la segunda dos, la tercera tres, etc. Cuántas filas habrá?. Sol: 100 filas 48.- Tres números cuya suma es 36 están en progresión aritmética. Halla dichos números sabiendo que si se les suma 1, 4 y 43 respectivamente, los resultados forman una progresión geométrica. Sol: 1ªsol: 3, 12 y 21 2ªsol: 63, 12 y Tomar un folio de papel de seda que tenga un espesor de 0 1 mm; doblar el folio por la mitad, con lo que se obtienen dos cuartillas; doblar nuevamente, y se obtienen 4 octavillas con un grosor cuádruplo al folio. Suponiendo que la hoja inicial fuese tan grande que se pudiese repetir la operación 47 veces, podríamos alcanzar la Luna?(distancia de la Tierra a la Luna es de aproximadamente Km.) 50.- Una depuradora de aguas residuales recibe el agua con 50 gramos por litro de impurezas. En cada ciclo de depuración se eliminan los tres quintos de los residuos existentes en el agua. Cuántos ciclos son necesarios para reducir la cantidad de impurezas a menos de 2 gramos/litro? 51.- Un enfermo debe tomar una medicina durante 15 días aumentando la dosis diariamente hasta llegar a 8 5 g. El primer día ingiere 5 g.. Cuánto debe aumentar la dosis cada día? Progresiones aritméticas: cada término se obtiene a partir del anterior sumando una cantidad fija llamada diferencia. Conseguimos así una fórmula sencilla para el cálculo del término general y de la suma de n términos consecutivos: Progresiones geométricas: cada término se obtiene a partir del anterior, multiplicándolo por una cantidad fija llamada razón. Las formulas anteriores quedan ahora: Si la razón de la progresión es menor que 1, se puede aspirar a sumar todos los términos de la progresión geométrica mediante la siguiente fórmula: 5
GBG ejerciciosyexamenes.com 1
PROGRESIONES PROGRESIONES ARITMÉTICAS 1. Hallar los términos que se indican de las siguientes progresiones aritméticas: a) El término 20 en: 1, 6, 11, 16... b) El término 6 en: 3, 7, 11, 15... c) El 12
Hoja de problemas nº 5. Progresiones Aritméticas y Geométricas
Hoja de problemas nº 5 Progresiones Aritméticas y Geométricas 1. Calcula el término que ocupa el lugar 100 de una progresión aritmética cuyo primer término es igual a 4 y la diferencia es 5. 2. El décimo
PROGRESIONES. Matemática IVº. Indicador: Relaciona los elementos de una progresión. PROGRESIONES ARITMÉTICAS. n 2 1 n. a n = a 1 + (n 1) d
Indicador: Relaciona los elementos de una progresión. PROGRESIONES Dentro de las sucesiones existen dos modelos muy importantes y corresponden al nombre genérico de progresiones. PROGRESIONES ARITMÉTICAS
PROGRESIONES GEOMÉTRICAS
PROGRESIONES GEOMÉTRICAS. Hallar el número de términos y la razón de una progresión geométrica cuyo primer término es 4 el último 6500 y la suma de todos sus términos 784.. La razón de una progresión geométrica
PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS
PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS 1. Calcula el término que ocupa el lugar 100 de una progresión aritmética cuyo primer término es igual a 4 y la diferencia es 5. 2. El décimo término de una progresión
COLEGIO VILLA RICA DE COATZACOALCOS TURNO MATUTINO, CLAVE 30PBH0095Q COATZACOALCOS, ZONA 5 PERIODO ESCOLAR PROBLEMARIO 1
Nombre del alumno COLEGIO VILLA RICA DE COATZACOALCOS TURNO MATUTINO, CLAVE 30PBH0095Q COATZACOALCOS, ZONA 5 PERIODO ESCOLAR 2016-2017 PROBLEMARIO 1 Semestre y grupo Nombre de la materia Parcial 1º semestre
TEMA 5. SUCESIONES DE NÚMEROS REALES
TEMA 5. SUCESIONES DE NÚMEROS REALES 1. En cada una de las siguientes sucesiones añade tres términos y escribe el término general: a) 5, 10, 15, 20, 25,... b) 1, 4, 9, 16, 25,... c) 0, 3, 8, 15, 24,...
3º ESO PROGRESIONES. 1. Añade tres términos más a cada una de las siguientes sucesiones: a) b) c) d) e) f) g) h)
3º ESO PROGRESIONES 1. Añade tres términos más a cada una de las siguientes sucesiones: e) f) g) h) i) j) k) 2. Escribe los cuatro primeros términos y el décimo de las sucesiones de término general: a)
Área de Matemáticas. Curso 2014/2015 RELACIÓN DE EJERCICIOS RESUELTOS TEMA 11 Sucesiones y Progresiones
TEMA 11 ucesiones y Progresiones Ejercicio nº 1 a Escribe los tres primeros términos de las sucesiones: a.1 a n n 1 a.) b n 3n n 1 b Calcula el término general de las sucesiones: b.1 1,, 5, 8, 11... 3
Problemas resueltos. - Términos equidistantes. 2. Hallar el décimo tercer término en la P.G.:
S Progresión geométrica Progresión geométrica Decimos que una sucesión de números están en progresión geométrica (P.G. cuando cada uno de ellos es igual al anterior multiplicado por una cantidad constante
SUCESIONES Y SERIES MATEMÁTICAS
SUCESIONES Y SERIES MATEMÁTICAS SUCESION.- Es un conjunto de número ordenados de modo que uno es el primer término, otro es el segundo término, otro el tercero y así sucesivamente. Por ejemplo: a) 1,2,3,
Sucesiones y Progresiones. Guía de Ejercicios
. Módulo 5 Sucesiones y Progresiones Guía de Ejercicios Índice Unidad I. Sucesiones Ejercicios Resueltos... pág. 02 Ejercicios Propuestos... pág. 06 Unidad II. Sumatorias de sucesiones Ejercicios Resueltos...
PROGRAMA PRE-PAES 2014 Asignatura: Matemática Contenido Virtual
[PROGRAMA PRE-PAES, UNIVERSIDAD FRANCISCO GAVIDIA] PROGRAMA PRE-PAES 2014 Asignatura: Matemática Contenido Virtual TEMA: ESTUDIEMOS SUCESIONES ARIMÉTICAS Y GEOMÉTRICAS Profesor: Luis Roberto Padilla R.
PROGRESIONES ARITMÉTICAS
PROGRESIONES ARITMÉTICAS 1. La suma de los tres primeros términos de una progresión aritmética es 12 y la razón 16. Calcula el primer término. : a 1 + a 2 + a 3 = 12 d = 16 a1 =? a2 = a1 + d a3 = a2 +
Área de Matemáticas orientadas a las enseñanzas académicas. 3º ESO. Curso 2016/2017 RELACIÓN DE EJERCICIOS RESUELTOS Sucesiones y Progresiones
a las enseñanzas académicas. 3º EO. Curso 016/017 ucesiones y Progresiones Ejercicio nº 1 a Escribe los tres primeros términos de las sucesiones: a.1 a n n 1 a.) b n 3n n 1 b Calcula el término general
1. Progresiones aritméticas
1 PROGRESIONES ARITMÉTICAS 1 1. Progresiones aritméticas Una progresión aritmética es una sucesión en la que cada término es igual al anterior más un número constante llamado diferencia de la progresión.
PÁGINA 30. Una actividad A cuál de las sucesiones de la derecha corresponde esta torre? Corresponde a la sucesión a).
PÁGINA 30 Una actividad A cuál de las sucesiones de la derecha corresponde esta torre? a) 1, 5, 9, 13, 17, b) 170, 10, 70, 0, 30, 80, c), 4, 8, 16, 3, 64, d) 1, 3, 9, 7, 81, 43, e) 1, 1,, 3, 5, 8, f) 1,
SUCESIONES Y PROGRESIONES 3º ESO MATEMÁTICAS
SUCESIONES Y PROGRESIONES 3º ESO MATEMÁTICAS Una sucesión es un conjunto de números ordenados que siguen alguna regla. Cada uno de estos números se llama término y se representa por a n, donde n es el
2. Determine cuántos términos consecutivos a partir de ), en la progresión #ß %ß ' 11 ß )ß "!ß â se deben considerar para que la suma sea %*%.
1. Halle el décimo término de la progresión: %ß (ß "!ß Þ Þ Þ 2. Determine cuántos términos consecutivos a partir de ), en la progresión ß %ß ' 11 ß )ß "!ß â se deben considerar para que la suma sea %*%.
Progresiones Geométricas. tal que. a n+1 a n. = r. para todo entero positivo n.
www.matebrunca.com Profesor Waldo Márquez González Progresiones Geométricas 1 Progresiones Geométricas Una sucesión a 1, a 2, a,..., a n,... es una progresión geométrica si y sólo si si existe un número
Progresiones aritméticas
Progresiones aritméticas Antes de empezar Es muy divertido construir figuras geométricas con estas pequeñas piezas imantadas. Construimos así más y más triángulos, que forman esta sucesión: 1, 4, 7, 10,
CUADERNO Nº 5 NOMBRE: FECHA: / / Progresiones. Reconocer y distinguir las progresiones aritméticas y geométricas.
Progresiones Contenidos 1. Sucesiones Definición. Regla de formación Término general 2. Progresiones Aritméticas Definición Término general Suma de n términos 3. Progresiones Geométricas Definición Término
2 Halla la diferencia de una progresión aritmética sabiendo que el segundo término es 8 y el quinto 17.
EJERCICIOS EXTRA PROGERSIONES ARITMETICAS Y GEOMETRICAS 1 15 Halla la suma de los 1 primeros térmios de la progresió aritmética: 8,, 7,... Halla la diferecia de ua progresió aritmética sabiedo que el segudo
SUCESIONES. Ejemplo 1. Ejemplo 2. Ejemplo 3. Ejemplo 4. Ejemplo 5. Ejemplo 6. Escribe los tres primeros términos.
Estudiar en el libro de Texto: Pág. 60 y 61 SUCESIONES Términos de una sucesión. Término general Ejemplo 3 Ejemplo 4 Ejemplo 5 Ejemplo 6. Escribe los tres primeros términos. Ejemplo 7. Escribe el término
=22; r = 7 ( ) + (2 + 99) + (3 + 98) +... ( ) + (n - 1)r Cuyo resultado será: a 20. Calcular: S = a 1, a 2, a 3
0 (5 0 ) = 5 050 Progresión aritmética Aquí una historia: - Término enésimo ( ) Se dice que cuando el gran matemático Gauss aún era pequeño e iba al colegio su maestro tenía la costumbre de poner problemas
u n i d a d Sucesiones. Progresiones aritméticas y geométricas
u n i d a d Sucesiones. Progresiones aritméticas y geométricas Sucesiones Una sucesión es un conjunto ordenado de números u objetos, llamados términos. Cada término de la sucesión se representa con una
Matemática II Repartido 6 Tema: Progresiones
Progresiones aritméticas: Es una sucesión de números reales del tipo (a n ): { a 1 =k con k R +d con d R si n>1 Decimos que a 1 es el primer término de la sucesión y a n el término general o término enésimo
INSTITUTO NACIONAL DE LA COLONIA CIUDAD OBRERA DE APOPA EXAMEN PRIMER PERIODO DE MATEMÁTICA 2º AÑO DE BACHILLERATO TECNICO COMERCIAL
INSTITUTO NACIONAL DE LA COLONIA CIUDAD OBRERA DE APOPA EXAMEN PRIMER PERIODO DE MATEMÁTICA 2º AÑO DE BACHILLERATO TECNICO COMERCIAL Alumno: sección: CÓDIGO: Profesor: Santos Jonathan Tzun Meléndez. Periodo:
Sucesiones. Concepto de sucesión. Determinación de una sucesión: Por el término general. Por una ley de recurrencia. a 1, a 2, a 3,...
Concepto de sucesión Sucesiones Se llama sucesión a un conjunto de números dispuestos uno a continuación de otro. a 1, a 2, a 3,..., a n 3, 6, 9,..., 3n Los números a 1, a 2, a 3,...; se llaman términos
Prueba de evaluación. Nombre: Apellidos: Curso: Fecha: Calificación: Sean los números racionales representados por las fracciones,,, y.
Números racionales Prueba de evaluación Nombre: Apellidos: Curso: Fecha: Calificación: Sean los números racionales representados por las fracciones,,, y. Ordénalos 0 0 de menor a mayor y escribe sus fracciones
CALCULAR TÉRMINOS EN UNA SUCESIÓN
3 CALCULAR TÉRMINOS EN UNA SUCESIÓN REPASO Y APOYO OBJETIVO 1 SUCESIÓN Una sucesión es un conjunto ordenado de números reales: a 1, a 2, a 3, a 4 Cada uno de los números que forman la sucesión es un término.
PROGRESIONES. Sucesiones. 1 Completa las siguientes sucesiones hasta el décimo término:
1 Sucesiones. 1 Completa las siguientes sucesiones hasta el décimo término: 1.1 5, 9, 13, 17, 21,,,,, 1.2 22, 19, 16, 13, 10,,,,, 1.3 3, 6, 12, 24, 48,,,,, 1.4 1, 4, 9, 16, 25,,,,, 1 6 2 4 8 16 8 10 12
Aplicaciones de las funciones exponenciales.
Aplicaciones de las funciones exponenciales. Interés Compuesto: Si un capital inicial C 0 es sometido a una tasa de interés r, al cabo de n periodos el capital acumulado es C = C 0 (1 + r) n Si la tasa
CURSO: GRUPO: Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos:
CURSO: GRUPO: Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos: {x/ -1
Se entenderá por sucesión una colección de números dispuestos uno a continuación de otro.
INTRO. EST. DE LAS PROGRESIONES Las progresiones constituyen el ejemplo más sencillo del concepto de sucesión. Desde los albores de la historia de las matemáticas se han estudiado sus propiedades, y éstas
TERCER TRIMESTRE: Sucesiones de Números Reales. Progresiones.
TERCER TRIMESTRE: Sucesiones de Números Reales. Progresiones. Actividades para preparar el examen: Estudia si las afirmaciones siguientes son verdaderas: I.- CUESTIONES TEÓRICAS: 1) Una sucesión de números
SUCESIONES. Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,...
SUCESIONES DEFINICIÓN DE SUCESIÓN Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,... Los elementos de la sucesión se llaman términos
TEMA 3. ECUACIONES. Curso de Preparación de Prueba de Acceso a CFGS - Matemáticas. Aritmética y Álgebra Tema x-34=
Curso de Preparación de Prueba de Acceso a CFGS Matemáticas Aritmética y Álgebra Tema TEMA. ECUACIONES. =0. 98=7. =. 79=9. 8=. =7 7. =8 8. 99=7 9. = 0. =0. =. =0. 8=. =9. 8=0. 7=7 7. 0= 8. 70= 9. 8= 0.
Sucesiones de números reales
Sucesiones de números reales Llamaremos sucesión de números reales a una función a : IN IR. Notaremos a(n) =a n. Para referirnos a la sucesión cuyo término n-ésimo es a n usaremos la notación {a n }. 1.
ÁNGULOS: (triángulos - cuadriláteros)
1 ÁNGULOS: (triángulos - cuadriláteros) 1. - Transforma en grados, minutos y segundos: a) 15.910" b) 27.673" c) 78.385" d) 38.890" e) 21.930" f) 35.627" g) 50.420" h) 43.692" i) 22.475" j) 95.486" k) 9.999"
MATEMÁTICAS PROGRESIONES NUMÉRICAS Prof: Gabriel Ivorra
MATEMÁTICAS PROGRESIONES NUMÉRICAS - 1 - SUCESIONES NUMÉRICAS Una Sucesión numérica es una relación entre los números naturales y los números reales, de manera que, para cualquiera de aquellos obtenemos
Definiciones I. Definiciones II
Definiciones I Una ecuación es una igualdad algebraica que se verifica únicamente para un conjunto determinado de valores de las variables o indeterminadas que forman la ecuación. Esta igualdad es una
ECUACIONES DE 1º GRADO =2x-(10-4x) 2. 5(x-1)+10(x+2)= x+3(2x-4)= x-3(x+5)=3x (2-x)=18x (x-3)=3(x+1) 5-2x.
ECUACIONES DE 1º GRADO 1. 0=(10). 5(1)10()=5. 1()=0. (1)= 5. (5)= 0. [(1)]=1 7. (5)=10 8. ()=181 9. 105()=(1) 10. ()=[5()] 11. (1)(11)=9 1. = 1. 8 = 1. 7 = 1 5 5 15. 10 = ( ) 9 1. 5 8 5 ( 0)= 18 7 17.
ANALISIS COMBINATORIO.
ANALISIS COMBINATORIO. Factorial de. Se llama factorial de al producto de todos los números naturales desde 1 hasta, ambos inclusive. Para designar abreviadamente el factorial de se emplea la notación
Progresiones. obra incluyó el estudio de las progresiones aritméticas, que no trató Euclides cuatrocientos años antes.
Progresiones Las progresiones geométricas fueron tratadas por primera vez, de forma rigurosa, por Euclides, matemático griego del siglo iii a.c. Fue el fundador y primer director de la gran escuela matemática
TEMA 4. FRACCIONES. 1. Indica qué fracciones representan las partes sombreadas en los siguientes dibujos:
TEMA 4. FRACCIONES. Indica qué fracciones representan las partes sombreadas en los siguientes dibujos:. En los siguientes gráficos representa las fracciones º ESO Se dice que una fracción es propia cuando
Progresiones CLAVES PARA EMPEZAR VIDA COTIDIANA. a) b) c) d) a) d) b) e) c) f)
CLAVES PARA EMPEZAR a) b) c) d) a) d) b) e) c) f) VIDA COTIDIANA Contando espacios, «MAÑANA VOY A LA FIESTA» tiene 22 caracteres. Además, hay que contar con un espacio final para la respuesta. Cada respuesta
Operaciones con números enteros. Calculadora
P RACTICA Operaciones con números enteros Calculadora Calcula paso a paso y comprueba el resultado con la calculadora utilizando las teclas de paréntesis ) ) ) : ) : e) [ )] : f) [ ) ] ) ) : : ) : : e)
E J E R C I C I O S R E S U E L T O S D E S U C E S I O N E S
E J E R C I C I O S R E S U E L T O S D E S U C E S I O N E S EJERCICIO : Halla el término general de cada una de las siguientes sucesiones: a), 8 7, 5, 5,... b) 7, 7, 5 7, 7,... c),5, 0, 7 5,... a), 8
Unidad 1. Progresiones. Objetivos. Al finalizar la unidad, el alumno:
Unidad 1 Progresiones Objetivos Al finalizar la unidad, el alumno: Identificará los elementos de las progresiones aritméticas y geométricas. Calculará el n-ésimo término y la suma de los n términos de
1 Sucesiones. Unidad 5. Secuencias numéricas ESO. Página 61
1 Sucesiones Página 61 1. Añade los tres términos siguientes en cada una de estas sucesiones: a) 10, 15, 0, 5, 30, b) 80, 70, 60, 50, 40, c) 3, 6, 1, 4, 48, d) 1, 3, 4, 6, 7, e), 5, 7, 1, 19, f ) 4, 6,
2. Calcula la suma de los 20 primeros términos en cada una de las sucesiones anteriores.
TRABAJO DE RECUPERACIÓN DE MATEMÁTICAS PENDIENTES DE 3º ESO (ACADÉMICAS) ª EVALUACIÓN CURSO: 4º ESO SUCESIONES 1. Di si las siguientes sucesiones son aritméticas o geométricas, calcula el término general
Sea x el menor de dos números enteros pares Sea x + 2 el siguiente numero par (los números enteros pares consecutivos se llevan 2)
Sea L el largo del rectángulo Sea h el ancho del rectángulo largo x ancho = área del rectángulo L (h) = 4 m 2 (h + 3)(h) = 4, h 2 + 3 x = 4, resolviendo esta ecuación cuadrática, h 2 + 3 x - 4= 0 h 2 +
MATEMÁTICAS 2º ESO PROBLEMAS FRACCIONES NOMBRE FECHA
MATEMÁTICAS 2º ESO PROBLEMAS FRACCIONES NOMBRE FECHA 1.- Expresa en horas las fracciones de día 2 3 5 3,, y 3 4 6 8 3 11 2.- En un centro, de los alumnos estudian Inglés, mientras que en otro lo hacen,.
EJEMPLO OBJETIVO 1 CALCULAR TÉRMINOS EN UNA SUCESIÓN NOMBRE: CURSO: FECHA:
OBJETIVO 1 CALCULAR TÉRMINOS EN UNA SUCESIÓN NOMBRE: CURSO: ECHA: SUCESIÓN Una sucesión es un conjunto ordenado de números reales: a 1, a 2, a 3, a 4 Cada uno de los números que forman la sucesión es un
3Soluciones a los ejercicios y problemas
Soluciones a los ejercicios y problemas P r o g r e s i o n e s a r i t m é t i c a s Pág. 8 Escribe los cinco primeros términos y a 0 de las siguientes progresiones aritméticas: a) a ; d b) a ; d c) a
Ejercicios del tema 7
U N I V E R S I D A D D E M U R C I A Ejercicios del tema 7 DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2013/2014. Ejercicios de aritmética y congruencias 1. Un amigo le pregunta a otro: Cuántos hijos
UNIDAD 1: ESTUDIEMOS SUCECIONES ARITMETICAS Y GEOMETRICAS.
UNIDAD 1: ESTUDIEMOS SUCECIONES ARITMETICAS Y GEOMETRICAS. Sucesiones Una sucesión es un conjunto de números que son imagen de una función, cuyo dominio son, (normalmente), los enteros positivos, comenzando
Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:
Una progresión es geométrica, si cada termino después del primero se obtiene multiplicando el anterior por un valor constantes Este valor constante se llama razón geométrica (q) En general: a a : a...
Tema 1 Fracciones y decimales
Código 80986 Curso 016-17 MATEMÁTICAS ACADÉMICAS º ESO (EJERCICIOS DE REPASO) Tema 1 Fracciones y decimales 1. que sean mayores que 1 o menores que 1 en parte entera y parte fraccionaria. fracciones que
ejercicios y problemas de PROGRESIONES ARITMÉTRICAS Y GEOMÉTRICAS
EJERCICIOS Y PROBLEMAS RESUELTOS AL FINAL DEL DOCUMENTO 1. Halla los términos a 1, a 2 y a 10 de las siguientes sucesiones, cuyo término general se da: a) b) c) d) e) 2. Calcula el término general de las
Carlos A. Rivera-Morales. Precálculo 2
Objetivos Carlos A. Rivera-Morales Precálculo 2 Tabla de Contenido Objetivos Objetivos 1 Sumas Parciales de Objetivos: Contenido Objetivos Discutiremos: definición de sucesión o progresión aritmética Objetivos:
Tema 7. Problemas de ecuaciones de primero y segundo grado
Mat º ESO Tema 7. Problemas de ecuaciones de primero y segundo grado Llámale x La x es la letra más famosa entre los números. La letra x suele emplearse para sustituir a un número del que no se sabe su
CUADERNO DE RECUPERACIÓN VERANO 2014 MATEMÁTICAS 3º E.S.O.
CUADERNO DE RECUPERACIÓN VERANO 0 MATEMÁTICAS º E.S.O. COLEGIO MAESTRO ÁVILA Y SANTA TERESA ALUMNO: www.benitopb.wordpress.com TEMA NÚMEROS REALES www.benitopb.wordpress.com TEMA PROPORCIONALIDAD www.benitopb.wordpress.com
FUNCIONES EXPONENCIALES
FUNCIONES EXPONENCIALES 8.1.1 8.1.6 En estas secciones, los alumnos generalizarán lo que han aprendido sobre las progresiones geométricas para investigar funciones exponenciales. Los alumnos estudiarán
SESIÓN 3 SERIES, SUCESIONES Y LÍMITES
SESIÓN SERIES, SUCESIONES Y LÍMITES I. CONTENIDOS: 1. Sucesiones y series. Idea intuitiva de límite. Ejercicios resueltos.- Estrategias Centradas en el Aprendizaje: Ejercicios propuestos II. OBJETIVOS:
ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015
ÁLGEBRA (Selectividad 015) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 015 1 Aragón, junio 15 1 (3 puntos) a) (1,5 puntos) Considera la matriz y los vectores siguientes:
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. PÁGINA 9 EJERCICIOS Primeras ecuaciones 7 8 5 5 0 0 0 5 + 5 0 0 5 5 + 6 6 0 7 7 7 5 6 9 7 8 6 9 5 + + 6 5 5 0 0 Cualquier solución es válida. Pág. 0 8 + 5 6 8 5 5 7 + + + 6 9 8 + + 8 9 7 + 7 + 8 +
IES GAIA. Cuaderno de actividades para preparar la prueba de la asignatura de Matemáticas pendiente de cursos anteriores.
Departament de Matemàtiques IES GAIA Sant Vicent del Raspeig Cuaderno de actividades para preparar la prueba de la asignatura de Matemáticas pendiente de cursos anteriores. PRIMERA PARTE Curso: º ESO ombre:
10.3 Sucesiones geométricas
T n 10. Sucesiones geométricas El segundo tipo especial de sucesión que estudiaremos, la sucesión geométrica, se presenta con frecuencia en aplicaciones. Definición de Una sucesión a 1, a,..., a n, es
MATEMÁTICAS III CICLO ESCOLAR MISCELÁNEA DEL MES DE JUNIO
MATEMÁTICAS III CICLO ESCOLAR 2012-2013 MISCELÁNEA DEL MES DE JUNIO 1.-Resuelve los siguientes problemas utilizando ecuaciones. 1) Calcular los lados de un triángulo isósceles de 136 m de perímetro, sabiendo
8.- Un depósito de gasóleo de un edificio tiene una capacidad de litros. Si se han consumido 9
6.- En un teatro se llenan los 4 3 de su aforo. Se quedan 90 butacas sin ocupar, Cuál es el aforo del teatro? 9 3 1 7.- Los alumnos de 2º de secundaria han elegido como segunda lengua francés, alemán y
Guía Nº 3 PSU NM 4: Aritmética y Operatoria
Centro Educacional San Carlos de Aragón. Dpto. de Matemática. Prof.: Ximena Gallegos H. Guía Nº PSU NM : Aritmética y Operatoria Nombre: Curso: Fecha: Aprendizaje Esperado: Utiliza herramientas matemáticas
CONTENIDOS: Sucesiones aritméticas y Sucesiones geométricas Ejercicio Reto
ENCUENTRO # 43 TEMA: SUCESIONES - 1 CONTENIDOS: Sucesiones aritméticas y Sucesiones geométricas Ejercicio Reto Cuenta la leyenda que el rey Shirham, rey de la India, estaba muy deprimido por haber perdido
Ecuaciones Problemas Ejercicios propuestos
Ecuaciones Problemas Ejercicios propuestos 1. La suma de tres números pares consecutivos es 72. Cuáles son esos números? Respuesta: Los números son: 22, 24 y 26. 2. Un depósito esta lleno el domingo. El
TEMA 3: PROGRESIONES
3. Sucesiones TEMA 3: PROGRESIONES A partir de las sucesiones del libro de la página 60, escribir cuatro términos más:., 5, 9, 3, 7,, 5, 9, 33............................ Vamos sumando cuatro siempre!
Resuelve mentalmente: a) x + 2 = 5 b) x 3 = 4 c) 4x = 12 d) (x 3)(x + 5) = 0. Solución: a) x = 3 b) x = 7 c) x = 3 d) x = 3, x = 5.
Ecuaciones de er y º grado. Ecuaciones de er grado Resuelve mentalmente: a) + = b) = c) = d) ( )( + ) a) = b) = 7 c) = d) =, = P I E N S A Y C A L C U L A Resuelve las siguientes ecuaciones: a) + = 8 b)
Una sucesión es una función cuyo dominio es el conjunto de los números naturales: {1, 2, 3, }.
SUCESIONES SUCESIONES ARITMÉTICAS Una sucesión es un conjunto de elementos ordenados, de tal manera, que no exista duda de cuál es el primero de ellos, cuál es el segundo, o cualquier otro. Una sucesión
11 SUCESIONES. PROGRESIONES
EJERCICIOS PROPUESTOS. Con cerillas se han construido las figuras. a) Cuántas cerillas se necesitan para formar una figura con 5 hexágonos? b) Cuántas cerillas se necesitan para formar una figura con n
GESTIÓN FINANCIERA RENTAS FINANCIERAS
GESTIÓN FINANCIERA RENTAS FINANCIERAS Hasta ahora las operaciones financieras que venimos realizando se componían de un capital único (o pocos) tanto en la prestación como en la contraprestación. Sin embargo,
PROBLEMAS DE ECUACIONES DE PRIMER GRADO. 1.-Hallar un número que restado al 7,54 dé lo mismo que sumado al 3,23.
PROBLEMAS DE ECUACIONES DE PRIMER GRADO NIVEL 1 FICHA 1 1.-Hallar un número que restado al 7,5 dé lo mismo que sumado al 3,3..-La mitad de la suma de seis veces un número y dos es igual a la diferencia
(ii) Halle el valor de k. 2. Los tres primeros términos de una progresión aritmética son5, 6 7 y 8 4. (i) Halle la diferencia común
EJERCICIOS Y PROBLEMAS (SOBRE 5 PUNTOS) 1. Los dos primeros términos de una progresión geométrica u n son u 1 = 4 y u = 4 (a) (i) Halle la razón. (ii) A partir de lo anterior o de cualquier otro modo,
Los ejercicios marcados con * son de una dificultad mayor al resto del práctico, por lo que se sugiere hacerlos como culminación de estudio del tema
EJERCICIOS DE CAPÍTULO 2 Los ejercicios marcados con * son de una dificultad mayor al resto del práctico, por lo que se sugiere hacerlos como culminación de estudio del tema Ejercicio 1 Considérese una
14 Funciones exponenciales y logarítmicas
ACTIVIDADES DE AMPLIACIÓN Funciones eponenciales y logarítmicas. Se considera la función eponencial f() k ; k 0. Averigua, en cada uno de los siguientes casos, cómo es la base de la función con respecto
4º lección TEMA 4.- LAS FRACCIONES
º lección TEMA.- LAS FRACCIONES -. Los términos de una fracción son el numerador y el denominador. -. El numerador indica el número de partes que se toman de esa unidad. -. El denominador indica el número
ECUACIONES DE PRIMER GRADO. 3º ) Pasa todos los términos que contenga la incógnita a un lado de la igualdad y los demás al otro lado.
ECUACIONES DE PRIMER GRADO Para resolver las ecuaciones: 1º ) Quitar denominadores, si los tiene. Para ello se multiplica ambos lados de la igualdad por el mínimo común múltiplo de los denominadores. º
La suma de n términos de una progresión. aritmética es: Sn= El producto de n términos de una progresión. geométrica es: P = ( a a ).
Progresiones INTRODUCCIÓN Las sucesiones aparecen en diversos campos, tales como la medicina (evolución de un cultivo bacteriano), genética (distribución de los caracteres), informática (utilización de
Tema 2: Matemática Financiera
. Logaritmos Tema : Matemática Financiera de cálculo de logaritmos a partir de la definición. Calcula los siguientes logaritmos: a) log 5 5 b) log no se puede calcular pues N 0, y ha de ser siempre positivo.
IES Concha Méndez Cuesta. Matemáticas 3º ESO. Nombre:
Tema 1 1. Calcula las siguientes operaciones con enteros: 5 4 8: 7 3 10 6 6 54 7 3. Calcula las siguientes operaciones con fracciones: 4 1 3 1 1 : 3 4 3 3 5 5 1 1 5 : 1 6 3 4 3 3. Los 5 1 de las entradas
Combinatoria. En todo problema combinatorio hay varios conceptos claves que debemos distinguir:
Conceptos de combinatoria Combinatoria En todo problema combinatorio hay varios conceptos claves que debemos distinguir: 1. Población Es el conjunto de elementos que estamos estudiando. Denominaremos con
Unidad 4. Progresiones
Página 6 Resuelve. Observa la noria que aparece abajo. Si C es la cantidad de agua que aporta en una vuelta, y A es la cantidad de agua que tenía inicialmente el pilón al que abastece, qué cantidad de
TEMA 1 NÚMEROS RACIONALES E IRRACIONALES : 1.) Resuelve las siguientes operaciones:
TEMA 1 NÚMEROS RACIONALES E IRRACIONALES : 1.) Resuelve las siguientes operaciones: a) (Solución = 13/12) b) (Solución = 6/7) c) (Solución = 1) d) (Solución = 15/22) 2.) Resuelve: (Solución = 8/31) 3.)
5 2,7; ; ; 3; 3,2
Actividades de recuperación para septiembre 3º ESO, MATEMÁTICAS La recuperación de la asignatura consta de dos partes: Entregar los siguientes ejercicios resueltos correctamente. Aprobar el examen de recuperación.
1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 25
1. ESQUEMA - RESUMEN Página. EJERCICIOS DE INICIACIÓN Página 6. EJERCICIOS DE DESARROLLO Página 17 5. EJERCICIOS DE REFUERZO Página 5 1 1. ESQUEMA - RESUMEN Página 1.1. EXPRESIONES ALGEBRAICAS. 1.. VALOR
Puede ser que : 4 = 5? = (20+1/4) = (20+1/4) (81/4) = (81/4) 2
a l q u e l l a m a r e m o s Promedio, 1 6-3 6 + (9 / ) = Promedios Puede ser que : 4 = 5? Pues aquí te lo demuestro,... claro que las matemáticas no siempre son exactas... 16-36 = 5-45 16-36+(0+1/4)
Problemas + PÁGINA Al comienzo de cada año ingresamos al 5% anual. De qué capital dispondremos al final del sexto año?
PÁGINA 71 Pág. 1 41 Al comienzo de cada año ingresamos 6 000 al 5% anual. De qué capital dispondremos al final del sexto año? 1. er AÑO.º AÑO 3. er AÑO 4.º AÑO 5.º AÑO 6.º AÑO 6 000 6 000 1,05 6 6 000
Definición. Progresiones Aritméticas
www.matebrunca.com Profesor Waldo Márquez González Progresiones Aritméticas 1 Progresiones Aritméticas Un tipo particular de sucesión son la que se denominan progresiones; las más conocidas son las aritméticas
GUIA Nº1 Números. 1) Si al entero ( 1) le restamos el entero ( 3), resulta A) 2 B) 2 C) 4 D) 4 E) ninguno de los valores anteriores
SUBSECTOR : Matemáticas NIVEL : Franja P.S.U. Matemáticas PROFESORES : Mario Muñoz - Marcos Becerra - Andrés Ruz AÑO : Primer Semestre - 207 UNIDAD TEMÁTICA: CONTENIDOS: FECHA DE ENTREGA Nombre: GUIA Nº
