Prueba evaluable de programación con Maxima
|
|
|
- Blanca Martín Rojas
- hace 7 años
- Vistas:
Transcripción
1 Prueba evaluable de programación con Maxima Criterios de evaluación Cada uno de los ejercicios que componen esta prueba evaluable sobre la primera parte de la asignatura Física Computacional 1 se evaluará, de 0 a 10 puntos, de acuerdo a los siguientes criterios de evaluación: El código aportado realiza correctamente las tareas que se pedían en el enunciado, cálculos simbólicos y/o numéricos, representaciones gráficas, etc., (sin errores sintácticos): 5 puntos El código está bien estructurado, se entiende claramente lo que se hace en cada parte del mismo, la estructura es lógica y está ordenada: 2 puntos El código realiza las tareas que se piden de manera eficiente: 1.5 puntos El código está documentado con comentarios que facilitan entender qué es lo que se está haciendo en cada parte del mismo, incluyendo descripción del input y output y la finalidad del código: 1.5 puntos La calificación final de esta parte será la media aritmética de las calificaciones obtenidas en todos los ejercicios que forman esta prueba, siempre y cuando se haya obtenido una calificación mínima de 5 puntos en todos ellos. Si uno (o más) de los ejercicios propuestos no alcanzan la calificación mínima de 5 puntos la calificación global de la prueba será suspenso, y no se calculará la media. Nota: Es muy importante darse cuenta de que lo que se pide en cada uno de estos ejercicios es la programación de una función, no la resolución de un problema concreto. En la medida de lo posible ajústese al input y output especificado en cada ejercicio (aunque puede introducir pequeñas modificaciones si lo considera preciso, en ese caso introduzca una breve frase explicando las modificaciones introducidas). Muy importante, evite la definición de variables globales fuera de estas funciones. 1
2 2 También le recomendamos que, antes de realizar estos ejercicios, revise la colección de problemas resueltos que puede encontrar en la página de la asignatura, así como las soluciones de las pruebas evaluables anteriores. Ejercicio 1 La PEC de este curso se va a centrar en el Método de las Líneas para la resolución numérica de ecuaciones diferenciales en derivadas parciales con dos variables independientes. Como ya hemos comentado en los apuntes, wxmaxima no dispone de funciones para la integración numérica de ecuaciones diferenciales en derivadas parciales, pero sí dispone de la función rk, que permite resolver numéricamente (sistemas de-) ecuaciones diferenciales ordinarias de orden 1. El método de las líneas es un algoritmo numérico muy sencillo que permite re-escribir sistemas de ecuaciones diferenciales en derivadas parciales como sistemas de ecuaciones ordinarias, los cuales se resuelven posteriormente empleando los algoritmos numéricos habituales para EDOs (p. ej. Runge-Kutta). En esta PEC vamos a emplear dicho algoritmo para resolver la ecuación del calor en una dimensión espacial. Vamos a llamar t a la variable temporal, x a la variable espacial y f(x, t) a la temperatura. Suponemos que hemos escogido las escalas de espacio y tiempo de tal manera que el coeficiente de difusividad es la unidad, en esas condiciones la ecuación que vamos a resolver es f t = 2 f x 2 Suponemos que queremos resolver esta ecuación para valores del tiempo t > 0 y que las condiciones iniciales necesarias para ello (f(x, t = 0) = f 0 (x)) son conocidas. Por otra parte, suponemos que este problema está planteado para valores de la coordenada x contenidos en un cierto intervalo [a, b] finito y conocido, y que las condiciones de contorno necesarias para realizar el cálculo numérico (f(x = a, t) = f a (t) y f(x = b, t) = f b (t)) son conocidas. Por supuesto, vamos a suponer que los datos iniciales f 0 (x), y las condiciones de contorno f a (t) y f b (t) son funciones suaves. En estas condiciones el problema puede resolverse de manera numérica. El método de las líneas consiste en lo siguiente Discretizamos la variable independiente x en una colección de N valores (x i ) equiespaciados en el intervalo [a, b] x i = a + i 1 (b a), N 1 i = 1, 2, 3,..., N Discretizamos la variable dependiente f(x, t) en una colección de N funciones de t (f i (t)) resultantes de fijar la variable x de f(x, t) en los valores x i particulares que acabamos de definir f i (t) = f(x = x i, t), i = 1, 2, 3,..., N A partir de este momento, para resolver el problema de partida debemos hallar las funciones f i (t).
3 3 De toda la lista de funciones f i (t), la primera y la última son conocidas, dado que están dadas por las condiciones de contorno del problema f 1 (t) = f a (t), f N (t) = f b (t) Por tanto el problema se reduce a calcular las restantes f i (t) (i = 2, 3,..., N 1). A partir de la discretización realizada para la variable x, aproximamos las derivadas respecto a x por medio de la fórmula de diferencias finitas correspondiente (en esta PEC vamos a emplear el algoritmo de diferencias centradas). De acuerdo a la anterior discretización de la variable espacial x el espaciado (h) entre valores contiguos de x es constante h = x i+1 x i = b a N 1 En estas condiciones, si N es suficientemente grande se cumplirá que h 1, y en ese caso las derivadas respecto a x pueden aproximarse por f x = f j+1 f j 1 x=xj 2h donde f j = f(x j, t). 2 f x 2 = f j+1 2f j + f j 1 x=xj h 2 Sustituyendo esta aproximación para el cálculo de las derivadas en la ecuación de partida tenemos que la ecuación en derivadas parciales queda como un conjunto de N 2 EDOs df i dt = f i+1 2f i + f i 1 h 2, i = 2, 3, 4,..., N 1 (recuérdese que f 1 y f N son datos del problema). Resolviendo el anterior conjunto de EDOs con las condiciones iniciales f i (t = 0) = f 0 (x i ) por medio de la función rk construimos finalmente una solución aproximada a la EDP de partida. Evidentemente, cuanto mayor sea N mayor será el tiempo de cálculo y mejor será la aproximación realizada. Para el primer ejercicio escriba una función en Maxima que aplique la discretización anterior y genere el conjunto de ecuaciones diferenciales ordinarias que posteriormente resolveremos con rk: input: Intervalo de definición de la variable x: [a, b] (suponemos a y b finitos y b > a). Valor del parámetro N para la discretización de la variable x. Condiciones de contorno del problema, dadas por las funciones del tiempo f a (t) y f b (t).
4 4 Lista de valores discretizados de x. Lista de funciones f i. Lista con los N 2 lados derechos de las igualdades df i dt = f i+1 2f i + f i 1 h 2, i = 2, 3, 4,..., N 1 Nota: De esta forma el output de esta función es precisamente el input que necesitamos suministrar a rk para proceder a la resolución numérica. Ejercicio 2 Dado el output de la función anterior, escriba una función en Maxima que resuelva numéricamente dicho sistema de N 2 EDOs por medio de la función rk: input: Lista de variables dependientes f i. Lista de lados derechos de las igualdades df i /dt =..., con i = 2,..., N 1). Lista de condiciones iniciales f i (0) = f 0 (x i ), con i = 2,..., N 1. Variable independiente (t) y valores mínimo y máximo de la variable independiente. Parámetro de paso a emplear en el algoritmo de Runge-Kutta. Ejercicio 3 Programe una función en Maxima que permita visualizar el resultado numérico anterior en una gráfica en 3d. input: Lista de valores discretizados de x. Variable independiente y valores mínimo y máximo de la variable independiente. Gráfica en 3d de f i (t) vs. (x, t).
5 5 Ejercicio 4 Con mucha frecuencia una gráfica en 2d permite visualizar mejor los resultados que la correspondiente gráfica tridimensional. Para ello vamos a representar f(x, t) frente a x para una serie de valores de t. input: Lista de valores discretizados de x. Variable independiente y valores mínimo y máximo de la variable independiente. K: Número de valores de t a emplear en la gráfica bidimensional. Gráfica bidimensional con las correspondientes líneas f(x, t j ) vs. x correspondientes a los K valores de tiempo (t = t j, j = 1,..., K) que vamos a visualizar. Observación Todos los ejercicios que estamos haciendo en esta PEC están planteados para resolver la ecuación de la difusión (ver arriba) con condiciones iniciales (f 0 (x)) y de contorno (f a (t), f b (t)) arbitrarias, y también con valores arbitrarios de a y b. Para programar estas funciones y verificar que todo funciona correctamente es necesario asignar valores concretos a todos estos parámetros, de tal forma que podamos llegar a resultados numéricos concretos. Para realizar las pruebas de programación necesarias pueden probar con funciones sencillas, como p. ej. N = 80, a = 1, b = +1, f 0 (x) = 0, f a (t) = 1, f b (t) = 0 pero recuerden que lo que estamos pidiendo en esta PEC es un conjunto de funciones que sean capaces de resolver este problema para valores arbitrarios de N, a, b, f 0 (x), f a (t) y f b (t). Finalmente, antes de comenzar a programar las funciones de esta PEC es conveniente revisar a conciencia todos los ejemlos resueltos disponibles en el curso virtual.
Para las ecuaciones diferenciales ordinarias no lineales no existen métodos generales.
Unidad IV: Sistemas continuos (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones
La recta en el plano.
1 CONOCIMIENTOS PREVIOS. 1 La recta en el plano. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas. Representación
Introducción al Cálculo Numérico
Tema 1 Introducción al Cálculo Numérico 1.1 Introducción El Cálculo Numérico, o como también se le denomina, el Análisis numérico, es la rama de las Matemáticas que estudia los métodos numéricos de resolución
Métodos Numéricos: Guía de estudio Tema 5: Solución aproximada de ecuaciones
Métodos Numéricos: Guía de estudio Tema 5: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 2009, versión
TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES.
TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES. 1. INTRODUCCIÓN. PLANTEAMIENTO DE PROBLEMAS EN INGENIERÍA QUÍMICA 2. PROBLEMAS EXPRESADOS MEDIANTE
ax 2 + bx + c = 0, con a 0
RESOLUCIÓN DE ECUACIONES DE SEGUNDO GRADO Las ecuaciones de segundo grado son de la forma: a + bx + c = 0, con a 0 1. Identificación de coeficientes: Al empezar con las ecuaciones de segundo grado, resulta
CRITERIOS DE EVALUACIÓN BLOQUE I: ESTADISTICA Y PROBABILIDAD
CRITERIOS DE EVALUACIÓN BLOQUE I: ESTADISTICA Y PROBABILIDAD Clasificar los tipos de caracteres y las variables estadísticas para una determinada población. Elaborar tablas de frecuencias absolutas, relativas
Ecuaciones Simultáneas de primer grado. I. Eliminación por igualación. P r o c e d i m i e n t o
Ecuaciones Simultáneas de primer grado I. Eliminación por igualación P r o c e d i m i e n t o 1. Se ordenan (alfabéticamente) y nombran las ecuaciones 2. Se despeja una de las incógnitas en ambas ecuaciones.
MATEMÁTICAS Versión impresa INECUACIONES
MATEMÁTICAS Versión impresa INECUACIONES 1. INTRODUCCIÓN Imaginen que queremos abrir una nueva librería en el centro de la ciudad. Y que tenemos un presupuesto de 800 $ como máximo para comprar los libros.
Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1
Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...
ECUACIONES.
. ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,
UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO
FACULTAD DE CS. QUIMICAS, FISICAS Y MATEMATICAS I. DATOS GENERALES DEPARTAMENTO ACADEMICO DE INFORMATICA SILABO 1.1 Asignatura : METODOS NUMERICOS 1.2 Categoría : OE 1.3 Código : IF758VCI 1.4 Créditos
Ejercicio ejemplo resuelto: verificar el algoritmo de resolución de una ecuación de segundo grado. (CU00237A)
aprenderaprogramar.com Ejercicio ejemplo resuelto: verificar el algoritmo de resolución de una ecuación de segundo grado. (CU00237A) Sección: Cursos Categoría: Curso Bases de la programación Nivel II Fecha
LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS
UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERIA INGENIERÍA ELECTRÓNICA 1 SISTEMAS DINAMICOS 1160601 LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS INSTRUCCIONES
TEMA 5: INTERPOLACION NUMERICA
Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 5: INTERPOLACION NUMERICA 1 EL PROBLEMA GENERAL DE INTER- POLACION En ocasiones se plantea el problema de que se conoce una tabla de valores de una
MATEMÁTICAS 2º DE ESO
MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad
MMM - Métodos Matemáticos en Minería
Unidad responsable: 330 - EPSEM - Escuela Politécnica Superior de Ingeniería de Manresa Unidad que imparte: 749 - MAT - Departamento de Matemáticas Curso: Titulación: 2016 MÁSTER UNIVERSITARIO EN INGENIERÍA
1 Ecuaciones diferenciales
1 Ecuaciones diferenciales La solución a una ecuación algebraica es un número, o un conjunto de números que satisfacen la ecuación. Por ejemplo las soluciónes de x 2 4x + 3 = 0 son x 0 = 1 y x 1 = 3. Las
Departamento de Matemáticas, CCIR/ITESM. 9 de febrero de 2011
Factorización LU Departamento de Matemáticas, CCIR/ITESM 9 de febrero de 2011 Índice 26.1. Introducción............................................... 1 26.2. Factorización LU............................................
Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales
Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected] 2016 Licencia Creative Commons 4.0 Internacional J.
Métodos numéricos para Ecuaciones Diferenciales Ordinarias
Métodos numéricos para Ecuaciones Diferenciales Ordinarias Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es
Sistemas de ecuaciones.
1 CONOCIMIENTOS PREVIOS. 1 Sistemas de ecuaciones. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Operaciones básicas con polinomios. Resolución
Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación
Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación DIFERENCIAS FINITAS Ayudante: Rodrigo Torres Aguirre El método
2 Unidad II: Ecuaciones Diferenciales de Orden Superior
ITESM, Campus Monterrey Departamento de Matemáticas MA-41: Ecuaciones Diferenciales Lectura # Profesor: Victor Segura Flores Unidad II: Ecuaciones Diferenciales de Orden Superior.1 Ecuaciones Diferenciales
El Teorema Fundamental del Álgebra
El Teorema Fundamental del Álgebra 1. Repaso de polinomios Definiciones básicas Un monomio en una indeterminada x es una expresión de la forma ax n que representa el producto de un número, a, por una potencia
TEST DE RAZONAMIENTO NUMÉRICO. Consejos generales
TEST DE RAZONAMIENTO NUMÉRICO Consejos generales 1 I. INTRODUCCIÓN En lo relativo a los cálculos de porcentajes, es fundamental tener en cuenta que los porcentajes, en realidad, son referencias abstractas,
Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.
UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos
ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA
UNIDAD OBJETIVO: Resolverá situaciones y problemas en los que se apliquen ecuaciones de primer grado con una incógnita, sistemas de ecuaciones lineales con dos y tres incógnitas, mediante métodos algebraicos
PENDIENTES DE MATEMÁTICAS DE 3º ESO (CURSO )
PENDIENTES DE MATEMÁTICAS DE 3º ESO (CURSO 2015-2016) CRITERIOS E INDICADORES Se detallan a continuación los criterios de evaluación junto con sus indicadores de contenidos asociados. Criterio 1: Identificar
Guía docente: Cómo crear un test y los tipos de preguntas
Guía docente: Cómo crear un test y los tipos de preguntas Índice 01 02 03 04 05 06 07 08 09 Crear un test Ordenable Arrastrar Rellenar espacio Texto libre Respuesta múltiple Opciones Gestión del test Ayuda
DEPARTAMENTO DE MATEMÁTICAS
DEPARTAMENTO DE MATEMÁTICAS 1. PRIMER CURSO 1.1. CONTENIDOS - Números naturales. - Múltiplos y divisores. Máximo común divisor y Mínimo común múltiplo. - Números enteros. - Números decimales. Aproximación
Matemáticas de 2º de bachillerato página 1 Integral indefinida. Integral indefinida
Matemáticas de º de bachillerato página Integral indefinida Integral indefinida.introducción.- La integración es el proceso recíproco de la derivación, es decir, en la derivación se trata de hallar la
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
UNIDAD 6.- PROGRAMACIÓN LINEAL
UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:
Ecuaciones Lineales en Dos Variables
Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma
Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II)
Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte II) Métodos numéricos para sistemas lineales Solución numérica de EDPs requiere resolver sistemas de ecuaciones lineales
INTRODUCCIÓN. FUNCIONES. LÍMITES.
INTRODUCCIÓN. FUNCIONES. LÍMITES. Este capítulo puede considerarse como una prolongación y extensión del anterior, límite de sucesiones, al campo de las funciones. Se inicia recordando el concepto de función
2 Métodos de solución de ED de primer orden
CAPÍTULO Métodos de solución de ED de primer orden.4 Ecuaciones diferenciales de Bernoulli Una ecuación diferencial ordinaria de primer orden de la forma a 0.x/y 0 C a.x/y D f.x/y r ; con r 0; : se denomina
1 Curvas planas. Solución de los ejercicios propuestos.
1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)
I.E.S. CUADERNO Nº 5 NOMBRE: FECHA: / / Inecuaciones. Resolver inecuaciones de primer y segundo grado con una incógnita.
Inecuaciones Contenidos 1. Inecuaciones de primer grado con una incógnita Definiciones Inecuaciones equivalentes Resolución Sistemas de inecuaciones 2. Inecuaciones de segundo grado con una incógnita Resolución
Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño
ALGEBRA 1. LETRAS EN VEZ DE NÚMEROS En muchas tareas de las matemáticas es preciso trabajar con números de valor desconocido o indeterminado. En esos casos, los números se representan por letras y se operan
ESCRIBIR ECUACIONES 4.1.1
ESCRIBIR ECUACIONES 4.1.1 En esta lección, los alumnos tradujeron información escrita que generalmente representaba situaciones cotidianas con símbolos algebraicos y ecuaciones lineales. Los alumnos usaron
Introducción. El uso de los símbolos en matemáticas.
Introducción El uso de los símbolos en matemáticas. En el estudio de las matemáticas lo primero que necesitamos es conocer su lenguaje y, en particular, sus símbolos. Algunos símbolos, que reciben el nombre
Departamento de Matemáticas. ÁLGEBRA: Ecuaciones
3.5. Ecuaciones bicuadradas. Empezamos ahora a analizar qué pasa cuando el polinomio tiene grado más grande que dos. Todas éstas se engloban dentro de la misma estrategia de resolución que, como posteriormente
Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Ecuaciones diferenciales de primer orden. Traectorias ortogonales. Muchas aplicaciones problemas de la ciencia, la ingeniería la economía se formulan en términos
PLAN DE CURSO PC-01 FO-TESE-DA-09 DIRECCIÓN ACADÉMICA DIVISIÓN DE INGENIERÍA ELECTRÓNICA. Según Corresponda CALCULO INTEGRAL TURNO: 1201/1 251
No. DE EMPLEADO: SEMANA: 5 NO. DE ALUMNOS: O PROPOSITO GENERAL DE LA 1. Teorema fundamental del cálculo. - Contextualizar el concepto de - Visualizar la relación entre cálculo diferencial y el cálculo
CÀLCUL - Cálculo
Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2015 250 - ETSECCPB - Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de Barcelona 751 - ECA - Departamento
Ángulos complementarios Un par de ángulos son complementarios si la suma resultante de sus medidas es.
Materia: Matemática de Séptimo Tema: Ángulos y pares de ángulos Objetivos de aprendizaje Entender e identificar ángulos complementarios. Entender e identificar ángulos suplementarios. Entender y utilizar
6.1. RESOLUCIÓN NUMÉRICA DE PROBLEMAS DE VALORES INICIALES
6.1. RESOLUCIÓN NUMÉRICA DE PROBLEMAS DE VALORES INICIALES Muchos problemas de ingeniería se pueden formular en términos problemas de valores iniciales para ecuaciones diferenciales ordinarias. Por ejemplo,
PLANIFICACIÓN UNIDAD 1 MATEMÁTICA IV MEDIO BICENTENARIO. CMO Aprendizajes esperados Indicador Habilidad Contenido Clases
PLANIFICACIÓN UNIDAD 1 MATEMÁTICA IV MEDIO BICENTENARIO CMO Aprendizajes esperados Indicador Habilidad Contenido Clases Reconocer los conjuntos numéricos y algunas de sus características. Reconocen la
Código UPM Créditos Carácter Especialidad Idioma. Calculus I Matemáticas Matemáticas e Informática Aplicadas a la Ingeniería Civil
Página 1 de 6 Cálculo I 1. Datos generales Código UPM Créditos Carácter Especialidad Idioma 45001101 6 Básica Común Español Nombre en inglés Materia Departamento Web asignatura Periodo impartición Calculus
Base y Dimensión de un Espacio Vectorial
Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un
REESCRIBIR ECUACIONES CON MÚLTIPLES VARIABLES Ejemplo 2. Ejemplo 4
REESCRIBIR ECUACIONES CON MÚLTIPLES VARIABLES 6.1.1 Para reescribir una ecuación con más de una variable debes usar el mismo proceso que para resolver una ecuación de una variable. El resultado final suele
Sistemas de ecuaciones no lineales
Práctica 6 Sistemas de ecuaciones no lineales En esta práctica revisaremos algunos métodos básicos para la resolución numérica de sistemas de ecuaciones no lineales 61 Método iterativo del punto fijo Partimos
Formato para prácticas de laboratorio
PLAN DE CLAVE CARRERA NOMBRE DE LA ASIGNATURA ESTUDIO ASIGNATURA LSC 2009-2 11290 Introducción a la Programación PRÁCTICA No. 2 LABORATORIO DE NOMBRE DE LA PRÁCTICA Licenciado en Sistemas Computacionales
Apéndice sobre ecuaciones diferenciales lineales
Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.
Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción
Curso 0: Matemáticas y sus Aplicaciones Tema 5. Lógica y Formalismo Matemático Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Proposiciones y Conectores Lógicos 2 Tablas de Verdad
Estructura Selectiva Múltiple
Estructura Selectiva Múltiple Con frecuencia en la práctica se presentan más de dos elecciones posibles de una cierta condición. La estructura selectiva múltiple se utiliza para este tipo de problemas,
Es importante recordar el concepto de intervalo abierto notado. (a, b)={x R/a x bt} donde a y b no pertenecen al intervalo abierto
INICIACION AL CALCULO LIMITE DE UNA FUNCION EN UN PUNTO Cuando se inicia un trabajo de cálculo, es importante aclarar,que históricamente a partir del siglo xviii y con los trabajos de Newton en Inglaterra
Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.
NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida
Tema 3: Sistemas de ecuaciones lineales
Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos
1. ECUACIONES DIFERENCIALES ORDINARIAS
1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y
La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente.
Formas de la ecuación de una recta. Hasta el momento, se han dado algunas características de la recta tales como la distancia entre dos puntos, su pendiente, su ángulo de inclinación, relación entre ellas,
EL LENGUAJE ALGEBRAICO
LENGUAJE ALGEBRAICO Guillermo Ruiz Varela - PT EL LENGUAJE ALGEBRAICO Hasta ahora siempre hemos trabajado en matemáticas con números y signos, es lo que se llama lenguaje numérico. A partir de ahora, vamos
EJERCICIOS REPASO 2ª EVALUACIÓN
MATRICES Y DETERMINANTES 1.) Sean las matrices: EJERCICIOS REPASO 2ª EVALUACIÓN a) Encuentre el valor o valores de x de forma que b) Igualmente para que c) Determine x para que 2.) Dadas las matrices:
Métodos, Algoritmos y Herramientas
Modelado y Simulación de Sistemas Dinámicos: Métodos, Algoritmos y Herramientas Ernesto Kofman Laboratorio de Sistemas Dinámicos y Procesamiento de la Información FCEIA - Universidad Nacional de Rosario.
Materia: Matemática de 5to Tema: Método de Cramer. Marco Teórico
Materia: Matemática de 5to Tema: Método de Cramer Marco Teórico El determinante se define de una manera aparentemente arbitraria, sin embargo, cuando se mira a la solución general de una matriz, el razonamiento
DES: Programa(s) Educativo(s): Tipo de materia: Clave de la materia: Semestre: Área en plan de estudios:
UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Clave: 08MSU0017H Clave: 08USU4053W FACULTAD DE INGENIERÍA PROGRAMA DEL CURSO: INGENIERÍA DE SOFTWARE Y COMPUTACIÓN I DES: Programa(s) Educativo(s): Tipo de materia: Clave
TEMA 6: DERIVACION NUMERICA
Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 6: DERIVACION NUMERICA 1 INTRODUCCION En este tema nos ocupamos de aproximar las derivadas de orden arbitrario ν en un punto cualquier α de una función
ESCUELA POLITÉCNICA SUPERIOR PRÁCTICA 2: EXPRESIONES, PRINTF Y SCANF
ESCUELA POLITÉCNICA SUPERIOR GRADO EN DISEÑO IND. INFORMÁTICA CURSO 2012-13 PRÁCTICA 2: EXPRESIONES, PRINTF Y SCANF HASTA AHORA... En prácticas anteriores se ha aprendido: La estructura principal de un
Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.
Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre
PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.
PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia
Mapa Curricular: Funciones y Modelos
A.PR.11.2.1 Determina el dominio y el alcance de las funciones a partir de sus diferentes representaciones. A.PR.11.2.2 Identifica y aplica las relaciones entre los puntos importantes de una función (ceros,
un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:
CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse
Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos
Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto
1 - Ecuaciones. Sistemas de Ecuaciones Mixtos
Nivelación de Matemática MTHA UNLP 1 1 - Ecuaciones. Sistemas de Ecuaciones Mixtos 1. Conjuntos numéricos Los números mas comunes son los llamados NATURALES O ENTEROS POSI- TIVOS: 1,, 3,... Para designar
Resumen sobre mecánica analítica
Resumen sobre mecánica analítica Ecuaciones de Lagrange. Supongamos una partícula, cuyo movimiento se puede describir mediante una sóla coordenada x, de modo que en el instante t la posición de la partícula
Introducción a la programación
Introducción a la programación Resolución de Problemas El objetivo principal para que las personas aprendan a programar en algún lenguaje de programación en particular es utilizar el computador como una
CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3
PRACTICO UNIDAD 3 Nota: Los ejercicios propuestos en los prácticos deben servirle para afianzar y practicar temas. Si nota que algunos ejercicios ya los sabe hacer bien, continúe con otros que le impliquen
Teorema Central del Límite (1)
Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico
Inecuaciones lineales y cuadráticas
Inecuaciones lineales y cuadráticas 0.1. Inecuaciones lineales Una inecuación lineal tiene la forma ax + b < 0 ó ax + b > 0 ó ax + b 0 ó ax + b 0. El objetivo consiste en hallar el conjunto solución de
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento
SILABO MATEMÁTICA III
1. DATOS INFORMATIVOS U N I V E R S I D A D A L A S P E R U A N A S SILABO MATEMÁTICA III 1.1. Asignatura : MATEMÁTICA III 1.2. Código : 1801-18203 1.3. Área : Formativa-Humanística 1.4. Facultad : Ciencias
= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x
Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas
2 OBJETIVOS TERMINALES: Al finalizar el curso el estudiante estará en capacidad de:
MATERIA: Ecuaciones Diferenciales CÓDIGO: 08278 REQUISITOS: Cálculo en Varias Variables (08275) PROGRAMAS: Ingeniería Industrial, Ingeniería Telemática, Química PERIODO ACADÉMICO: 2016-2 INTENSIDAD SEMANAL:
Espacios Vectoriales
Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios
Espacios Vectoriales
Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido
Unidad 1: SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS
Unidad 1: SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS 1.1.- SISTEMAS DE ECUACIONES LINEALES Ecuación lineal Las ecuaciones siguientes son lineales: 2x 3 = 0; 5x + 4y = 20; 3x + 2y + 6z = 6; 5x 3y + z 5t =
Práctica: Métodos de resolución de ecuaciones lineales.
Práctica: Métodos de resolución de ecuaciones lineales. Objetivo: Aplicar dos técnicas de resolución de sistemas de ecuaciones lineales: Un método finito basado en la descomposición LU de la matriz de
GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA
LA CIRCUNFERENCIA CONTENIDO. Ecuación común de la circunferencia Ejemplos. Ecuación general de la circunferencia. Análisis de la ecuación. Ejercicios Estudiaremos cuatro curvas que por su importancia aplicaciones
2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
Bloque 3. ECUACIONES Y SISTEMAS (En el libro Temas 4 y 5, páginas 63 y 81) 1. Ecuaciones: Definiciones. Reglas de equivalencia. 2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
Tema 1. Conceptos básicos
Tema 1. Conceptos básicos 1. Introducción... 1 2. Conceptos básicos... 2 2.1. Circuito eléctrico... 2 2.2. Teoría de Circuitos... 2 3. Magnitudes de un circuito: Tensión e intensidad... 3 3.1. Carga y
6 DINAMICA DEL CUERPO RIGIDO
6 DINAMICA DEL CUERPO RIGIDO 6. CINEMATICA 6.. Configuracion de un Cuerpo Rígido: Angulos de Euler Un cuerpo rígido se puede entender como una distribución continua de materia que se subdivide en pequeños
Tema 2 Conceptos básicos de programación. Fundamentos de Informática
Tema 2 Conceptos básicos de programación Fundamentos de Informática Índice Metodología de la programación Programación estructurada 2 Pasos a seguir para el desarrollo de un programa (fases): Análisis
UNIDAD 1: DIVISIBILIDAD Y NÚMEROS ENTEROS
UNIDAD 1: DIVISIBILIDAD Y NÚMEROS ENTEROS 1. *Representar números enteros sobre la recta numérica, compararlos y ordenarlos. 2. *Sumar y restar números enteros teniendo en cuenta el signo que presentan.
