GUÍA 3 TÉCNICAS DE CONTEO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "GUÍA 3 TÉCNICAS DE CONTEO"

Transcripción

1 INSTITUCION UNIVERSITARIA ANTONIO JOSÉ CAMACHO Asignatura: Estadística I Profesores: Rubén Darío Corrales Velasco: [email protected]; 2010-S2 GUÍA 3 TÉCNICAS DE CONTEO Básicamente utilizamos las técnicas de conteo cuando el hecho de representar el espacio muestral es demasiado engorroso debido a que sus resultados son demasiados para poder contabilizarlos. De manera que se hace imposible calcular cualquier probabilidad de un evento resultante de este. Por ejemplo: el espacio muestral resultante del experimento, escoger tres personas entre 10 para trabajar como operadores de línea de producción o escoger cuatro candidatos entre 15 para ocupar el cargo de presidente, vicepresidente y secretarios. 1. PRINCIPIO DE LA MULTIPLICACIÓN 1.1. REGLA DEL PRODUCTO PARA PARES ORDENADOS Lo primero que debemos hacer es diferenciar entre los individuos (cosas, personas o animales) que se desea contar y el orden que estos pares llevan en un espacio muestral, un ejemplo práctico que ilustra lo anterior es comparar las dos siguientes situaciones: 1- Se desea realizar un trámite donde primero se tiene que hacer una fila para pedir una cita, luego se debe hacer una fila para pagar el trámite y finalmente una fila para reclamar el documento, 2- Hacer una fila para pagar los servicios públicos, hacer una fila en otro lugar para pagar la tarjeta de crédito, hacer una fila en otro lugar para pagar la matrícula de la universidad. Proposición: Si el primer elemento de un par ordenado se puede seleccionar de n 1 maneras distintas y para estas n 1 se puede seleccionar un segundo elemento del par en n 2 formas, entonces el número de pares es n 1 x n 2. Un estudiante puede elegir entre dos cursos para matricular, como primera opción tiene 12 cursos diferentes de estadística y probabilidad y 7 cursos de Cálculo III, entonces las diferentes formas en las que el estudiante puede elegir los dos cursos serán: 12 x 7 = DIAGRAMAS DE ÁRBOL Es sencillamente la forma gráfica de representación para la regla del producto en pares ordenados EN TODAS sus posibilidades. En donde la primera rama del árbol es el número de eventos n 1 y se les conoce como ramas de primera generación y la segunda rama del árbol son el número de resultados dados por n 2 o ramas de segunda generación. De cuantas maneras se puede escoger entre cuatro pares de zapatos y tres tipos de correas: S (Z1, ) (Z1, ) (Z1, ) Z1 Z2 Z3 Z4 (Z2, ) (Z2, ) (Z2, ) (Z3, ) (Z3, ) (Z3, ) (Z4, ) (Z4, ) (Z4, ) Como se puede observar en el diagrama anterior, en este se encuentran todas las posibles combinaciones en las que se pueden seleccionar los zapatos y las correas dadas en el ejercicio anterior como se puede observar en la última parte se

2 encuentra la representación del espacio muestral conteniendo todos los posibles resultados y el número de pares ordenados que componen el espacio muestral es n 1 x n 2 = 4 x 3 = 12, que es igual al número de ramas finales o de segunda generación con las que cuenta el árbol REGLA DEL PRODUCTO MÁS GENERAL Considere el caso en el que además de combinar los cuatro pares de zapatos y las tres correas además se tienen siete colores de pantalón distintos y seis tipos de camisa diferentes, en este caso no se tiene únicamente un par ordenado, también se debe tener en cuenta en la construcción del espacio muestral: número de combinaciones para vestirse los resultados con las camisas y los pantalones. En este caso se podría construir un diagrama de árbol con ramas de tercera y cuarta generación pero en realidad se haría un poco engorroso. NOTA: Siempre tenga presenta algunos posibles resultados del espacio muestral cuando el hecho de construirlo sea demasiado largo. Así que extendiendo los resultados en la regla de la multiplicación el número de elementos en el espacio muestral estaría dado por: n 1 x n 2 x n 3 x n 4 x x n k. Para el ejemplo en anterior el número de resultados del espacio muestral vendría dado por: 4 x 3 x 7 x 6 = 504 maneras de vestirse diferentes. 2. PERMUTACIONES La regla de la multiplicación se utiliza básicamente cuando los elementos que componen el experimento son extraídos de conjuntos totalmente excluyentes. En este caso se deberá extraer los elementos que componen el experimento de un mismo conjunto. DEFINICIÓN: Cualquier secuencia ordenada de k elementos tomada de un conjunto de n elementos distintos se denomina permutación, de tamaño r de los objetos, y se indica de la siguiente manera n P r. En otras palabras se utiliza para encontrar el número de arreglos cuando en el espacio muestral importa el orden en el que van los elementos, se asume que el número total de objetos es n y r el número de elementos que se escogen para conformar un elemento del espacio muestral. Los elementos se pueden arreglar de dos maneras diferentes: SIN SUSTITUCIÓN (calculadora directamente) El número de permutaciones de tamaño r que se pueden obtener se logra directamente aplicando la regla de la multiplicación, como los elementos salen del mismo conjunto de datos entonces n P r que daría expresado de la siguiente manera: np r = n x (n-1) x (n-2) x x (n-r+2) x (n-r+1) Note que si n = r entonces n P r = n x (n-1) x (n-2) x x (2) x (1) = n! En general n P r = ( ) CON SUSTITUCIÓN El experimento estaría planteado de la misma manera solo que el elemento que se saca para conformar el resultado en el espacio muestral se puede volver a sacar ya que puede volver hacer parte del conjunto total de los n elementos, la expresión quedará expresada de la siguiente forma: n P r = n r.

3 Tres ejemplos que ilustra lo anterior se observa en lo siguiente: - De cuantas maneras se pueden seleccionar de un grupo de 10 asistentes para calificar 6 preguntas de un examen. - Como cambia el ejercicio si las preguntas del parcial son Como cambia el ejercicio si un asistente puede calificar más de una pregunta. 3. COMBINACIONES Al igual que en el caso anterior los elementos son extraídos de un único conjunto. DEFINICIÓN: Dado un conjunto de n objetos distintos, cualquier subconjunto no ordenado de tamaño r de los objetos se le denomina combinación, se indica de la siguiente forma n C r = ( ) En este caso se trata de encontrar el número de r arreglos en un conjunto de n elementos, cuando en el espacio muestral el orden no importa el orden. Generalmente cuando se habla de una combinación no se aplica el hecho de que pueda ocurrir con sustitución debido a la poca practicidad de esta aplicación. Debido a esto solo se tomará el caso en donde la combinación de hace con sustitución (calculadora directamente) y esto se verá mucho más claro en los ejemplos. La expresión para calcular una combinación es la siguiente: n C r = ( ) ( ) La expresión para calcular una combinación con repetición es la siguiente: n C r = ( ) ( ) Un ejemplo para la situación anterior es: - En un juego de cartas se desea saber el número de combinaciones posibles que se puede obtener si se juega al bridge donde a cada jugador se le asigna un total de 13 cartas. - Escoger dos personas entre un grupo de seis para un cargo con las mismas funciones. PROPIEDADES: 1. ( ) ( ) 2. ( ) ( ) ( ) NOTAS: - Nunca cuando esté realizando los ejercicios pierda de vista el concepto de evento. - Nunca cuando esté realizando los ejercicios pierda de vista el concepto de probabilidad.

4 1. Determinar el valor de las siguientes expresiones: TALLER TÉCNICAS DE CONTEO a) 10! b) (18 12)! C) ( )! d) 5!(4 + 4)! 6! 4! e) 8! 3! 6! f) (9 + 3 )! g)) 12! h) 15! 4! 5! 4! 2! (20 8)! 4! 9! 10! 7! 2. Cómo se clasifican las ordenaciones y qué diferencias hay entre ellas? 3. Qué es una permutación, cómo se calcula? 4. Cuándo los elementos de un conjunto se pueden agrupar en subconjuntos, cómo se calcula la permutación? 5. Calcular el número de permutaciones que se pueden formar con las letras de cada una de las siguientes palabras: a) Contaduría b) Administración c) Sistemas d) Tecnología 6. Qué es una variación? Cómo se calcula el número de variaciones posibles? 7. Cuántos números de cinco (5) cifras diferentes, pueden formarse con los dígitos : a) 2, 3, 4, 9, 0, 8 b) 6, 2, 4, 1, 8, 9 c) 1, 2, 3,.4, 5, 6, 7, 8, 9 8. Qué es una combinación? Cómo se calcula, el número de combinaciones posibles? 9. Si se tiene en cuenta, los equipos de fútbol de Colombia, Uruguay, Ecuador, Brasil, Argentina y Paraguay. Cuántas delegaciones de cuatro equipos se pueden formar? Si: a) En la delegación debe estar obligatoriamente Colombia b) No se impone ninguna restricción 10. De cuántas maneras puede formarse equipos de estudio, de 5 estudiantes, si se tiene un grupo de 20? 11. De Cuántas formas se pueden ordenar 6 impresoras en un estante, si: a) Dos impresoras determinadas, deben estar juntas. b) No se impone ninguna restricción c) Una impresora determinada, debe estar en el extremo izquierdo 12. Se presentan a un concurso 12 hombres y 10 mujeres. Cuántos grupos de 3 hombres y cinco mujeres podrían ganar? 13. Con los dígitos se desea formar números de doce cifras utilizándolos a todos ellos. Cuántos números distintos pueden formarse? 14. De un salón de 30 estudiantes, cuántos grupos de 5 estudiantes se pueden formar, si un estudiante determinado está en todos los grupos. R/ Cuántos números tiene una lotería de 4 cifras sin series, sí aparece el 1 en la primera cifra R/ Cuántos números tiene una lotería de 4 cifras sin series,, si todas las cifras son diferentes. R/ Cuántos son los posibles menús que se pueden formar para una cena, si se dispone de 4 platos de entrada, 2 platos fuertes y 10 tipos de postres. R/ Cuántas son las formas como pueden caer 5 dados, si el primer dado cae por 1 ó por 2. R/ Cuántas son las formas como pueden caer 5 dados. R/ De cuántas formas pueden caer 5 dados, sí caen por caras diferentes. R/ De cuántas formas pueden caer 5 dados, si ninguno cae por la cara 1. R/ En un lote de 10 bombillas hay 3 defectuosas, cuántas muestras de tamaño 5 se hallan, si deben haber en la muestra exactamente 3 buenas. R/ 105

5 23. De cuántas formas posible se puede definir la clasificación de los primeros 5 equipos en un campeonato de 15 equipos, si el equipo 15 ocupa siempre el segundo lugar. R/ De cuántas formas pueden caer 10 monedas. R/ De cuántas formas pueden caer 10 monedas, si por lo menos 8 caen por cara. R/ En un grupo de votantes se realiza una encuesta sobre si están a favor de un proyecto de ley, entrevistando al azar 50 personas, cuyos nombres se registran en una lista a medida que van votando. Si la respuesta es si ó no. De cuántas formas posibles se contestará la encuesta. R/ x E De cuántas maneras pueden caer 5 dados diferentes por caras diferentes. R/ De cuántas maneras pueden caer 5 dados, si el primer dado cae por 1 ó el último cae por 1. R/ Cuántos números de lotería de 4 cifras hay sin series, si la primera y la última son iguales y solo esas. R/ El número de formas de caer 5 dados, si la suma de los 2 primeros dados es 3 y los otros caen por caras diferentes. R/ De cuántas maneras pueden caer 3 monedas y 2 dados simultáneamente. R/ En un lote de 60 tornillos producidos por una máquina, hay 12 defectuosos, cuántas muestras diferentes de 10 tornillos hay, si deben haber exactamente 2 buenos. R/ De cuántas maneras podrán escogerse 4 personas de un grupo de 5 matrimonios, de suerte que 2 sean hombres y 2 mujeres. R/ Cuántos números de 4 cifras pueden construirse con los dígitos 1, 2, 3, 4, 5, 6 y 7. R/ Una operación de montaje en una empresa manufacturera requiere tres pasos que se realizan dependiendo de un orden específico, De cuantas maneras se puede hacer el montaje. R/ Una aerolínea tiene 6 vuelos diarios de New York a California y 7 vuelos de California a Hawai todos en horas diferentes. Si los vuelos se hacen en días separados, cuántos diferentes arreglos de vuelos se pueden ofrecer. R/ De cuántas formas se pueden llenar dos vacantes de administradores y tres vacantes de economistas, de un total de ocho economistas, tres administradores y cinco ingenieros industriales. R/ Una caja de 12 baterías recargables contiene una defectuosa. De cuántas formas puede un inspector seleccionar tres de las baterías y: Obtener la defectuosa. R/ 55 b. No obtener la defectuosa. R/ Un equipo de trabajo formado por dos estudiantes de Ingeniería Mecatrónica, dos de Sistemas y cuatro de Electrónica debe constituirse para una representación externa de la Universidad. Si se dispone de una lista de inscripciones con cuatro estudiantes de Mecatrónica, cinco de Sistemas y seis de Electrónica, a. Cuántas son las distintas formas posibles de obtener el equipo de trabajo?. R/ 900 b. El hermano de uno de los aspirantes de Sistemas está en la lista de inscritos de Electrónica. De cuántas formas se puede formar el equipo donde los dos hermanos sean escogidos?. R/ 240 c. De cuántas formas se puede formar el equipo, donde ninguno de los dos hermanos sea escogido? R/ Si los códigos en un catalogo comienzan con tres letras distintas (alfabeto 27 letras) seguidas por tres dígitos distintos de cero, encuentre cuántos códigos tienen como primera letra una vocal y que el último dígito sea par. R/ Tres parejas de casados han comprado boletos para el teatro y se sientan en una fila formada por solo seis asientos. Si se toman los asientos de un modo totalmente aleatorio (al azar), a. De cuántas formas José y María (marido y mujer) se pueden sentar en los dos asientos de la extrema izquierda y sus compañeros en los otros? R/ 48 b. De cuántas formas José y María pueden terminar sentados uno junto al otro y sus compañeros? R/ 240

Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.

Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 Arboles de decisión Un árbol de decisiones es una herramienta para determinar la

Más detalles

Espacio Muestral, se denota con la letra S, y representa el conjunto de todos los sucesos aleatorios. Por ejemplo: Si tiramos una moneda el espacio se sucesos está formado por: S= {Ø, {C}, {X}, {C,X}}.

Más detalles

TEMA 17: PROBABILIDAD

TEMA 17: PROBABILIDAD TEMA 17: PROBABILIDAD Probabilidad de un suceso aleatorio es un numero entre 0 y 1 (más cerca del 0, mas difícil que ocurra. Más cerca del 1 más fácil que ocurra). Suceso seguro: Su probabilidad es 1.

Más detalles

GUIA ESTADÍSTICA DE LA PROBABILIDAD TEMA: TÉCNICAS DE CONTEO DOCENTE: SERGIO ANDRÉS NIETO DUARTE

GUIA ESTADÍSTICA DE LA PROBABILIDAD TEMA: TÉCNICAS DE CONTEO DOCENTE: SERGIO ANDRÉS NIETO DUARTE GUIA ESTADÍSTICA DE LA PROBABILIDAD TEMA: TÉCNICAS DE CONTEO DOCENTE: SERGIO ANDRÉS NIETO DUARTE Principio aditivo Si una acción puede realizarse de n1 maneras diferentes y una segunda acción puede realizarse

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 2 Nombre: Probabilidad Contextualización En la sesión anterior analizamos cómo a largo plazo un fenómeno aleatorio o probabilístico posee un

Más detalles

Probabilidad. Generalidades

Probabilidad. Generalidades robabilidad Generalidades a probabilidad estudia experimentos en los que se pueden esperar varios resultados y no solamente uno. os experimentos se pueden clasificar como aleatorios o determinísticos.

Más detalles

Aplica métodos de conteo por medio de la obtención de permutaciones y combinaciones de un conjunto de elementos en arreglos. (10%)

Aplica métodos de conteo por medio de la obtención de permutaciones y combinaciones de un conjunto de elementos en arreglos. (10%) Empleará distintos sistemas numéricos en la representación de cantidades realizando operaciones aritméticas básicas y conversiones de bases, así como métodos de conteo a fin de detectar la forma en que

Más detalles

Christian Michel Álvarez Ramírez

Christian Michel Álvarez Ramírez Christian Michel Álvarez Ramírez En esta presentación hablaremos sobre el tema de probabilidad y estadística, veremos en que nos puede servir, como podemos aplicarla, ya sea en la vida diaria o en el trabajo

Más detalles

47! 44! 3! 3. Calcula: c) ( 5 2 ) ( 5 3 ) B)PROBLEMAS MEDIANTE VARIACIONES, PERMUTACIONES Y COMBINACIONES.

47! 44! 3! 3. Calcula: c) ( 5 2 ) ( 5 3 ) B)PROBLEMAS MEDIANTE VARIACIONES, PERMUTACIONES Y COMBINACIONES. Ejercicios y problemas. A) NÚMEROS FACTORIALES Y COMBINATORIOS. 1. Calcula: a) 3! b) 5! c) 7! d) 4! 2. Simplifica al máximo, a) 15! 18! b) 23! 20! c) 33! 2! 35! d) 47! 44! 3! 3. Calcula: a) ( 6 2 ) b)

Más detalles

UNIDAD X Teoría de conteo

UNIDAD X Teoría de conteo UNIDAD X Teoría de conteo Regla de la suma UNIDAD 10 TEORÍA DE CONTEO Se les denomina técnicas de conteo a las combinaciones, permutaciones y diagrama de árbol, que nos proporcionan la información de todas

Más detalles

PROCESAMIENTO DE INFORMACIÓN ESTADÍSTICA

PROCESAMIENTO DE INFORMACIÓN ESTADÍSTICA PROCESAMIENTO DE INFORMACIÓN ESTADÍSTICA 1 UNIDAD II. PROBABILIDAD Y ESTADÍSTICA TEMA: PRINCIPIO FUNDAMENTAL DE CONTEO (PERMUTACIONES Y COMBINACIONES). MTRO. YONATAN ERIC CRUZ HERNÁNDEZ 2 TABLA DE CONTENIDO

Más detalles

METODOS DE CONTEO Y PROBABILIDAD

METODOS DE CONTEO Y PROBABILIDAD METODOS DE CONTEO Y PROBABILIDAD PROBABILIDAD Cuando realizamos un experimento, diremos que es: Determinista: dadas unas condiciones iniciales, el resultado es siempre el mismo. Aleatorio: dadas unas condiciones

Más detalles

Factorial de un número Se define como la multiplicación sucesiva de los primeros números naturales.

Factorial de un número Se define como la multiplicación sucesiva de los primeros números naturales. Combinatoria Principio multiplicativo Un elemento se puede elegir de formas diferentes, un elemento se puede elegir de formas diferentes hasta un elemento enésimo que puede ser elegido de formas diferentes.

Más detalles

Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.

Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 Técnicas de conteo En muchos problemas de probabilidad, el reto mayor es encontrar

Más detalles

MATEMÁTICAS BÁSICAS PROBABILIDAD

MATEMÁTICAS BÁSICAS PROBABILIDAD MATEMÁTICAS BÁSICAS PROBABILIDAD Autora: Alejandra Sánchez Departamento de Matemáticas Sede Bogotá 10 de diciembre de 2013 Introducción a la Probabilidad Definición espacio muestral y eventos Definición

Más detalles

GUIA No.3 TERCER PERIODO ESTADISTICA GRADO ONCE

GUIA No.3 TERCER PERIODO ESTADISTICA GRADO ONCE GUIA No.3 TERCER PERIODO ESTADISTICA GRADO ONCE PERMUTACIONES Para considerar la técnica de la permutación es necesario definir la operación factorial, el operador factorial se define sobre los números

Más detalles

SESIÓN 10 REGLAS BÁSICAS PARA COMBINAR PROBABILIDADES

SESIÓN 10 REGLAS BÁSICAS PARA COMBINAR PROBABILIDADES SESIÓN 10 REGLAS BÁSICAS PARA COMBINAR PROBABILIDADES I. CONTENIDOS: 1. Reglas básicas para combinar probabilidades.. Diagramas de Venn. II. OBJETIVOS: Al término de la Sesión, el alumno: Distinguirá e

Más detalles

CENTRO DE ESTUDIOS TECNOLÓGICOS Industrial y de Servicios Nº 107. Facilitador: JOSÉ EXIQUIO SÁNCHEZ CECEÑA

CENTRO DE ESTUDIOS TECNOLÓGICOS Industrial y de Servicios Nº 107. Facilitador: JOSÉ EXIQUIO SÁNCHEZ CECEÑA CENTRO DE ESTUDIOS TECNOLÓGICOS Industrial y de Servicios Nº 107 Facilitador: JOSÉ EXIQUIO SÁNCHEZ CECEÑA 10 y 25 de noviembre de 2014 QUÉ ES PROBABILIDAD? Se expresa entre: 0-1, donde 1 = 100% TEORÍA

Más detalles

Probabilidad. Literature de ficción para níños. Literature de no ficción para níños. Literature de ficción para adultos. Otras

Probabilidad. Literature de ficción para níños. Literature de no ficción para níños. Literature de ficción para adultos. Otras C APÍTULO 0 Probabilidad Resumen del contenido El Capítulo 0 presenta unos conceptos básicos de probabilidad, incluyendo clases especiales de eventos, valores esperados y permutaciones y combinaciones

Más detalles

Calcular probabilidad clásica mediante regla de Laplace. Reconocer elementos básicos en las probabilidades.

Calcular probabilidad clásica mediante regla de Laplace. Reconocer elementos básicos en las probabilidades. Guía N 16 Nombre: Fecha: Contenidos: Probabilidad Clásica Objetivos: Calcular probabilidad clásica mediante regla de Laplace. Reconocer elementos básicos en las probabilidades. NOCIONES ELEMENTALES Experimento:

Más detalles

Academia, Librería, Informática Diego E S Q U E M A D E C O M B I N A T O R I A. CUADRO RESUMEN Sí (Variaciones o Permutaciones) m n m=n

Academia, Librería, Informática Diego E S Q U E M A D E C O M B I N A T O R I A. CUADRO RESUMEN Sí (Variaciones o Permutaciones) m n m=n E S Q U E M A D E C O M B I N A T O R I A m = Número de elementos de que se dispone. n = De cuánto en cuánto se cogen. Influye el orden? CUADRO RESUMEN Sí (Variaciones o Permutaciones) m n m=n No (Combinaciones)

Más detalles

ANALISIS APELLIDO NOMBRE

ANALISIS APELLIDO NOMBRE Variaciones Trabajo a realizar de este tema: En Excel 2003 hoja 1, prepara un(os) cuadro(s) sinópticos o mapas conceptuales o mapas mentales que sinteticen los capítulos: 0701 Análisis combinatorio, 0702

Más detalles

Aplica métodos de conteo por medio de la obtención de permutaciones y combinaciones de un conjunto de elementos en arreglos. (10%)

Aplica métodos de conteo por medio de la obtención de permutaciones y combinaciones de un conjunto de elementos en arreglos. (10%) Empleará distintos sistemas numéricos en la representación de cantidades realizando operaciones aritméticas básicas y conversiones de bases, así como métodos de conteo a fin de detectar la forma en que

Más detalles

PROBABILIDAD CLÁSICA (Técnicas de Conteo)

PROBABILIDAD CLÁSICA (Técnicas de Conteo) PROBABILIDAD CLÁSICA (Técnicas de Conteo) M. en C. Juan Carlos Gutiérrez Matus INSTITUTO POLITÉCNICO NACIONAL Unidad Profesional Interdisciplinaria de Ingeniería y Ciencias Sociales y Administrativas Primavera

Más detalles

Combinatoria. En todo problema combinatorio hay varios conceptos claves que debemos distinguir:

Combinatoria. En todo problema combinatorio hay varios conceptos claves que debemos distinguir: Conceptos de combinatoria Combinatoria En todo problema combinatorio hay varios conceptos claves que debemos distinguir: 1. Población Es el conjunto de elementos que estamos estudiando. Denominaremos con

Más detalles

UANL UNIVERSIDAD AUTONOMA DE NUEVO LEON PREPARATORIA 23

UANL UNIVERSIDAD AUTONOMA DE NUEVO LEON PREPARATORIA 23 PORTAFOLIO DE PROBABILIDAD Y ESTADÍSTICA CUARTA OPORTUNIDAD FECHA DE EXAMEN: HORA: Nombre del alumno: Grupo: RÚBRICA: Ten en cuenta que el hecho de entregar el trabajo no te otorga automáticamente 40 puntos.

Más detalles

b) Cuántas posibilidades hay para que una pareja de candidatos uno de cada partido se oponga entre sí en la elección final?

b) Cuántas posibilidades hay para que una pareja de candidatos uno de cada partido se oponga entre sí en la elección final? Eslin Karina Montero Vargas A1336 1/0/03 REGLA DE LA SUMA Suma de formas REGLA DEL PRODUCTO Multiplicación de formas Ejemplo: 3 panes, cafés y 5 queques 1p 1c c 1 q q 3q 4q 5q 1 q q 3q 4q 5q p 1c c 1 q

Más detalles

Son los experimentos de los que podemos predecir el resultado antes de que se realicen.

Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Probabilidad Experimentos deterministas Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Ejemplo Si dejamos caer una piedra desde una ventana sabemos, sin lugar a

Más detalles

Calcular probabilidad clásica mediante regla de Laplace. Reconocer elementos básicos en las probabilidades.

Calcular probabilidad clásica mediante regla de Laplace. Reconocer elementos básicos en las probabilidades. Guía N 18 Nombre: Fecha: Contenidos: Probabilidad Clásica Objetivos: Calcular probabilidad clásica mediante regla de Laplace. Reconocer elementos básicos en las probabilidades. Métodos de conteo Los métodos

Más detalles

3.Si A y B son incompatibles, es decir A B = entonces:

3.Si A y B son incompatibles, es decir A B = entonces: Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)

Más detalles

TEORÍA Y EJERCICIOS RESUELTOS DE COMBINATORIA Y PROBABILIDAD. Notas teóricas

TEORÍA Y EJERCICIOS RESUELTOS DE COMBINATORIA Y PROBABILIDAD. Notas teóricas MATEMÁTICAS º ESO TEORÍA Y EJERCICIOS RESUELTOS DE COMBINATORIA Y PROBABILIDAD Juan J. Pascual COMBINATORIA Y PROBABILIDAD Notas teóricas - Variaciones: Las variaciones son agrupaciones ordenadas de objetos

Más detalles

Matemáticas Discretas Enrique Muñoz de Cote INAOE. Permutaciones y Combinaciones

Matemáticas Discretas Enrique Muñoz de Cote INAOE. Permutaciones y Combinaciones Matemáticas Discretas Enrique Muñoz de Cote INAOE Permutaciones y Combinaciones Contenido Introducción Reglas de la suma y el producto Permutaciones Combinaciones Generación de permutaciones Teorema del

Más detalles

GUIA PARA PRIMER EXAMEN PARCIAL DE PROBABILIDAD Y ESTADISTICA

GUIA PARA PRIMER EXAMEN PARCIAL DE PROBABILIDAD Y ESTADISTICA GUIA PARA PRIMER EXAMEN PARCIAL DE PROBABILIDAD Y ESTADISTICA Deberán apoyarse en los ejercicios resueltos en clase marcados con el símbolo E Los conceptos de probabilidad, fenómeno aleatorio, determinista,

Más detalles

3.Si A y B son incompatibles, es decir A B = entonces:

3.Si A y B son incompatibles, es decir A B = entonces: Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)

Más detalles

Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades

Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades Experimentos deterministas Probabilidad Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Si dejamos caer una piedra desde una ventana sabemos, sin lugar a dudas,

Más detalles

TEMA 10 COMBINATORIA

TEMA 10 COMBINATORIA 0. Variaciones TEMA 0 COMBINATORIA EJERCICIOS PÁGINA 0. En una liga de fútbol en la que participan 8 equipos, el primer clasificado acude a un campeonato europeo y segundo tiene que ir a una eliminatoria

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Probabilidad Ing. Ivannia Hasbum., M.Eng. Todos los días tomamos decisiones pero no las tomamos a ciegas, imaginar las probabilidades de varios resultados posibles nos ayuda

Más detalles

Concepto de Probabilidad

Concepto de Probabilidad Concepto de Probabilidad Prof. Miguel Hesiquio Garduño. Est. Mirla Benavides Rojas Depto. De Ingeniería Química Petrolera ESIQIE-IPN [email protected] [email protected] PROBABILIDAD En cualquier

Más detalles

PROBABILIDAD Y ESTADISTICA 2ª OPORTUNIDAD NOMBRE GRUPO MATRICULA FECHA

PROBABILIDAD Y ESTADISTICA 2ª OPORTUNIDAD NOMBRE GRUPO MATRICULA FECHA PROBABILIDAD Y ESTADISTICA ESCUELA PREPARATORIA 9 2ª OPORTUNIDAD NOMBRE GRUPO MATRICULA FECHA INVESTIGA LOS SIGUIENTES CONCEPTOS 1.- PROBABILIDAD 2.- FACTORIAL 3.PERMUTACIÒN 4.- COMBINACIÒN 5.- PROBABILIDAD

Más detalles

PERMUTACIONES. PERMUTACIONES SIN REPETICIÓN DE n ELEMENTOS TOMADOS TODOS A LA VEZ

PERMUTACIONES. PERMUTACIONES SIN REPETICIÓN DE n ELEMENTOS TOMADOS TODOS A LA VEZ PERMUTACIONES En esta sección, usaremos el Principio de la Multiplicación para hallar fórmulas generales que permitan calcular el número de permutaciones con y sin repetición de n elementos tomando todos

Más detalles

Axiomática de la Teoría de Probabilidades

Axiomática de la Teoría de Probabilidades Axiomática de la Teoría de Probabilidades Modelos matemáticos Según el experimento Cada ejecución del experimento se denomina prueba o ensayo Determinísticos Aleatorios Conjunto de resultados posibles

Más detalles

PROBABILIDADES, COMBINACIONES, VARIACIONES Y PERMUTACIONES

PROBABILIDADES, COMBINACIONES, VARIACIONES Y PERMUTACIONES PROBABILIDADES, COMBINACIONES, VARIACIONES Y PERMUTACIONES PROBABILIDADES La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento. Ejemplo: tiramos

Más detalles

Un juego de azar consiste en escoger 3 números distintos del 1 al 7. De cuántas formas se puede realizar esta selección?

Un juego de azar consiste en escoger 3 números distintos del 1 al 7. De cuántas formas se puede realizar esta selección? . Un juego de azar consiste en escoger números distintos del al 7. De cuántas formas se puede realizar esta selección?. 7 0 4 840 De cuántas maneras distintas se pueden ordenar personas en un círculo?.

Más detalles

DISTRIBUCIONES DE PROBABILIDAD. es una representación gráfica que permite visualizar un experimento de pasos múltiples.

DISTRIBUCIONES DE PROBABILIDAD. es una representación gráfica que permite visualizar un experimento de pasos múltiples. es una representación gráfica que permite visualizar un experimento de pasos múltiples. Considere un experimento que consiste en lanzar dos monedas. Defina los resultados experimentales en términos de

Más detalles

Ejercicios de Combinatoria

Ejercicios de Combinatoria Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: Combinatoria Capacidades/Destreza/Habilidad: Racionamiento Matemático/ Aplicación / Calcular, Resolver Valores/ Actitudes: Respeto,

Más detalles

De cuántas maneras podemos elegir tres sabores diferentes de helados de una selección de 15 sabores para colocar en un bol?

De cuántas maneras podemos elegir tres sabores diferentes de helados de una selección de 15 sabores para colocar en un bol? Materia: Matemática de 5to Tema: Teoría Combinatoria Marco Teórico Las combinaciones de un subconjunto de un conjunto más amplio de objetos se refieren al número de formas en que podemos elegir los artículos

Más detalles

FICHA 20: Conociendo el uso de las probabilidades

FICHA 20: Conociendo el uso de las probabilidades FICHA 20: Conociendo el uso de las probabilidades A fines del año 2014, Osiptel publicó un informe sobre el estado actual de participación de las operadores móviles en el Perú, a causa de la aparición

Más detalles

Son los experimentos de los que podemos predecir el resultado antes de que se realicen.

Son los experimentos de los que podemos predecir el resultado antes de que se realicen. PROBABILIDAD Definición de probabilidad La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.

Más detalles

Ejercicios elementales de Probabilidad

Ejercicios elementales de Probabilidad Ejercicios elementales de Probabilidad 1. Se extrae una carta de una baraja de 52 naipes. Halla la probabilidad de que sea: (a) Un rey. (b) Una carta roja. (c) El 7 de tréboles. (d) Una figura de diamantes.

Más detalles

Cálculo de probabilidad. Tema 1: Combinatoria y probabilidad

Cálculo de probabilidad. Tema 1: Combinatoria y probabilidad Cálculo de probabilidad Tema 1: Combinatoria y probabilidad Guión Guión 1.1. Análisis combinatorio Regla de multiplicación Este es el método de conteo más sencillo que existe. Supongamos que realizamos

Más detalles

Requisito para el examen de 3ta. Y 5ta. Oportunidad de PROBABILIDAD Y ESTADISTICA

Requisito para el examen de 3ta. Y 5ta. Oportunidad de PROBABILIDAD Y ESTADISTICA Requisito para el examen de 3ta. Y 5ta. Oportunidad de PROBABILIDAD Y ESTADISTICA INSTRUCCIONES: Escribe el enunciado del problema con su procedimiento correspondiente. ENCIERRA TUS RESPUESTAS. PROBLEMA

Más detalles

ÁLGEBRA Ejercicios no resueltos de la Práctica 2

ÁLGEBRA Ejercicios no resueltos de la Práctica 2 ÁLGEBRA Ejercicios no resueltos de la Práctica 2 Combinatoria (Curso 2007 2008) 6. Cierto juego de dados se basa en jugadas consistentes en lanzar simultáneamente cinco dados (de los tradicionales). (a)

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA DE LA FUERZA ARMADA NACIONAL

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA DE LA FUERZA ARMADA NACIONAL UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA DE LA FUERZA ARMADA NACIONAL GUIA DE ACTIVIDADES. UNIDAD I Introducción a la Teoría de Probabilidad. Sistemas Determinísticos: Sistemas que interactúan de

Más detalles

UNIDAD: GEOMETRÍA PROBABILIDADES I. Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido de veces.

UNIDAD: GEOMETRÍA PROBABILIDADES I. Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido de veces. C u r s o : Matemática º Medio Material Nº MT - UNIDAD: GEOMETRÍA PROBABILIDADES I NOCIONES ELEMENTALES Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística robabilidad y stadística robabilidad y stadística Tema 3 Técnicas de Conteo Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Analizar los principios de conteo utilizados en probabilidad.

Más detalles

ALGEBRA I - Práctica 3

ALGEBRA I - Práctica 3 ALGEBRA I - Práctica 3 1. Cuántos números de cinco cifras se pueden formar utilizando los dígitos 1, 2, 3, 5, 6, 7 y 9 con la condición de que i) todas las cifras sean distintas? ii) todas las cifras sean

Más detalles

AREA ASIGNATURA: Estadística FECHA: PERÍODO: 1 DOCENTE: Susana Betancur Peláez

AREA ASIGNATURA: Estadística FECHA: PERÍODO: 1 DOCENTE: Susana Betancur Peláez AREA ASIGNATURA: Estadística GRADO: SEXTO FECHA: PERÍODO: 1 DOCENTE: Susana Betancur Peláez LOGRO N 1: Interpreta Información estadística, proveniente de diversas fuentes y representaciones. TALLER 1.

Más detalles

SOLUCIÓN: a1.- Cuál es la probabilidad de que la palabra formada empiece por dos consonantes? Diagrama de árbol

SOLUCIÓN: a1.- Cuál es la probabilidad de que la palabra formada empiece por dos consonantes? Diagrama de árbol EJERCICIO: Se colocan ( al azar) en línea las letras de la palabra matemáticas. Cuál es la probabilidad de que la palabra formada empiece por dos consonantes? Y por dos vocales? y la de que empiece por

Más detalles

Guía Matemática NM 4: Probabilidades

Guía Matemática NM 4: Probabilidades Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof.: Ximena Gallegos H. Guía Matemática NM : Probabilidades Nombre: Curso: Aprendizaje Esperado: Determinar la probabilidad de ocurrencia de

Más detalles

Bienvenidos al mundo de las variaciones, arreglos,permutaciones.!

Bienvenidos al mundo de las variaciones, arreglos,permutaciones.! Bienvenidos al mundo de las variaciones, arreglos,permutaciones.! Conceptos previos. PRINCIPIO SUMATIVO: Si un evento se da de n formas diferentes y otro evento se da de m formas diferentes.la elección

Más detalles

3. Qué posibilidades hay de que me toquen los cuatro ases en una mano de tute?.

3. Qué posibilidades hay de que me toquen los cuatro ases en una mano de tute?. Capítulo 1 COMBINATORIA Previamente al estudio de la probabilidad en sí, conviene dedicar algún tiempo al repaso de las técnicas combinatorias. Recordemos que la Combinatoria es la parte de las Matemáticas

Más detalles

Taller Matemático. Combinatoria. Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid

Taller Matemático. Combinatoria. Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid Taller Matemático Combinatoria Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid Combinatoria: Técnicas para contar y para enumerar Contenido

Más detalles

Técnicas de conteo. Permutaciones y combinaciones. Álvaro José Flórez. Febrero - Junio Facultad de Ingenierías

Técnicas de conteo. Permutaciones y combinaciones. Álvaro José Flórez. Febrero - Junio Facultad de Ingenierías Técnicas de conteo Permutaciones y combinaciones Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Técnicas de conteo En el enfoque clásico,

Más detalles

N = n p. Observación: Este principio puede extenderse a más de dos operaciones.

N = n p. Observación: Este principio puede extenderse a más de dos operaciones. NÚMERO FACTORIAL 0! = 1 ( n + 1 )! = n! ( n + 1 ) ; n N 0 Ejemplos: 1! = 0! 1 = 1 1 = 1 2! = 1! 2 = 1 2 = 2 3! = 2! 3 = 1 2 3 = 6 PRINCIPIO MULTIPLICATIVO Si una operación puede efectuarse de n maneras

Más detalles

4. Tienes 5 libros, de cuántas maneras diferentes puedes escoger uno o más de dichos libros?

4. Tienes 5 libros, de cuántas maneras diferentes puedes escoger uno o más de dichos libros? Universidad Autónoma Latinoamericana Taller de Repaso para Parcial 1 Estadística Análisis Combinatorio: 1. Una clase consta de 7 niños y 3 niñas. De cuántas maneras diferentes el profesor puede escoger

Más detalles

Curs MAT CFGS-17

Curs MAT CFGS-17 Curs 2015-16 MAT CFGS-17 Sigue la PROBABILIDAD Resumen de Probabilidad Teoría de probabilidades: La teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir

Más detalles

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

Capítulo 6 Combinatoria

Capítulo 6 Combinatoria Capítulo 6 Combinatoria 6.1 Introducción Se trata de contar el número de elementos de un conjunto finito caracterizado por ciertas propiedades. Principios fundamentales 1. Principio de la multiplicación

Más detalles

Prueba Matemática Coef. 1 NM-4

Prueba Matemática Coef. 1 NM-4 1 Centro Educacional San Carlos de Aragón. Sector: Matemática. Prof.: Ximena Gallegos H. Prueba Matemática Coef. 1 NM-4 Nombre: Curso: Fecha. Porcentaje de Logro Ideal: 100% Porcentaje Logrado: Nota: Unidad:

Más detalles

Unidad Temática 2 Probabilidad

Unidad Temática 2 Probabilidad Unidad Temática 2 Probabilidad Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza. 1. El experimento que consiste

Más detalles

ESTADISTICA 1 CONTEO

ESTADISTICA 1 CONTEO ESTADISTICA 1 CONTEO PRINCIPIO DE ENUMERACION PERMUTACIONES Y COMBINACIONES PRINCIPIO DE ENUMERACION Si un suceso puede ocurrir de m maneras diferentes y, después de que ha sucedido, un segundo suceso

Más detalles

2) Una persona tiene 6 chaquetas y 10 pantalones. De cuántas formas distintas puede combinar estas prendas?.

2) Una persona tiene 6 chaquetas y 10 pantalones. De cuántas formas distintas puede combinar estas prendas?. ACTIVIDADES COMBINATORIA 1) Se distribuyen tres regalos distintos entre cinco chicos. De cuántas formas pueden hacerlo si: a) cada chico sólo puede recibir un regalo b) a cada chico le puede tocar más

Más detalles

Ing. Florencio roldan

Ing. Florencio roldan Ing. Florencio roldan CONJUNTOS Y TÉCNICAS TE CONTEO Conjuntos: Colección de objetos o listado de elementos diferentes entre si, con las mismas características determinadas por las que pertenecen a un

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Probabilidad Conceptos como probabilidad, azar, aleatorio son tan viejos como la misma civilización. Y es que a diario utilizamos el concepto de probabilidad: Quizá llueva mañana

Más detalles

UNA COMIDA GRATIS. La Matemática es la reina de las ciencias y la teoría de números. Carl Friedrich Gauss ( ).

UNA COMIDA GRATIS. La Matemática es la reina de las ciencias y la teoría de números. Carl Friedrich Gauss ( ). UNA COMIDA GRATIS - Que uno cualquiera anote el orden en que están sentados ahora. Mañana vienen a comer y se sientan en otro orden. Pasado mañana vienen de nuevo a comer y se sientan en orden distinto,

Más detalles

INSTITUCIÓN EDUCATIVA NUESTRA SEÑORA DEL PALMAR SEDE LICEO FEMENINO PALMIRA

INSTITUCIÓN EDUCATIVA NUESTRA SEÑORA DEL PALMAR SEDE LICEO FEMENINO PALMIRA GUIA No.2 SEGUNDO PERIODO ESTADISTICA GRADO ONCE PRINCIPIOS FUNDAMENTALES DE CONTEO, COMBINACIONES Y PERMUTACIONES LOGRO: utilizar los principios de adición y multiplicación de una sucesión infinita de

Más detalles

2.3 PROPIEDADES DE LA PROBABILIDAD

2.3 PROPIEDADES DE LA PROBABILIDAD 2.3 PROPIEDADES DE LA PROBABILIDAD 1. La probabilidad es positiva y menor o igual que 1. 0 p( 1 2. La probabilidad del suceso seguro es 1. p (E) = 1 3. Si A y B son incompatibles, es decir A B = entonces:

Más detalles

TEMA 1: PROBABILIDAD

TEMA 1: PROBABILIDAD TEMA 1: PROBABILIDAD Ejercicios 1- alcular el espacio muestral asociado a los siguientes experimentos: a) Lanzar una moneda b) Tirar un dado c) Lanzar un dado de quinielas d) Extraer una bola de una caja

Más detalles

IES ATENEA APUNTES DE COMBINATORIA Pedro Lomas Nielfa COMBINATORIA. INTRODUCCIÓN

IES ATENEA APUNTES DE COMBINATORIA Pedro Lomas Nielfa COMBINATORIA. INTRODUCCIÓN COMBINATORIA. CUÁNTOS...? INTRODUCCIÓN Sin duda alguna es la palabra que más se repite en un contexto como el de la Combinatoria. Son muchas las situaciones en las que se nos plantea esta pregunta: - De

Más detalles

TEMA 6: CÁLCULO DE PROBABILIDADES. 6.1 Concepto de suceso aleatorio. Terminología y definiciones.

TEMA 6: CÁLCULO DE PROBABILIDADES. 6.1 Concepto de suceso aleatorio. Terminología y definiciones. I.E.S. Salvador Serrano Dto. de Matemáticas (Daniel García) 2º CCSS 202 / TEMA : CÁLCULO DE PROBABILIDADES.. Concepto de suceso aleatorio. Terminología y definiciones. La probabilidad se centra en los

Más detalles

Probabilidades. Gerardo Arroyo Brenes

Probabilidades. Gerardo Arroyo Brenes Probabilidades Gerardo Arroyo Brenes Teoría de las Probabilidades Experimento: Es toda acción o proceso que produce resultados bien definidos. Ejemplos: Experimento Resultado: Lanzar una moneda Cara o

Más detalles

Teoría de la decisión

Teoría de la decisión Teoría de la decisión Repaso de Estadística Unidad 1. Conceptos básicos. Teoría de. Espacio muestral. Funciones de distribución. Esperanza matemática. Probabilidad condicional 1 Teoría de la decisión Teoría

Más detalles

Ejercicios de probabilidad

Ejercicios de probabilidad 1. Dos personas juegan con una moneda, a cara (C) o escudo (E). La que apuesta por la cara gana cuando consiga dos caras seguidas o, en su defecto, tres caras; análogamente con el escudo. El juego acaba

Más detalles

PROBABILIDAD Relación de problemas 1: Fundamentos de Probabilidad

PROBABILIDAD Relación de problemas 1: Fundamentos de Probabilidad PROBABILIDAD Relación de problemas 1: Fundamentos de Probabilidad 1. Una urna contiene 5 bolas numeradas del 1 al 5. Calcular la probabilidad de que al sacar dos bolas la suma de los números sea impar

Más detalles

2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales

2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales 2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales consta A? Cuál es el suceso contrario de A? 3. Si consideramos

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 1

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 1 1 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 1 1. Se arroja dos veces un dado equilibrado. Sean los sucesos: A: la suma de los números obtenidos es exactamente 8. B: los números obtenidos son iguales. a)

Más detalles

REGLAS DE PROBABILIDAD

REGLAS DE PROBABILIDAD Capítulo 4 Probabilidad REGLAS DE PROBABILIDAD 4.1-1 Evento Compuesto Un evento compuesto es cualquier evento que combina 2 o más eventos simples. Ejemplo: Al lanzar un dado justo de 6 caras, cuál es la

Más detalles

Técnicas de Conteo 73

Técnicas de Conteo 73 Técnicas de Conteo 73 Si n(a) y n(ω) son grandes para un experimento aleatorio dado con un número finito de resultados igualmente proales, el conteo en sí puede convertirse en un difícil prolema. Tal conteo

Más detalles

Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro

Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro La probabilidad nos proporciona un modelo teórico para la generación de los datos experimentales Medidas de la Posibilidad

Más detalles

Ensayo o prueba: es la realización concreta de un experimento aleatorio.

Ensayo o prueba: es la realización concreta de un experimento aleatorio. Tema 4. Probabilidad Resumen del tema 4.1. Introducción a la Probabilidad Experimento: cualquier proceso que permite asociar a cada individuo de una población un símbolo (numérico o no) entre los símbolos

Más detalles

EJERCICIOS DE VARIACIONES

EJERCICIOS DE VARIACIONES EJERCICIOS DE VARIACIONES 1. Cuántos resultados distintos pueden producirse al lanzar una moneda cuatro veces al aire.. Cuántos números de cuatro cifras distintos pueden formarse con los elementos del

Más detalles

Probabilidad y Estadística II

Probabilidad y Estadística II www.cienciascsjic.tk Colegio Sor Juana Inés de la Cruz Probabilidad y Estadística II Bloque I Tutorial sobre Técnicas de Conteo Ing. Jonathan Quiroga Tinoco Ciclo Escolar: Febrero Julio 2015 Técnicas de

Más detalles

Normalmente usamos la palabra "combinación" descuidadamente, sin pensar en si el orden de las cosas es importante. En otras palabras:

Normalmente usamos la palabra combinación descuidadamente, sin pensar en si el orden de las cosas es importante. En otras palabras: ENCUENTRO # 43 TEMA: Permutaciones y Combinatoria Ejercicio Reto Resolver las ecuaciones: a) b) DEFINICION: Permutación y Combinaciones Qué diferencia hay? Normalmente usamos la palabra "combinación" descuidadamente,

Más detalles

LECTURA 10: NOCIONES DE PROBABILIDAD (PARTE I) DEFINICIONES BÁSICAS DE PROBABILIDAD. PROBABILIDAD Y ENFOQUES DE PROBABILIDAD

LECTURA 10: NOCIONES DE PROBABILIDAD (PARTE I) DEFINICIONES BÁSICAS DE PROBABILIDAD. PROBABILIDAD Y ENFOQUES DE PROBABILIDAD LECTURA 10: NOCIONES DE PROBABILIDAD (PARTE I) DEFINICIONES BÁSICAS DE PROBABILIDAD. PROBABILIDAD Y ENFOQUES DE PROBABILIDAD TEMA 20: DEFINICIONES BASICAS DE PROBABILIDAD 1. EXPERIMENTO Un experimento

Más detalles

Ejemplo: Los miembros del Colegio de Ingenieros del Estado Cojedes.

Ejemplo: Los miembros del Colegio de Ingenieros del Estado Cojedes. Qué es la Estadística? En el lenguaje común, la palabra se emplea para denotar un conjunto de calificaciones o de números, por ejemplo: una persona puede preguntar has visto las últimas estadísticas acerca

Más detalles

Probabilidad E x p e r i m e n t o s d e t e r m i n i s t a s E j e m p l o E x p e r i m e n t o s a l e a t o r i o s a z a r E j e m p l o s

Probabilidad E x p e r i m e n t o s d e t e r m i n i s t a s E j e m p l o E x p e r i m e n t o s a l e a t o r i o s a z a r E j e m p l o s Probabilidad Experimentos deterministas Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Ejemplo Si dejamos caer una piedra desde una ventana sabemos, sin lugar a

Más detalles

BIOL3349-Genética. Módulo 1:Probabilidad

BIOL3349-Genética. Módulo 1:Probabilidad BIOL3349-Genética Módulo 1:Probabilidad Metas El propósito de este módulo es que puedas repasar algunos de los conceptos claves de probabilidad y estadística. El uso de estos conceptos es importante para

Más detalles

Son los experimentos de los que podemos predecir el resultado antes de que se realicen.

Son los experimentos de los que podemos predecir el resultado antes de que se realicen. PROBABILIDAD La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio. Experimentos deterministas

Más detalles

Probabilidad 3/1/2010. EVSC 5020: Bioestadística. Qué es probabilidad? Prof. Rafael R. Canales-Pastrana. EVSC 5020: Bioestadística

Probabilidad 3/1/2010. EVSC 5020: Bioestadística. Qué es probabilidad? Prof. Rafael R. Canales-Pastrana. EVSC 5020: Bioestadística Probabilidad Prof. Rafael R. Canales-Pastrana 2 Qué es probabilidad? 3 1 Definiciones de Probabilidad La medida del grado de confianza que uno tiene, en que ocurra el acontecimiento. Método axiomático:

Más detalles

Elementos de Probabilidad y Estadística. Primer Examen. Parte 2

Elementos de Probabilidad y Estadística. Primer Examen. Parte 2 Elementos de Probabilidad y Estadística Primer Examen Parte 2 Para entregar antes de las 2:30 pm del jueves 3 de marzo de 204. Este examen es estrictamente individual. Puedes consultar libros o notas de

Más detalles