Matemática II Repartido 6 Tema: Progresiones
|
|
|
- Tomás Soriano Giménez
- hace 9 años
- Vistas:
Transcripción
1 Progresiones aritméticas: Es una sucesión de números reales del tipo (a n ): { a 1 =k con k R +d con d R si n>1 Decimos que a 1 es el primer término de la sucesión y a n el término general o término enésimo de la sucesión. Ejercicio 1: 1. Escribe los diez primeros términos de la siguiente sucesión: (a n ): { a 1 =3 + si n>1. Completa: a = =3+...=5 a =a 1 +d Por def generalizando para a a 3 = = ( )+=3+(...+)=3+... a 3 =a Por def por anterior generalizando para a 3 a 4 = = ( )+=3+(...+)=3+... a 4 =a Por def por anterior generalizando para a 3 3. Haz un procedimiento análogo para los dos siguientes términos de la sucesión: 4. Generaliza y obtiene una expresión para el término enésimo de la sucesión. Sala de Matemática Santa Elena Página 1 de 10
2 Ejercicio : Demuestra por inducción completa que: a n =a 1 +(n 1)d n N,n 1 siendo (a n ) una progresión aritmética de diferencia d Ejercicio 3: Edmund Halley ( ) matemático y astrónomo británico estudió la órbita del cometa avistado en 168, conocido actualmente como el cometa Haley. La órbita de éste cometa periódico es de 76 años y la primera vez que se divisó fue en el año 10 de la era cristiana. Investiga: 1. Cuál fue el último año en que se divisó?. Cuántas veces pudo haberse divisado en la era cristiana? 3. Cuántas veces ya había podido ser divisado antes que Haley lo viera? Ejercicio 4: Hallar los ángulos de un cuadrilátero convexo, sabiendo que están en progresión aritmética tal que la diferencia entre dos ángulos consecutivos (excepto para el primero y el último) es de 5. Sala de Matemática Santa Elena Página de 10
3 Suma de los n primeros términos de una progresión aritmética Llamemos S n a la suma de los primeros n términos de la progresión aritmética (a n ). Observemos que: S n =a 1 +a a n S n +a n a S n =(a 1 +a n )+(a +a n 1 )+(a 3 +a n ) (a n +a 3 ) Observemos que la suma de términos equidistantes es siempre igual a a 1 +a n, es decir: {a+an 1=a1+an a 3 +a n =a 1 +a n : : a k +a n k =a 1 +a n por tanto S n =... (...+a n ) S n = (a 1 +a n ).n Ejercicio 5: Completa la siguiente demostración para validar la fórmula obtenida. (a n ): { a 1 =k con k R +d con d R si n>1 S n = (a 1+a n ) Base inductiva: S 1 = (a 1+a 1 ).1 =a 1 Paso inductivo: H) { S =(a 1+a x ).x x x N,x 1 T) S x +1 =... Sala de Matemática Santa Elena Página 3 de 10
4 Demostración: i=x+1 i=1 i=x a i = i=1 a i +a x+1 = Por H...+a x+1 =...+a x +1 Por definición a x =a x+1... S x+1 = (a x+1 d)+a 1 + xd+a x+1 = xa a 1 + xd+a x+1 S x+1 = (...)a 1+(...)a x+1 = (a 1+a x+1 )(...) Entonces Sala de Matemática Santa Elena Página 4 de 10
5 Progresiones geométicas: Ejercicio 1: Ciertas historias matemáticas cuentan que el inventor del ajedrez para enseñarle dicho juego a su rey, le solicitó un pago que parecía estar muy por debajo de su invención. Así es como requirió, que el rey le pagara granos de trigo por el primer casillero del tablero de ajedrez, que duplicara esa cantidad por el segundo, que duplicara la cantidad de granos del o casillero para pagar por el 3o y así sucesivamente hasta el último. Cuántos granos le cobraría por el último casillero del tablero de ajedrez? Definición: Es una sucesión de números reales del tipo (a n ): a { 1 =k con k R. q con q R si n>1 Decimos que a 1 es el primer término de la sucesión y a n el término general o término enésimo de la sucesión. A q se la llama razón de la progresión geométrica. Ejercicio : 1. Escribe los diez primeros términos de la siguiente sucesión: (a n ): { a 1 =3. si n>1. Completa: a =...=... a =a 1.q Por def generalizando para a a 3 =...=(...). a 3 =a 1.q... Por def generalizando para a 3 a 4 =... = (...). a 4 =a 1.q... Por def Por anterior generalizando para a 4 Sala de Matemática Santa Elena Página 5 de 10
6 3. Haz un procedimiento análogo para los dos siguientes términos de la sucesión: 4. Generaliza y obtiene una expresión para el término enésimo de la sucesión. Ejercicio 3: Término enésimo de una progresión geométrica Demuestra por i. c. que: (a n ): a { 1 =k con k R.q con q R si n>1} a n=a 1.q (n 1) n N,n 1 Sala de Matemática Santa Elena Página 6 de 10
7 Suma de los n primeros términos de una progresión geométrica Mediante un ejemplo nos proponemos hallar S 9 (la suma delos 9 primeros términos de una progresión geométrica). Consideremos los 9 primeros términos de cierta progresión y en segundo lugar, 9 térmios consecutivos de la misma sucesión pero comenzando por el segundo Cómo podrías obtener cada uno de los términos de la segunda fila a partir de su correspondiente en la primera? Qué obtienes si a la suma de los 9 términos de la primera fila le restas la suma de los de la segunda fila? Plantea la resta: Puedes expresar el número obtenido en función del primer término? Entonces : S 9....= =3 3.(...)=3.(1...) S 9 (1...)=3.(1... ) Si escribimos en función del primer término y la razón, tenemos que: S 9 (... q)=a....(1 q... ) S 9 = a...(1 q... ) 1... Generalizando S n =a 1 +a a n multiplicamos S n por la constante q y restamos q. S n = a a a 3... a n sumando : S n q...=a (1 q)s n =a... a... q... S n =a 1. 1 qn 1 q Qué sucede si q=1? 1. De una progresión aritmética se sabe que el octavo término es 5 y que el quinto es 31. Hallar la Sala de Matemática Santa Elena Página 7 de 10
8 diferencia d, el primer término y la suma de los primeros 40 términos.. La suma de los primeros 0 términos de una progresión aritmética es igual a 0 y su término a 0 = 1. Cuál es su primer término? 3. Si a 1 =3 k, a = k y a 3 =9 k son términos de una progresión aritmética, averiguar cual es el valor de k y el quinto término. 4. El primer término de una progresión aritmética es, y su diferencia es 3. Calcula a 5 +a a Los habitantes de una casa son 6. Organizan una fiesta, y cada invitado que llega saluda dando la mano a todos los presentes. Si el número de saludos ha sido de 651, cuál es el número de invitados?. 6. Un auto cuyo valor es de $80.000, se desvaloriza con el uso de tal forma que de aquí a 4 años será de $ Si la desvalorización es constante, cuál será su valor de aquí a 3 años? 7. La suma de n términos consecutivos de la progresión aritmética cuyos primeros dos términos son 7 y 1 en ese orden, es igual a 35. Hallar el número de términos y el término enésimo. 8. Si se forman n triángulos con palitos como indica la figura. Cuál es el número de palitos que se usan? 9. Existen dos tipos de años bisiestos: los que son múltiplos de 4 pero no de 100, y los que son múltiplos de 400. a) Cuántos años son bisiestos entre 1997 y 401? b) Si el primero de enero de 1997 fue miércoles, qué día será el primero de enero del 500? c) Cuál es el primer año, a partir de 1997, en el cual el primero de enero será también miércoles? 10. Se sabe que la razón de una progresión geométrica es la mitad del primer término, y la suma de Sala de Matemática Santa Elena Página 8 de 10
9 los dos primeros términos es 1. Hallar los dos primeros términos. 11.Se sabe que la razón de una progresión geométrica es la mitad del primer término, y la suma de los dos primeros términos es 1. Hallar los dos primeros términos. 1. Se sabe que la suma de los dos primeros términos de una progresión geométrica es igual a 4/7 y que la razón es el triple del segundo término. Hallar la suma de los primeros tres términos. 13. El séptimo término de una progresión geométrica es 6144 y su razón es 4. Hallar el primer término. 14. Se conoce que el término enésimo de una progresión geométrica es igual a 384, y su primer término es 3/4, Hallar n. 15. Determinar tres números enteros que se encuentran en progresión geométrica, sabiendo que su suma es igual a 63, y que la suma de sus cuadrados es igual a De una progresión geométrica se sabe que el quinto término es 16, y el sexto término es 8. Averiguar el primer término y la suma de los primeros 0 términos. 17. La población de una ciudad crece con una tasa anual del 3 %. a) Cuál será la tasa de crecimiento de 15 años? b) Si la población actual es de habitantes, cuál será la población dentro de 15 años? 18. El volumen de un paralelepípedo recto es 64m 3. Calcular sus medidas a, b y c, sabiendo que las mismas se encuentran en progresión geométrica y que la suma de las tres es igual a 14. (Sugerencia: a=x/k, b=x, c=kx) 19. Para la presentación de sus muchos alumnos, una escuela quiere formar un triángulo, de modo tal que la primera fila tenga 1 alumno, la segunda, la tercera 3 y así sucesivamente hasta que estén en esa formación los 5050 alumnos que tiene. Cuántas filas tendría la formación? Sala de Matemática Santa Elena Página 9 de 10
10 0. Por el alquiler de una casa se acuerda pagar $14000 mensuales durante el primer año y luego se aumentarán $700 mensuales cada año. A cuánto asciende el costo del alquiler mensual al cabo de 10 años? 1. Hallar 3 números positivos que se encuentran en progresión geométrica, sabiendo que su producto es y que el último excede en 115 a la suma de los otros dos.. Las dimensiones de un ortoedro, consideradas en un cierto orden, están en progresión geométrica, calcularlas sabiendo que su perímetro es de 40 m y su volumen es de 8000 m 3 3. Calcular la suma de los 30 primeros términos de una progresión aritmética sabiendo que a 1 a 1 =55 y a 4 +a 8 =56 4. Hallar los 4 primeros términos de un progresión geométrica sabiendo que son naturales y además: el segundo es 0 y la suma de todos ellos es La suma de los n términos de una progresión aritmética de diferencia 0, es Calcula n y la suma de los 10 primeros términos, sabiendo que el primero es Sala de Matemática Santa Elena Página 10 de 10
Hoja de problemas nº 5. Progresiones Aritméticas y Geométricas
Hoja de problemas nº 5 Progresiones Aritméticas y Geométricas 1. Calcula el término que ocupa el lugar 100 de una progresión aritmética cuyo primer término es igual a 4 y la diferencia es 5. 2. El décimo
PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS
PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS 1. Calcula el término que ocupa el lugar 100 de una progresión aritmética cuyo primer término es igual a 4 y la diferencia es 5. 2. El décimo término de una progresión
1. Progresiones aritméticas
1 PROGRESIONES ARITMÉTICAS 1 1. Progresiones aritméticas Una progresión aritmética es una sucesión en la que cada término es igual al anterior más un número constante llamado diferencia de la progresión.
Sucesiones y Progresiones. Guía de Ejercicios
. Módulo 5 Sucesiones y Progresiones Guía de Ejercicios Índice Unidad I. Sucesiones Ejercicios Resueltos... pág. 02 Ejercicios Propuestos... pág. 06 Unidad II. Sumatorias de sucesiones Ejercicios Resueltos...
=22; r = 7 ( ) + (2 + 99) + (3 + 98) +... ( ) + (n - 1)r Cuyo resultado será: a 20. Calcular: S = a 1, a 2, a 3
0 (5 0 ) = 5 050 Progresión aritmética Aquí una historia: - Término enésimo ( ) Se dice que cuando el gran matemático Gauss aún era pequeño e iba al colegio su maestro tenía la costumbre de poner problemas
GBG ejerciciosyexamenes.com 1
PROGRESIONES PROGRESIONES ARITMÉTICAS 1. Hallar los términos que se indican de las siguientes progresiones aritméticas: a) El término 20 en: 1, 6, 11, 16... b) El término 6 en: 3, 7, 11, 15... c) El 12
PROGRESIONES. Matemática IVº. Indicador: Relaciona los elementos de una progresión. PROGRESIONES ARITMÉTICAS. n 2 1 n. a n = a 1 + (n 1) d
Indicador: Relaciona los elementos de una progresión. PROGRESIONES Dentro de las sucesiones existen dos modelos muy importantes y corresponden al nombre genérico de progresiones. PROGRESIONES ARITMÉTICAS
PROGRESIONES ARITMÉTICAS
PROGRESIONES ARITMÉTICAS 1. La suma de los tres primeros términos de una progresión aritmética es 12 y la razón 16. Calcula el primer término. : a 1 + a 2 + a 3 = 12 d = 16 a1 =? a2 = a1 + d a3 = a2 +
SUCESIONES Y PROGRESIONES 3º ESO MATEMÁTICAS
SUCESIONES Y PROGRESIONES 3º ESO MATEMÁTICAS Una sucesión es un conjunto de números ordenados que siguen alguna regla. Cada uno de estos números se llama término y se representa por a n, donde n es el
Problemas resueltos. - Términos equidistantes. 2. Hallar el décimo tercer término en la P.G.:
S Progresión geométrica Progresión geométrica Decimos que una sucesión de números están en progresión geométrica (P.G. cuando cada uno de ellos es igual al anterior multiplicado por una cantidad constante
PÁGINA 30. Una actividad A cuál de las sucesiones de la derecha corresponde esta torre? Corresponde a la sucesión a).
PÁGINA 30 Una actividad A cuál de las sucesiones de la derecha corresponde esta torre? a) 1, 5, 9, 13, 17, b) 170, 10, 70, 0, 30, 80, c), 4, 8, 16, 3, 64, d) 1, 3, 9, 7, 81, 43, e) 1, 1,, 3, 5, 8, f) 1,
TEMA 5. SUCESIONES DE NÚMEROS REALES
TEMA 5. SUCESIONES DE NÚMEROS REALES 1. En cada una de las siguientes sucesiones añade tres términos y escribe el término general: a) 5, 10, 15, 20, 25,... b) 1, 4, 9, 16, 25,... c) 0, 3, 8, 15, 24,...
Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:
Una progresión es geométrica, si cada termino después del primero se obtiene multiplicando el anterior por un valor constantes Este valor constante se llama razón geométrica (q) En general: a a : a...
PROGRESIONES GEOMÉTRICAS
PROGRESIONES GEOMÉTRICAS. Hallar el número de términos y la razón de una progresión geométrica cuyo primer término es 4 el último 6500 y la suma de todos sus términos 784.. La razón de una progresión geométrica
PROGRESIONES ARITMÉTICAS Y GEOMETRICAS
PROGRESIONES ARITMÉTICAS Y GEOMETRICAS 1.- Hallar los términos que se indican de las siguientes progresiones aritméticas: a) El 12 en: -4, 0, 4, 8... b) El término 10 en: 2, 5, 8, 11... 2.- Hallar el término
Progresiones aritméticas
Progresiones aritméticas Antes de empezar Es muy divertido construir figuras geométricas con estas pequeñas piezas imantadas. Construimos así más y más triángulos, que forman esta sucesión: 1, 4, 7, 10,
SUCESIONES Y SERIES MATEMÁTICAS
SUCESIONES Y SERIES MATEMÁTICAS SUCESION.- Es un conjunto de número ordenados de modo que uno es el primer término, otro es el segundo término, otro el tercero y así sucesivamente. Por ejemplo: a) 1,2,3,
TERCER TRIMESTRE: Sucesiones de Números Reales. Progresiones.
TERCER TRIMESTRE: Sucesiones de Números Reales. Progresiones. Actividades para preparar el examen: Estudia si las afirmaciones siguientes son verdaderas: I.- CUESTIONES TEÓRICAS: 1) Una sucesión de números
Sucesiones. Concepto de sucesión. Determinación de una sucesión: Por el término general. Por una ley de recurrencia. a 1, a 2, a 3,...
Concepto de sucesión Sucesiones Se llama sucesión a un conjunto de números dispuestos uno a continuación de otro. a 1, a 2, a 3,..., a n 3, 6, 9,..., 3n Los números a 1, a 2, a 3,...; se llaman términos
3º ESO PROGRESIONES. 1. Añade tres términos más a cada una de las siguientes sucesiones: a) b) c) d) e) f) g) h)
3º ESO PROGRESIONES 1. Añade tres términos más a cada una de las siguientes sucesiones: e) f) g) h) i) j) k) 2. Escribe los cuatro primeros términos y el décimo de las sucesiones de término general: a)
SUCESIONES. Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,...
SUCESIONES DEFINICIÓN DE SUCESIÓN Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,... Los elementos de la sucesión se llaman términos
2. Determine cuántos términos consecutivos a partir de ), en la progresión #ß %ß ' 11 ß )ß "!ß â se deben considerar para que la suma sea %*%.
1. Halle el décimo término de la progresión: %ß (ß "!ß Þ Þ Þ 2. Determine cuántos términos consecutivos a partir de ), en la progresión ß %ß ' 11 ß )ß "!ß â se deben considerar para que la suma sea %*%.
Área de Matemáticas. Curso 2014/2015 RELACIÓN DE EJERCICIOS RESUELTOS TEMA 11 Sucesiones y Progresiones
TEMA 11 ucesiones y Progresiones Ejercicio nº 1 a Escribe los tres primeros términos de las sucesiones: a.1 a n n 1 a.) b n 3n n 1 b Calcula el término general de las sucesiones: b.1 1,, 5, 8, 11... 3
PROGRAMA PRE-PAES 2014 Asignatura: Matemática Contenido Virtual
[PROGRAMA PRE-PAES, UNIVERSIDAD FRANCISCO GAVIDIA] PROGRAMA PRE-PAES 2014 Asignatura: Matemática Contenido Virtual TEMA: ESTUDIEMOS SUCESIONES ARIMÉTICAS Y GEOMÉTRICAS Profesor: Luis Roberto Padilla R.
PRUEBA DE CUARTO GRADO.
PRUEBA DE CUARTO GRADO. Francisco tiene 10 cajas y 44 monedas. Quiere poner las monedas en las cajas repartiéndolas de modo que cada caja contenga un número distinto de monedas. Puede hacerlo? Si puede,
CONTENIDOS: Sucesiones aritméticas y Sucesiones geométricas Ejercicio Reto
ENCUENTRO # 43 TEMA: SUCESIONES - 1 CONTENIDOS: Sucesiones aritméticas y Sucesiones geométricas Ejercicio Reto Cuenta la leyenda que el rey Shirham, rey de la India, estaba muy deprimido por haber perdido
u n i d a d Sucesiones. Progresiones aritméticas y geométricas
u n i d a d Sucesiones. Progresiones aritméticas y geométricas Sucesiones Una sucesión es un conjunto ordenado de números u objetos, llamados términos. Cada término de la sucesión se representa con una
PAIEP. Sucesiones, Sumatoria y Progresiones
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Sucesiones, Sumatoria y Progresiones Definición: Una sucesión de números reales es una función a : N R, definida
Progresiones CLAVES PARA EMPEZAR VIDA COTIDIANA. a) b) c) d) a) d) b) e) c) f)
CLAVES PARA EMPEZAR a) b) c) d) a) d) b) e) c) f) VIDA COTIDIANA Contando espacios, «MAÑANA VOY A LA FIESTA» tiene 22 caracteres. Además, hay que contar con un espacio final para la respuesta. Cada respuesta
Área de Matemáticas orientadas a las enseñanzas académicas. 3º ESO. Curso 2016/2017 RELACIÓN DE EJERCICIOS RESUELTOS Sucesiones y Progresiones
a las enseñanzas académicas. 3º EO. Curso 016/017 ucesiones y Progresiones Ejercicio nº 1 a Escribe los tres primeros términos de las sucesiones: a.1 a n n 1 a.) b n 3n n 1 b Calcula el término general
b 11 b b 1n b 21 b b 2n. b n1 b n2... b nn
1429 Un cuadrado de n n números enteros se dice que es mágico si la suma de los números de cada una de sus filas o columnas, así como de cada una de las dos diagonales principales, es el mismo Encontrar
Adición y sustracción
Adición y sustracción ADICIÓN Es la operación aritmética que asocia cantidades de la misma especie (homogéneas) en una sola, llamada suma. a 1 + a + a +... + a n = s sumandos suma SUMAS NOTABLES Suma de
CUADERNO Nº 5 NOMBRE: FECHA: / / Progresiones. Reconocer y distinguir las progresiones aritméticas y geométricas.
Progresiones Contenidos 1. Sucesiones Definición. Regla de formación Término general 2. Progresiones Aritméticas Definición Término general Suma de n términos 3. Progresiones Geométricas Definición Término
CO+ Concurso de Matemáticas de Otoño
CO+ Concurso de Matemáticas de Otoño Prueba de 3 o y 4 o de ESO RESOLUCIÓN 5 de noviembre de 2010 5-11-10 CO+ Concurso de Matemáticas de Otoño 1.1 Ejercicio 1.- ESO 1.- Decimos que un número es capicúa
Capítulo 3: Sucesiones
Matemáticas orientadas a las enseñanzas aplicadas. 3º A de ESO Capítulo 3: Sucesiones Autor: Fernanda Ramos Rodríguez y Milagros Latasa Asso Revisor: Javier Rodrigo y Nieves Zuasti 63 Índice. SUCESIONES
Números naturales y recursividad
Números naturales y recursividad Rafael F. Isaacs G. * Fecha: 12 de abril de 2004 Números naturales Cuál es el primer conjunto de números que estudiamos desde la escuela primaria? Se sabe que los números
EJEMPLO OBJETIVO 1 CALCULAR TÉRMINOS EN UNA SUCESIÓN NOMBRE: CURSO: FECHA:
OBJETIVO 1 CALCULAR TÉRMINOS EN UNA SUCESIÓN NOMBRE: CURSO: ECHA: SUCESIÓN Una sucesión es un conjunto ordenado de números reales: a 1, a 2, a 3, a 4 Cada uno de los números que forman la sucesión es un
COLEGIO VILLA RICA DE COATZACOALCOS TURNO MATUTINO, CLAVE 30PBH0095Q COATZACOALCOS, ZONA 5 PERIODO ESCOLAR PROBLEMARIO 1
Nombre del alumno COLEGIO VILLA RICA DE COATZACOALCOS TURNO MATUTINO, CLAVE 30PBH0095Q COATZACOALCOS, ZONA 5 PERIODO ESCOLAR 2016-2017 PROBLEMARIO 1 Semestre y grupo Nombre de la materia Parcial 1º semestre
2. (10pts.) Cuál es el producto de los divisores comunes de 99 y 275?
3raEtapa (Examen Simultáneo) 1ro de Secundaria 1. (10 pts.) Si son números para los cuales : Hallar a) 20 b) 18 c) 16 d) 11 d) 17 e) Ninguno 2. (10pts.) Cuál es el producto de los divisores comunes de
Prueba de evaluación. Nombre: Apellidos: Curso: Fecha: Calificación: Sean los números racionales representados por las fracciones,,, y.
Números racionales Prueba de evaluación Nombre: Apellidos: Curso: Fecha: Calificación: Sean los números racionales representados por las fracciones,,, y. Ordénalos 0 0 de menor a mayor y escribe sus fracciones
Trabajo Práctico N 3: Expresiones algebraicas
Matemática año Trabajo Práctico N : Expresiones algebraicas Problema 1: Javier y Laura están analizando la distribución del gasto mensual en función de sus sueldos, J y L: En vivienda, invierten la mitad
Relaciones de recurrencia
MATEMÁTICA DISCRETA I F. Informática. UPM MATEMÁTICA DISCRETA I () Relaciones de recurrencia F. Informática. UPM 1 / 7 Relaciones de recurrencia Relaciones de recurrencia Definición Una relación de recurrencia
BLOQUE 5. SUCESIONES Y SERIES DE NÚMEROS REALES
BLOQUE 5 SUCESIONES Y SERIES DE NÚMEROS REALES Sucesiones de números reales - Límite de una sucesión - Cálculo de límites Series de números reales Progresiones aritméticas y geométricas Series geométricas
TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS
TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS NOTAS Toda expresión algebraica del tipo a n x n + a n 1 x n 1 + + a 1 x + a 0 es un polinomio de grado n, si a n 0. Es bien conocida la fórmula que da las
1. Con el dígito a se forman el número de dos dígitos a 3 y los números de tres dígitos 3aa y a 34. Si se sabe que 281, calcular el valor de a.
PRIMER NIVEL CERTAMEN ZONAL XXIX OLIMPÍADA MATEMÁTICA ARGENTINA APELLIDO: NOMBRES: DNI: ESCUELA: LOCALIDAD Y PROVINCIA: ESCRIBIR EN LA HOJA DE SOLUCIONES LOS CÁLCULOS Y RAZONAMIENTOS QUE JUSTIFICAN LAS
Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº 1
TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los
ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015
ÁLGEBRA (Selectividad 015) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 015 1 Aragón, junio 15 1 (3 puntos) a) (1,5 puntos) Considera la matriz y los vectores siguientes:
PROGRESIONES. Sucesiones. 1 Completa las siguientes sucesiones hasta el décimo término:
1 Sucesiones. 1 Completa las siguientes sucesiones hasta el décimo término: 1.1 5, 9, 13, 17, 21,,,,, 1.2 22, 19, 16, 13, 10,,,,, 1.3 3, 6, 12, 24, 48,,,,, 1.4 1, 4, 9, 16, 25,,,,, 1 6 2 4 8 16 8 10 12
GUIA Nº1 Números. 1) Si al entero ( 1) le restamos el entero ( 3), resulta A) 2 B) 2 C) 4 D) 4 E) ninguno de los valores anteriores
SUBSECTOR : Matemáticas NIVEL : Franja P.S.U. Matemáticas PROFESORES : Mario Muñoz - Marcos Becerra - Andrés Ruz AÑO : Primer Semestre - 207 UNIDAD TEMÁTICA: CONTENIDOS: FECHA DE ENTREGA Nombre: GUIA Nº
COMPLEJO EDUCATIVO CANTON TUTULTEPEQUE GUIA DE TRABAJO 1. Profesor Responsable: Santos Jonathan Tzun Meléndez.
COMPLEJO EDUCATIVO CANTON TUTULTEPEQUE GUIA DE TRABAJO 1 Profesor Responsable: Santos Jonathan Tzun Meléndez. Grado: 2º Bachillerato. Asignatura: Matemática II Periodo: I Fecha de Entrega: 13 de Marzo
Solución Primer Parcial Matemática
Solución Primer Parcial Matemática 1-01 1 Dados los puntos P 1 (5, 4) y P (, 4) hallar: (a) Ecuación, elementos y gráfico de la parábola con vértice en P 1 y foco en P. El eje de la parábola es paralelo
La suma de n términos de una progresión. aritmética es: Sn= El producto de n términos de una progresión. geométrica es: P = ( a a ).
Progresiones INTRODUCCIÓN Las sucesiones aparecen en diversos campos, tales como la medicina (evolución de un cultivo bacteriano), genética (distribución de los caracteres), informática (utilización de
En consecuencia una progresión aritmética, nos quedaría de la siguiente manera:
1.4. Progresiones 1.4.1. Progresiones Aritméticas 1.4.1.1 Introducción Es una sucesión de números llamados términos por ejemplo: 1) 2, 4, 6, 8,10, 2) 27, 24, 21,18, En estos dos ejemplos podemos observar
Progresiones. obra incluyó el estudio de las progresiones aritméticas, que no trató Euclides cuatrocientos años antes.
Progresiones Las progresiones geométricas fueron tratadas por primera vez, de forma rigurosa, por Euclides, matemático griego del siglo iii a.c. Fue el fundador y primer director de la gran escuela matemática
EJERCICIOS VERANO. Matemáticas Bachiller 1ºCCSS
EJERCICIOS VERANO Matemáticas Bachiller 1ºCCSS 1ª SESIÓN REPASO Semana:... 2. Representa las siguientes funciones, sabiendo que: a) Tiene pendiente 3 y ordenada en el origen 1. b) Tiene por pendiente 4
IES CUADERNO Nº 6 NOMBRE: FECHA: / / Ecuaciones
Ecuaciones Contenidos 1. Ecuaciones: ideas básicas Igualdades y ecuaciones Elementos de una ecuación Ecuaciones equivalentes 2. Reglas para resolver una ecuación Sin denominadores Con denominadores Resolución
Definición. Progresiones Aritméticas
www.matebrunca.com Profesor Waldo Márquez González Progresiones Aritméticas 1 Progresiones Aritméticas Un tipo particular de sucesión son la que se denominan progresiones; las más conocidas son las aritméticas
Sucesiones y Progresiones Aritméticas
Sucesiones y Progresiones Aritméticas Marco Teórico Llamamos SUCESIÓN a un conjunto ordenado de números que se deducen mediante una regla fija. Dicha regla queda resumida matemáticamente en el término
CANGURO MATEMÁTICO 2012 PRIMERO DE SECUNDARIA
CNGURO MTEMÁTICO 0 PRIMERO E SECUNRI INICCIONES Las marcas en la hoja de respuestas se deben realizar, únicamente, con LÁPIZ. Escriba su apellido paterno, apellido materno y nombres con letras de imprenta
GEOMETRÍA DEL ESPACIO: PRISMA
FICHA DE TAAJO Nº Nombre Nº orden imestre IV 4ºgrado - sección A C D Ciclo IV Fecha: - - 1 Área Matemática Tema GEOMETÍA DEL ESPACIO: PISMA TEMA: PISMA Es el sólido que se encuentra limitado por dos polígonos
EVALUACIÓN DE CONTENIDOS
PRUEBA B 3 EVALUACIÓN DE CONTENIDOS Nombre: Curso: Fecha: 1 Expresa en lenguaje algebraico. a) Ángel es 15 centímetros más alto que Andrea. b) En la clase de Pedro hay el doble de chicas que de chicos.
Seminario de problemas-eso. Curso Hoja 14
Seminario de problemas-eso. Curso 011-1. Hoja 14 6. Determina el valor de m tal que la ecuación en x x 4 (3m + )x + m = 0 tenga cuatro raíces en progresión aritmética. Como la suma de las cuatro raíces
Aplicaciones de las funciones exponenciales.
Aplicaciones de las funciones exponenciales. Interés Compuesto: Si un capital inicial C 0 es sometido a una tasa de interés r, al cabo de n periodos el capital acumulado es C = C 0 (1 + r) n Si la tasa
CURSO: GRUPO: Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos:
CURSO: GRUPO: Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos: {x/ -1
643 = 6C + 4D + 3U 6 X X X1 Ejercicios. Escribe las posiciones que faltan de los números naturales.
Grado Materia Bimestre Periodo de Evaluación GRADO ESCOLAR CUARTO GRADO MATERIA MATEMÁTICAS BIMESTRE/ BLOQUE PRIMER BIMESTRE PERIODO BLOQUE I CONTENIDOS 1-Notación desarrollada de números naturales y decimales
OLIMPÍADA JUVENIL DE MATEMÁTICA 2010 CANGURO MATEMÁTICO PRUEBA PRELIMINAR TERCER AÑO
OLIMPÍADA JUVENIL DE MATEMÁTICA 2010 CANGURO MATEMÁTICO PRUEBA PRELIMINAR TERCER AÑO RESPONDE LA PRUEBA EN LA HOJA DE RESPUESTA ANEXA 1. El perímetro de la figura es igual a: A 3a+4b; B 3a+8b; C 6a+4b;
2.- Escribe la lectura o escritura de las siguientes fracciones:
EDUCACIÓN PREESCOLAR 04PJN0020V EDUCACIÓN PRIMARIA Decroly más que un colegio 04PPR0034O EDUCACION SECUNDARIA 04PES0050Z MARATON DE MATEMÁTICAS 1.- Una fracción está compuesta por un numerador y un denominador.
Taller especial de capacitación de los profesores del 4º Ciclo
Taller especial de capacitación de los profesores del 4º Ciclo Este taller fue preparado para satisfacer la inquietud de los docentes que solicitaron más capacitación Olimpiada Akâ Porâ Olimpiada Nacional
ANALISIS COMBINATORIO.
ANALISIS COMBINATORIO. Factorial de. Se llama factorial de al producto de todos los números naturales desde 1 hasta, ambos inclusive. Para designar abreviadamente el factorial de se emplea la notación
Soluciones Fase Local Viernes 15 y sábado 16 de enero de 2016
LII Olimpiada Matemática Española Soluciones Fase Local Viernes 15 y sábado 16 de enero de 2016 Olimpiada Matemática Española RSME 1. En la primera fila de un tablero 5 5 se colocan 5 fichas que tienen
b ( x + a ) ( x a ) c ( 3 a x ) ( a + 3 x ) 4-1 INGRESO A 4º AÑO - L. M. G. A. - Prueba de MATEMÁTICA CUESTIONARIO- ENERO/2004
4-1 INGRESO A 4º AÑO - L. M. G. A. - Prueba de MATEMÁTICA CUESTIONARIO- ENERO/2004 S i a a = 2 / 3, x = 2, halle el valor numérico de 3 a 3 x + 2 a 2 x 2 6 a b ( x + a ) ( x a ) c ( 3 a x ) ( a + 3 x )
INSTITUTO NACIONAL DE LA COLONIA CIUDAD OBRERA DE APOPA EXAMEN PRIMER PERIODO DE MATEMÁTICA 2º AÑO DE BACHILLERATO TECNICO COMERCIAL
INSTITUTO NACIONAL DE LA COLONIA CIUDAD OBRERA DE APOPA EXAMEN PRIMER PERIODO DE MATEMÁTICA 2º AÑO DE BACHILLERATO TECNICO COMERCIAL Alumno: sección: CÓDIGO: Profesor: Santos Jonathan Tzun Meléndez. Periodo:
Unidad 1. Progresiones. Objetivos. Al finalizar la unidad, el alumno:
Unidad 1 Progresiones Objetivos Al finalizar la unidad, el alumno: Identificará los elementos de las progresiones aritméticas y geométricas. Calculará el n-ésimo término y la suma de los n términos de
Unidad 5 Límites de funciones. Continuidad
Unidad 5 Límites de funciones. Continuidad PÁGINA 104 SOLUCIONES 1. Los límites quedan: lím f( ) = 4; lím f( ) = 4 lím f( ) = 4 lím f ( ) = ; lím f( ) = 0 no eiste lím f ( ) 0 0 lím f ( ) = ; lím f ( )
SUCESIONES. REGULARIDADES Y PROGRESIONES.
José Juan González Gómez 2005. CONTENIDOS DE LA UNIDAD DIDÁCTICA DE TERCERO DE E.S.O: SUCESIONES. REGULARIDADES Y PROGRESIONES. ÍNDICE DE CONTENIDOS -Introducción y esquema de la unidad. -Cuestiones didácticas
Trabajo Práctico de Orientación Segundo año (2012)
COLEGIO SECUNDARIO LA PLATA Colegio Secundario La Plata Educar para un mundo mejor Trabajo Práctico de Orientación Segundo año (01) 1) Resolver el siguiente ejercicio combinado con potencias y raíces:
Rentas en progresión aritmética y geométrica
Rentas en progresión aritmética y geométrica Patricia Kisbye Profesorado en Matemática Facultad de Matemática, Astronomía y Física 2010 Patricia Kisbye (FaMAF) 2010 1 / 14 Anualidades ciertas con cuotas
FICHA DE TRABAJO Nº 4
FICHA DE TRABAJO Nº 4 Nombre Nº orden Bimestre I 3ºgrado - sección A B C D Ciclo III Fecha: - 04-12 Área Matemática Tema PLANTEO DE ECUACIONES II Ejemplo 1: En una panadería se venden bocaditos salados
Objet ivo. áreas. El área de una región es la medida de dicha región y se expresa en unidades cuadradas de longitud. 2 cm. 2 cm.
ÁREA DE REGIONE I Objet ivo Distinguir entre área y perímetro de una figura. Calcular el área de figuras a partir de la fórmula principal de áreas. DEFINICIÓN El área de una región es la medida de dicha
MATEMÁTICAS ÁLGEBRA (TIC)
COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS ÁLGEBRA (TIC) GRADO:8 O A DOCENTE: Nubia E. Niño C. FECHA: 27 / 04 / 15 Guía Didáctica 2 4 Desempeños: * Reconoce y aplica
La integral. 1.4 Notación para sumas
CAPÍTULO La integral.4 Notación para sumas En esta sección introducimos una notación que sirve para abreviar la escritura de sumas en general. Se utiliza la letra griega sigma mayúscula ( para abreviar
Semana 07[1/21] Sumatorias. 12 de abril de Sumatorias
Semana 07[/] de abril de 007 Semana 07[/] Progresiones aritméticas Progresión aritmética Es una sumatoria del tipo (A + d) es decir, donde a A + d, para valores A, d Ê. Utilizando las propiedades de sumatoria,
Enunciados de problemas de números.
Nº. Enunciados de problemas de números. Hallar un número de 4 cifras que sea igual al cubo de la suma de las cifras. 2 Demostrar que si a, b y c son números racionales arbitrarios, los polinomios: n -2
DETERMINANTES UNIDAD 3. Página 76
UNIDAD 3 DETERMINANTE Página 76 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes: 2x + 3y 29 5x 3y 8 4x + y
SOLUCIONES: PROBLEMAS CON ECUACIONES E INECUACIONES
DPTO DE MATEMÁTICAS T: ALGEBRA - 1 SOLUCIONES: PROBLEMAS CON ECUACIONES E INECUACIONES 1. Los lados de un rectángulo se diferencian en m. Si aumentáramos m cada lado, el área se incrementaría en 40 m.
DEPARTAMENTO DE MATEMATICAS Y FISICA Matemáticas Discreta
DEPARTAMENTO DE MATEMATICAS Y FISICA Matemáticas Discreta SUCESIONES Y RELACIONES DE RECURRENCIA Esta última sección la dedicamos a presentar el concepto de recurrencia, que esta muy ligado al axioma de
Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Matemáticas 3º Eso.
Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Sistemas Ejercicios de a reas y volu menes I 1Calcula el volumen, en centímetros cúbicos, de una habitación que tiene 5 m de largo, 40 dm de ancho
FICHA DE RECUPERACIÓN ESTIVAL 2017
FICHA DE RECUPERACIÓN ESTIVAL 07 CURSO: º de E.S.O. ASIGNATURA: Matemáticas Académicas FECHA Y LUGAR DEL EXAMEN: Visitar la página web oficial del centro www.ieslosalbares.es para ver esta información.
Ajedrez, Granos de Arroz y Potencias de 2
Especialidad La enseñanza de las matemáticas en secundaria Grupo B: Celaya Ajedrez, Granos de Arroz y Potencias de 2 Según la tradición o la leyenda o las historias que nos cuentan, un antiguo rey de la
Lección 6: EXPRESIONES ALGEBRAICAS: MONOMIOS
Lección 6: EXPRESIONES ALGEBRAICAS: MONOMIOS 1.- ÁLGEBRA. EXPRESIONES ALGEBRAICAS Y LENGUAJE ALGEBRAICO ÁLGEBRA es la parte de las matemáticas que estudia las expresiones algebraicas. EXPRESIÓN ALGEBRAICA
Seminario de problemas. Curso Hoja 1
Seminario de problemas. Curso 2011-12. Hoja 1 1. En la estación central de una red ferroviaria se venden tantos billetes distintos como estaciones a las que se puede ir desde una estación determinada de
UNIDAD 1: ESTUDIEMOS SUCECIONES ARITMETICAS Y GEOMETRICAS.
UNIDAD 1: ESTUDIEMOS SUCECIONES ARITMETICAS Y GEOMETRICAS. Sucesiones Una sucesión es un conjunto de números que son imagen de una función, cuyo dominio son, (normalmente), los enteros positivos, comenzando
Matemáticas Financieras
Matemáticas Financieras 1 Sesión No. 2 Nombre: Fundamentos Matemáticos Contextualización En el área de las inversiones, algunos fundamentos matemáticos son una parte muy importante, ya que los intereses
UNIDAD. Logaritmos ÍNDICE DE CONTENIDOS
UNIDAD 2 Sucesiones y número e. Logaritmos ÍNDICE DE CONTENIDOS 1. Sucesiones de números reales............................... 35 1.1. Progresiones aritméticas y geométricas....................... 36 1.2.
1 Sucesiones. Unidad 5. Secuencias numéricas ESO. Página 61
1 Sucesiones Página 61 1. Añade los tres términos siguientes en cada una de estas sucesiones: a) 10, 15, 0, 5, 30, b) 80, 70, 60, 50, 40, c) 3, 6, 1, 4, 48, d) 1, 3, 4, 6, 7, e), 5, 7, 1, 19, f ) 4, 6,
1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0
Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Geometría Analítica 1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a
Problemas y rompecabezas Sandor Ortegón Profesor de cátedra del Departamento de Matemáticas de la Universidad de los Andes
Problemas y rompecabezas Sandor Ortegón Profesor de cátedra del epartamento de Matemáticas de la Universidad de los ndes [email protected] La siguiente colección de problemas tiene algo en común:
Problemas + PÁGINA Al comienzo de cada año ingresamos al 5% anual. De qué capital dispondremos al final del sexto año?
PÁGINA 71 Pág. 1 41 Al comienzo de cada año ingresamos 6 000 al 5% anual. De qué capital dispondremos al final del sexto año? 1. er AÑO.º AÑO 3. er AÑO 4.º AÑO 5.º AÑO 6.º AÑO 6 000 6 000 1,05 6 6 000
