MODULO TUTORIAL-CÁLCULOS BÁSICOS. Introducción al Control de Movimiento

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MODULO TUTORIAL-CÁLCULOS BÁSICOS. Introducción al Control de Movimiento"

Transcripción

1 MODULO TUTORIAL-CÁLCULOS BÁSICOS Introducción al Control de Movimiento

2 Qué es control de movimiento? Sistemas que necesitan realizar un movimiento controlado de alta precisión, repetibilidad y exactitud en el movimiento de traslado de dispositivos ó materiales. El movimiento puede ser controlado por Velocidad, Torque ó Posición. El sistema de control puede ser a lazo abierto ó cerrado. Es necesario conocer nuestra cadena cinemàtica. Es necesario estabilidad de movimiento ante la fluctuación de cargas.

3 Conceptual Precisión : Es una medida absoluta que mide la diferencia entre el valor de posición previsto y la posición actual exacta del eje mecánico. Ej. para un reductor su precisión puede ser 4arc-min = 0,0667 grados. Resolución: Es el incremento ó valor más pequeño en el cual un parámetro puede ser dividido. Por Ej. : un encoder incremental de 2000 PPR(Pulsos por revolución) tiene una resolución de 1/2000 por revolución. Un sistema con un alto grado de Precisión requiere alta resolución, sin embargo un sistema de alta resolución no implica alta Precisión. Repetibilidad: Es la capacidad que posee el dispositivo de Realimentación para producir la misma salida después de aplicar varias veces el mismo valor de entrada.

4 Precisión-Repetibilidad Baja precisión Baja repetibilidad Baja precisión Alta repetibilidad Alta precisión Alta repetibilidad

5 Conceptual En aplicaciones reales,aparecen frecuentemente las siguientes situaciones : Movimientos rápidos y precisos en tiempos muy cortos que implica generalmente un transitorio con aceleraciones elevadas. Detener el sistema y cambiar la dirección del movimiento.

6 Conceptual Para lograr que nuestro sistema de Control de Movimiento responda a nuestras necesidades será condición de diseño conocer las características de los componentes que forman parte de la CADENA CINEMATICA al cual pretendemos controlar.

7

8 Perfiles de movimiento Los Perfiles de Movimiento permiten observar la evolución del movimiento de nuestro sistema ó actuador y analizar los valores de las variables que determinan las necesidades de nuestro movimiento (distancia, tiempo, velocidad y aceleración). Por ejemplo: este perfil casi triangular corresponde a una envasadora vertical que efectúa 160 Envases /minuto. El ciclo de movimiento será 60/160=0,375 segundos

9 El drive provee energía al sistema mecánico Perfil Trapezoidal t El sistema mecánico devuelve energía al drive.modo regenerativo t Torque resistivo es debido a las características del sistema en movimiento, rozamientos y disipaciones

10 El drive provee energía al sistema mecánico para acelerar. Perfil Triangular El sistema mecánico devuelve energía al drive.modo regenerativo

11 Rampa de aceleración ** Las rampas de aceleración son necesarias para evitar Choques mecánicos en la carga y necesarios para para el manejo de Motores de Paso**

12 Configuración de perfil trapezoidal

13 Movimiento con perfil de aceleración Sine²

14 Movimiento con perfil de aceleración Sine²

15 Movimiento con perfil trapezoidal

16 Movimiento con perfil triangular

17 Ecuaciones Ciclo de máquina típico Ciclo de máquina siguiente Velocidad Distancia Total Velocidad Máxima Aceleración

18 Ecuaciones con perfil trapezoidal

19 Ecuaciones con perfil triangular

20 Cálculos con perfil trapezoidal Calcular la aceleración Pico y velocidad máxima lineal para un dispositivo que necesita moverse a 3 m en 2.5 segundos. Asumir un perfil de movimiento Trapezoidal. Lineal rotacional

21 Cálculos con perfil triangular Calcular para un movimiento giratorio, la aceleración pico y la velocidad para un cilindro que necesita moverse 5 revoluciones en 0.4 segundos. Asumir un perfil de movimiento triangular.

22 Ciclo de actividad (duty cycle) El ciclo de actividad es la relación temporal entre el tiempo de movimiento y el tiempo total del ciclo Se utiliza para determinar el nivel de tiempo aceptable,para que los límites de temperatura del motor ó componentes del actuador no se excedan térmicamente. Establecer un tiempo inactivo de OFF durante el ciclo, permite a los componentes del sistema un tiempo de enfriamiento. Use la siguiente ecuación para determinar el ciclo de actividad

23 INERCIA DE LA CARGA POSICIÓN d/dt VELOCIDAD d/dt TORQUE ACELERACIÓN d/dt IMPULSO

24 La inercia (J) de un cuerpo ó carga mecánica representa la resistencia propia de todo cuerpo a ponerse en movimiento de rotación ó cambiar de velocidad angular Directamente relacionada a la distribución espacial de la masa respecto de un eje de rotación Jx/Jy/Jz. ACELERACIÓN (α) El Torque (T) actuado sobre el cuerpo ó carga mecánica de momento o de inercia (J), transmite a la carga una aceleración (α). TORQUE ( T ) INERCIA (J) IMPULSO d/dt

25 Momento de Inercia de un cuerpo Inercia: si un cuerpo en reposo comienza a girar en torno a un eje, el mismo ofrecerá resistencia al movimiento de giro. El producto del radio al cuadrado por la masa del cuerpo representa la medida de esta resistencia al movimiento.

26 El momento de Inercia solo depende de la geometría del cuerpo y de la posición del eje de giro, pero no depende de las fuerzas que intervienen en el movimiento.

27 m = masa (Kg) R = radio (metro) Inercia de rotación Masa en Kg

28 Torque - Par - Momento de una Fuerza Es una medida de la capacidad que posee una fuerza para producir a un cuerpo, un movimiento de rotación alrededor de un eje.

29 Torque con fuerzas diagonales

30 Torque - Fuerza Torque (Nm) ω(rad/seg) Torque [Nm]=F[Newton] distancia[metros]

31 Inercia(J)-Torque (T)- Aceleración(α)

32 Nos basaremos en la siguiente ecuación para calcular el torque de aceleración, sin considerar los coeficiente de rozamiento de las superficies: Que se observa de la ecuación de Torque de aceleración Cuanto menor es el tiempo de aceleración Δt, más torque es necesario. Cuanto mayor es la inercia J a ser movida, más torque es necesario. Cuanto mayor es la velocidad ΔRPM, más torque es necesario.

33 Movimientos con ciclos Intermitentes Torque rms (root means square) La evaluación del torque efectivo rms, determina un equivalente térmico para el ciclo de trabajo que se desea,y permite ser comparado con el límite térmico continuo ( Tcs) del motor seleccionado. Lo esperado es que este valor de torque se encuentre dentro de la zona de servicio continuo del motor seleccionado Tcs. El torque rms es igual: Esta ecuación asume que el tiempo ta(tiempo de aceleración) es pequeño comparado con TCT(constante térmica de tiempo) y permite bajo ciertas consideraciones, aceptar valores de torque de aceleración (Tacc) mayores, que el torque continuo Tcs del motor seleccionado. Utilice esta ecuación, solo si Tacc 2 Tcs y ta << TCT

34 Para casos en donde el Tacc >2Tcs,para un periodo de tiempo de 0,1 TCT se debe emplear la siguiente ecuación. Servomotores Estabilidad Térmica En donde: dc= Ciclo de actividad Ts= Torque continuo requerido. Tc= Torque continuo seleccionado a partir del Trms. TCT= Constante térmica de tiempo, indica el tiempo de calentamiento del motor frio bajo carga con corriente de parada, hasta alcanzar el 63% de la temperatura máxima. Bajo carga con corriente máxima alcanza este valor en un tiempo menor.

35 Torque rms Tacc=Torque de aceleración. Tres=Torque resistivo. Tdes=Torque de desaceleración DISERTANTE:Ing.Gabriel Tarifa

36 100 RPM Selección de Torque-Motores Tipos Margen de seguridad 50% Margen de seguridad 20% Torque Pico requerido Torque rms requerido Motor Paso a Paso Servomotor

37 Consideraciones Básicas Tamaño del motor Cargas de empuje. Pérdidas por fricción. Requerimientos de aceleración. Evaluación de Torque (RMS). El tamaño del motor comienza con la evaluación de la carga con los requerimientos de Torque y velocidad. En casos simples en donde la carga es constante la selección del motor se obtiene fácilmente de catálogo. Frecuentemente, la selección de motores se basa considerando los cambios de carga en relación con, el Torque de aceleración como una función de la carga más la inercia del motor. Los requerimientos de la carga pueden ser divididos en dos categorías. 1-Fuerzas necesarias para lograr un movimiento programado. Fuerzas de corte,empuje,antiretroceso (carga vertical),aceleración. 2-Fuerzas para superar pérdidas por fricción ó rozamiento. Pérdidas en las superficies de rodamientos,ineficiencias en tornillos, piñones, reductores,pérdidas estáticas y dinámicas del motor.

38 Reductores de Transmisión El empleo de reductores ofrece las siguientes ventajas: Permite que el motor funcione en su rango óptimo de velocidad. Minimiza el tamaño del motor por aumento del torque en un factor de la relación de transmisión (i). Minimiza la inercia reflejada para máxima aceleración. Provee mayor rigidez torsional. Reductor Carga mecánica Inercia que ve el motor con reductor

39 Inercia que ve el motor De esta ecuación se puede observar que la inercia de la carga se reduce cuadráticamente con la relación de transmisión i, permitiendo que la inercia reflejada sea igual a la del motor. Una relación muy importante es conservar es

40 Guía lineal a Tornillo Herramienta de corte masa de la pieza masa de la guía tornillo acople En dónde : acc = aceleración lineal de la carga ( m/s²). Fcorte = Fuerza de corte (N). Jguìa = Inercia de la guía más carga (kgm²). m total = masa total de la guía más carga (kg). p = paso del tornillo en ( m/rev). ηtornillo = eficiencia del tornillo. Tcarga = Torque de carga (Nm).

41 Potencia Velocidad-Torque

42 Cinta transportadora de Troqueles de papel avance 550 mm

43 Ejemplo de aplicación Información General Este sistema es una cinta transportadora, que traslada continuamente un troquel de papel para ser luego pegado sobre un cartón en un proceso siguiente, manteniendo una distancia constante entre pliegues. El proceso requiere una rápida aceleración y desaceleración de la cinta transportadora. Especificaciones del fabricante Inercia del alimentador ( Cinta transportadora) = 5,12 E-3 Kg-m². Diámetro de poleas conductoras = 60 mm Espesor de Cinta/lona = 7 mm Largo máximo de Troquel = 550 mm Fricción estática (Tf) =2Nm Separación para aceleración/desaceleración=200 mm Velocidad Máxima de la Línea = 5m/s.

44 1-Velocidad Máxima del motor Nmax Calculo de Velocidad

45 2-Cálculo de tiempos Vmáx Vmed Tiempo para acelerar ó desacelerar ( t acc ; tdes) Para aceleración lineal : tacc t cte tdes 100 mm 550 mm 100 mm Recorrido total de la cinta

46 El troquel se mueve 100 mm durante la aceleración y 100 mm durante la desaceleración, el resto del tiempo se mueve a velocidad constante de 5m/seg. 3-Calculo de Torque rms

47 Es necesario para continuar con el cálculo adoptar un tamaño de motor inicial, para que la inercia del motor pueda ser incluida en el cálculo de aceleración Adoptamos un motor con las siguientes características 3 J motor = 1,2 10 Kg m² Tcs = 11 Nm Vmáx = 3000 RPM

48 Torque de aceleración. Ta= Tacc + Tresistivo(Fricción estática). Tresistivo= 2Nm Ta = ( ) Nm= 23 Nm Ta =23 Nm ; tacc= 0,04 seg Torque de desaceleración. Tdes-f(final)= Tdes(Torque de desaceleración) Tresistivo Tdes-f= ( -21+2)Nm = -19 Nm Tdes-f =19 Nm ; tdes= 0,04 seg

49 Torque rms Trms=13,77 Nm adoptando un margen de seguridad del 20% el Tcs debería ser aproximadamente de 16,5 Nm para acoplamiento directo. Considerando que Ta( Torque de aceleración) es aproximadamente 2 veces el Tcs del motor seleccionado y tacc << TCT el motor seleccionado podría ser una buena opción, pero su Tcs es menor que el requerido. Tcs motor= 11 Nm < Tcs requerido ( 16,5 Nm)

50 Finalmente tendremos 2 opciones para la selección del servomotor a utilizar. 1er Opción ( Transmisión directa) Seleccionar un servomotor con un Tcs aproximadamente = 16,5 Nm. Velocidad Nominal 3000 RPM. Valor de Inercia similar al de la carga. 2da Opción Analizar la utilización de un reductor, para ello hay que analizar la relación inercial y la relación de transmisión a utilizar.

51 Relación Inercial Carga-Motor Considerando la siguiente relación empírica El motor seleccionado cumple con la relación inercial

52 Finalmente con un reductor con relación de Transmisión 2:1 tendremos Tcs(con reductor) = Tcs (motor) i ηreductor= 11 Nm 2 0,85= 18,7 Nm (16,5 Nm) Velocidad Máxima = Nmax i = = 2580 RPM. (Nnom motor =3000 RPM) Inercia reflejada = Jtotal / i² = 5,12E-3 (Kg-m²)/2² = 1,28 E-3 (Kg-m²). Inercia del motor 1,2E-3 (Kg-m²). Como conclusión Al haber utilizado para esta aplicación, un reductor hemos logrado cumplir con el torque rms requerido, con la velocidad máxima necesaria, con un valor de inercia parecido al del motor, con lo cual un mejor manejo de la aceleración y algo muy importante como es bajar los costos del equipo a utilizar.

Elementos que Influyen en el Dimensionamiento: Inercia, Carga, Par y Velocidad. Herramientas y Aplicación Ejemplo

Elementos que Influyen en el Dimensionamiento: Inercia, Carga, Par y Velocidad. Herramientas y Aplicación Ejemplo Elementos que Influyen en el Dimensionamiento: Inercia, Carga, Par y Velocidad. Herramientas y Aplicación Ejemplo Panasonic Electric Works España Motion Control Agenda Definición de inercia y ejemplos

Más detalles

Ejercicios de Sistemas Mecánicos Traslación

Ejercicios de Sistemas Mecánicos Traslación EjerciciosMSS_ Ejercicios de Sistemas Mecánicos Traslación. Dibujar el diagrama de cuerpo libre y obtener el modelo matemático del sistema mostrado en la figura. Considerar únicamente el movimiento horizontal,

Más detalles

Bienvenidos al módulo tres del curso de dimensionado de convertidores de frecuencia de baja tensión. Este módulo presenta cálculos de ejemplo para el

Bienvenidos al módulo tres del curso de dimensionado de convertidores de frecuencia de baja tensión. Este módulo presenta cálculos de ejemplo para el Bienvenidos al módulo tres del curso de dimensionado de convertidores de frecuencia de baja tensión. Este módulo presenta cálculos de ejemplo para el dimensionado de sistemas dinámicos. 1 Tras completar

Más detalles

MOTOR CC CON REDUCTORA Y HUSILLO DE ROSCA TRAPEZOIDAL

MOTOR CC CON REDUCTORA Y HUSILLO DE ROSCA TRAPEZOIDAL MOTOR CC EJERCICIOS DE CALCULO DE POTENCIA Fuerzas Necesarias Esta.ca Cuando movemos un cuerpo o masa, el motor cc.ene que aplicar una fuerza inicial que venza el equilibrio está.co del sistema, representado

Más detalles

12.7. Cadenas cinemáticas. A Representación gráfica. Cadenas cinemáticas.

12.7. Cadenas cinemáticas. A Representación gráfica. Cadenas cinemáticas. 1 12.7. Cadenas cinemáticas A Representación gráfica Cadenas cinemáticas. 2 B Cálculos 3 C Caja de velocidades Ejemplo 7: caja de velocidades con engranajes desplazables. Ejemplo 8: caja de velocidades

Más detalles

Universidad FUP Fundación Universitaria De Popayán Sede Los Robles Facultad de Ingeniería

Universidad FUP Fundación Universitaria De Popayán Sede Los Robles Facultad de Ingeniería Universidad FUP Fundación Universitaria De Popayán Sede Los Robles Facultad de Ingeniería Carlos Valencia Herson Ramírez Carlos García Iber Jose Alemeza Juan Carlos Ceballos Introducción: Los reductores

Más detalles

Anexo III: Definición del Mecanismo.

Anexo III: Definición del Mecanismo. Anexo III: Definición del Mecanismo. Pag. AIII-1 ÍNDICE III.1 Introducción III.2 Parámetros de las Distintas Estaciones III.3 Dimensiones del Sistema piñón-cremallera III.3.1 Piñón III.3.2 Cremallera AIII-3

Más detalles

Amortiguadores de choque Ajustables

Amortiguadores de choque Ajustables Amortiguadores de choque Ajustables Información General En principio, todos los procesos de fabricación implican movimientos de algún tipo. En la producción con máquinas, ello puede significar transferencias

Más detalles

INSTITUTO TECNOLÓGICO DE VERACRUZ. Materia: ROBOTICA. Unidad 1 MORFOLOGÍA DEL ROBOT. Tema: 1.3 TRANSMISIONES Y REDUCCIONES

INSTITUTO TECNOLÓGICO DE VERACRUZ. Materia: ROBOTICA. Unidad 1 MORFOLOGÍA DEL ROBOT. Tema: 1.3 TRANSMISIONES Y REDUCCIONES INSTITUTO TECNOLÓGICO DE VERACRUZ Materia: ROBOTICA Unidad 1 MORFOLOGÍA DEL ROBOT Tema: 1.3 TRANSMISIONES Y REDUCCIONES Catedrático: ING. José Antonio Garrido Natarén H. Veracruz, Ver. 01 de Septiembre

Más detalles

Tecnología Industrial I

Tecnología Industrial I Tecnología Industrial I Máquinas y Mecanismos Ejercicios de repaso 1. A qué distancia del punto de apoyo deberá colocarse Ana para equilibrar el balancín con su hermano Javier? sol. 3m 2. A qué distancia

Más detalles

Serie de Dinámica MOVIMIENTO RECTILÍNEO

Serie de Dinámica MOVIMIENTO RECTILÍNEO Serie de Dinámica MOVIMIENTO RECTILÍNEO 1. En un ascensor en movimiento se pesa un cuerpo de 5 kg con una balanza de resorte. La balanza indica 5.1 kg. Halle la aceleración del ascensor. 2. Los pesos de

Más detalles

1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s?

1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s? 1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s? 2. Determina la relación de transmisión entre dos árboles y la velocidad del segundo si están unidos mediante una transmisión

Más detalles

6 Bujes de sujeción 7 Correas dentadas de caucho y poliuretano 8 Juntas universales Cardan y conjuntos telescópicos

6 Bujes de sujeción 7 Correas dentadas de caucho y poliuretano 8 Juntas universales Cardan y conjuntos telescópicos www.tecnopower.es 9 Reductores de precisión de juego angular 0 1 Nabtesco Precisión Nabtesco Precision, miembro del grupo Nabtesco, es el fabricante de las Cajas de Engranajes Cicloidales de Precisión

Más detalles

2. Características de funcionamiento de los motores eléctricos

2. Características de funcionamiento de los motores eléctricos 2. Características de funcionamiento de los motores eléctricos Anibal T. De Almeida ISR-Universidad de Coímbra 1 Temario Velocidad Par Principales tipos de carga Ciclos de servicio Velocidad y deslizamiento

Más detalles

TECNOLOGICO NACIONAL DE MEXICO

TECNOLOGICO NACIONAL DE MEXICO TECNOLOGICO NACIONAL DE MEXICO INSTITUTO TECNOLOGICO DE VERACRUZ ROBOTICA CLAVE 9F1A DR. JOSE ANTONIO GARRIDO NATAREN ING. MECATRONICA EQUIPO I UNIDAD I MORFOLOGIA DEL ROBOT 1.3 TRANSMISIONES Y REDUCCIONES

Más detalles

GRADO 10 CREANDO UN MECANISMO DE ROTACIÓN JULIO ESTUPIÑAN ÚME

GRADO 10 CREANDO UN MECANISMO DE ROTACIÓN JULIO ESTUPIÑAN ÚME CREANDO UN MECANISMO DE ROTACIÓN JULIO ESTUPIÑAN GRADO 10 ÚME La guía pretende generar movimientos rotacionales en un mecanismo, adecuando los conceptos de CINEMATICA ROTACIONAL tales como FRECUENCIA,

Más detalles

TEMA 3: MÁQUINAS Y MECÁNICOS

TEMA 3: MÁQUINAS Y MECÁNICOS TEMA 3: MÁQUINAS Y MECÁNICOS Los mecanismos son los elementos encargados del movimiento en las máquinas. Permiten transmitir el movimiento de giro del motor a las diferentes partes del robot. el movimiento

Más detalles

Serie de ejercicios de Cinemática y Dinámica TRASLACIÓN Y ROTACIÓN PURAS

Serie de ejercicios de Cinemática y Dinámica TRASLACIÓN Y ROTACIÓN PURAS Serie de ejercicios de inemática y Dinámica TRSLIÓN Y ROTIÓN PURS 1. La camioneta que se representa en la figura viaja originalmente a 9 km/h y, frenando uniformemente, emplea 6 m en detenerse. Diga qué

Más detalles

FACULTAD DE INGENIERIA. Física I SEGUNDO SEMESTRE 2018 BÍOINGENIERÍA - ING. ELECTRÓNICA ING. EN AGRIMENSURA GUÍA DE PROBLEMAS N 5: SOLIDO RIGIDO

FACULTAD DE INGENIERIA. Física I SEGUNDO SEMESTRE 2018 BÍOINGENIERÍA - ING. ELECTRÓNICA ING. EN AGRIMENSURA GUÍA DE PROBLEMAS N 5: SOLIDO RIGIDO FCULTD DE INGENIERI Física I ÍOINGENIERÍ - ING. ELECTRÓNIC ING. EN GRIMENSUR GUÍ DE PROLEMS N 5: SOLIDO RIGIDO ÍOINGENIERÍ - ELECTRÓNIC - GRIMENSUR GUÍ DE PROLEMS Nº 5: CUERPO RÍGIDO Problema Nº1: Una

Más detalles

Guía de ejercicios N o 10. Cinemática y Dinámica rotacional

Guía de ejercicios N o 10. Cinemática y Dinámica rotacional FIS1503 - Física general - Ingeniería 1er. Semestre 2010 Guía de ejercicios N o 10 Cinemática y Dinámica rotacional 1. Una rueda giratoria requiere 3 s para hacer 37 revoluciones. Su rapidez angular al

Más detalles

Universidad Simón Bolívar Departamento de Procesos y Sistemas

Universidad Simón Bolívar Departamento de Procesos y Sistemas Universidad Simón Bolívar Departamento de Procesos y Sistemas Guía de Ejercicios de Sistemas de Control I PS-3 Prof. Alexander Hoyo Junio 00 http://prof.usb.ve/ahoyo ahoyo@usb.ve ÍNDICE Pág. Modelaje Matemático

Más detalles

ACTIVIDADES DEL CURSO DE FÍSICA I

ACTIVIDADES DEL CURSO DE FÍSICA I SESIÓN 16 13 SEPTIEMBRE 1. Primer Examen 2. Investigación 6. Tema: Leyes de Newton. Contenido: Biografía de Isaac Newton Primera Ley de Newton Segunda Ley de Newton Tercera Ley de Newton Entrega: Sesión

Más detalles

INSTITUTO TECNOLÓGICO DE VERACRUZ UNIDAD I: MORFOLOGIA DEL ROBOT

INSTITUTO TECNOLÓGICO DE VERACRUZ UNIDAD I: MORFOLOGIA DEL ROBOT INSTITUTO TECNOLÓGICO DE VERACRUZ CARRERA: INGENIERIA MECATRÓNICA CATEDRATICO: DR. JOSÉ ANTONIO GARRIDO NATARÉN UNIDAD I: MORFOLOGIA DEL ROBOT TEMA 1.3 TRANSMISIONES Y REDUCCIONES MATERIA: ROBOTICA 1.3

Más detalles

Actividad II.14 - Dinámica de sistemas en rotación. Objetivos. Introducción

Actividad II.14 - Dinámica de sistemas en rotación. Objetivos. Introducción Actividad II.4 - Dinámica de sistemas en rotación Objetivos Estudio experimental de las leyes de la dinámica de sistemas en rotación. Introducción Se propone usar un dispositivo como el que se ilustra

Más detalles

Limitadores de par. Transmisiones Electromecánicas MADRID JPA. para transmisiones directas e indirectas. Características de salida

Limitadores de par. Transmisiones Electromecánicas MADRID JPA. para transmisiones directas e indirectas. Características de salida Limitadores de par para transmisiones directas e indirectas Debido al constante crecimiento en la automatización y la dinamización de los procesos modernos de trabajo, los mecanismos de protección que

Más detalles

DEPARTAMENTO DE TECNOLOGIA IES ANTONIO SEQUEROS TEMA 3: MECANISMOS

DEPARTAMENTO DE TECNOLOGIA IES ANTONIO SEQUEROS TEMA 3: MECANISMOS TEMA 3: MECANISMOS 1. Mecanismos a. Movimiento circular en movimiento circular Ruedas de fricción Polea correa Engranajes b. Movimiento circular en movimiento lineal y viceversa Biela manivela Piñón cremallera

Más detalles

Objetos en equilibrio - Ejemplo

Objetos en equilibrio - Ejemplo Objetos en equilibrio - Ejemplo Una escalera de 5 m que pesa 60 N está apoyada sobre una pared sin roce. El extremo de la escalera que apoya en el piso está a 3 m de la pared, ver figura. Cuál es el mínimo

Más detalles

C A T E D R A C Á L C U L O DE E L E M E N T O S M Á Q U I N A S

C A T E D R A C Á L C U L O DE E L E M E N T O S M Á Q U I N A S C A T E D R A C Á L C U L O DE E L E M E N T O S D E M Á Q U I N A S U n i d a d e s I n d e x a d o r a s Unidades Indexadoras Las unidades indexadoras son equipos cuya función es convertir un movimiento

Más detalles

PRÁCTICA 3 DINÁMICA ROTACIONAL

PRÁCTICA 3 DINÁMICA ROTACIONAL PRÁCTICA 3 DINÁMICA ROTACIONAL. Objetivos.. Objetivo General Determinar experimentalmente el momento de inercia de un objeto a partir de cálculos estadísticos y de un análisis de regresión..2. Objetivos

Más detalles

Para qué aprender FISICA? Materiales Potencia Rozamiento y Fricción Viscosidad Turbulencias Movimiento

Para qué aprender FISICA? Materiales Potencia Rozamiento y Fricción Viscosidad Turbulencias Movimiento Para qué aprender FISICA? Materiales Potencia Rozamiento y Fricción Viscosidad Turbulencias Movimiento OBJETIVOS Formular: Conceptos, Definiciones Leyes resolver PROBLEMAS Fomentar: Habilidades Destrezas

Más detalles

Características del husillo de bolas

Características del husillo de bolas Par de torsión motriz igual a un tercio del tornillo deslizante Con el husillo de bolas, las bolas giran entre el eje de husillo para poder lograr una alta efi ciencia. Su par de torsión motriz requerido

Más detalles

APPLICATION SHEET Julio

APPLICATION SHEET Julio Índice 1. Descripción de la aplicación 2. Aplicación - Datos 3. Selección del producto y determinación del tamaño 4. Solución Motovario 1. Descripción de la aplicación Las pantallas para campos de críquet

Más detalles

Módulos de precisión PSK

Módulos de precisión PSK Módulos de precisión PSK 2 Bosch Rexroth AG Módulos de precisión PSK R999001269 (2015-12) Sistemática de las abreviaturas Abreviatura Ejemplo: P S K - 050 - N N - 1 Sistema = Módulo de precisión (P) Guía

Más detalles

EJERCICIOS BLOQUE 2.1: MÁQUINAS Y SISTEMAS MECÁNICOS

EJERCICIOS BLOQUE 2.1: MÁQUINAS Y SISTEMAS MECÁNICOS EJERCICIOS BLOQUE 2.1: MÁQUINAS Y SISTEMAS MECÁNICOS 1. Con un remo de 3 m de longitud se quiere vencer la resistencia de 400 kg que ofrece una barca mediante una potencia de 300 kg. A qué distancia del

Más detalles

TEORÍCO-PRÁCTICAS (4 puntos cada pregunta)

TEORÍCO-PRÁCTICAS (4 puntos cada pregunta) Asignatura: Vibraciones Mecánicas. Curso 004/05 (Final de Junio- ºParcial) Apellidos: Nombre: TEORÍCO-PRÁCTICAS (4 puntos cada pregunta) 1. Se tiene un sistema mecánico compuesto por una varilla de acero

Más detalles

1) Nombre del mecanismo: Ruedas de fricción, transmisión por correa, engranajes y transmisión por cadena.

1) Nombre del mecanismo: Ruedas de fricción, transmisión por correa, engranajes y transmisión por cadena. Ficha nº:3 Transmisión circular. 1) Nombre del mecanismo: Ruedas de fricción, transmisión por correa, engranajes y transmisión por cadena. 2) Descripción: Ruedas de fricción: Son sistemas formados por

Más detalles

UD 10. Leyes de la dinámica

UD 10. Leyes de la dinámica UD 10. Leyes de la dinámica 1- Concepto de fuerza. 2- Primer principio de la dinámica. 3- Segundo principio de la dinámica. 4- Tercer principio de la dinámica. 5- Momento lineal. 6- Fuerzas: Peso, Normal,

Más detalles

ELECTRÓNICA DE POTENCIA

ELECTRÓNICA DE POTENCIA ELECTRÓNICA DE POTENCIA Curso 2017 Práctica Nº5 Control de Motores de CC Nota: En todos los ejercicios se utiliza la siguiente nomenclatura, donde I a e I f son las corrientes de armadura y de campo respectivamente:

Más detalles

y L 2 Sistema seco (Rodamiento tipo doble y DR) Sistema lubricado (Rodamientos tipo doble) Sistema lubricado (Rodamientos tipo DR)

y L 2 Sistema seco (Rodamiento tipo doble y DR) Sistema lubricado (Rodamientos tipo doble) Sistema lubricado (Rodamientos tipo DR) Esta hoja informativa se relaciona con el catálogo PRT2 54-56 Hepcootion Nº 3 Información sobre Carga y Duración La capacidad de carga y la duración de los anillos, segmentos curvos y sistemas de circuito

Más detalles

REDUCTORES ORTOGONALES DE PRECISIÓN

REDUCTORES ORTOGONALES DE PRECISIÓN .:Tecnopower:. http://www.tecnopower.es/productos_tm_rso_dg_t.asp Page 1 of 2 26/02/2008 Empresa Productos Marcas Ca REDUCTORES ORTOGONALES DE PRECISIÓN Características Técnicas INFORMACIÓN DE PRODUCTO

Más detalles

Ventaja Mecánica. Cuanto mayor sea la F o la distancia al eje de giro, mayor será el momento torsor transmitido.

Ventaja Mecánica. Cuanto mayor sea la F o la distancia al eje de giro, mayor será el momento torsor transmitido. Ventaja Mecánica. Conceptos Básicos Inercia. Dificultad que opone un cuerpo para cambiar su velocidad, cuando se esta moviendo y para moverse cando esta en reposo. Fuerza. Es todo aquello que puede producir

Más detalles

CATEDRA: TCDM UNIDAD 4: TRANSMISIONES FLEXIBLES TEMA : CADENAS Ejercicio 1B:

CATEDRA: TCDM UNIDAD 4: TRANSMISIONES FLEXIBLES TEMA : CADENAS Ejercicio 1B: Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS CATEDRA: TCDM UNIDAD 4: TRANSMISIONES FLEXIBLES TEMA : CADENAS Ejercicio 1B: TRANSMISION DE MOVIMIENTO POR CADENAS Para la resolución se utiliza el libro

Más detalles

FMS-200 Módulo de Formación 6: Actuadores eléctricos FMS-200

FMS-200 Módulo de Formación 6: Actuadores eléctricos FMS-200 FMS-200 Módulo de Formación 6: Actuadores eléctricos FMS-200 INDICE Indice: 1.- Visión General 2.- Actuadores Eléctricos SMC (LEF) 3.- Preguntas Introducción: El actuador eléctrico es un sistema electromecánico

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID INSTRUCCIONES GENERALES Y VALORACIÓN Se presentan a continuación dos pruebas: OPCIÓN A y OPCIÓN B, cada una de ellas con un ejercicio y varias cuestiones.

Más detalles

Rodamientos. Calculo y selección. Aplicaciones. Montaje y desmontaje. Mantenimiento. Rodamientos especiales

Rodamientos. Calculo y selección. Aplicaciones. Montaje y desmontaje. Mantenimiento. Rodamientos especiales Rodamientos Calculo y selección. Aplicaciones. Montaje y desmontaje. Mantenimiento. Rodamientos especiales Rodamientos. Descripcion Los rodamientos son un tipo de soporte de ejes o cojinetes que emplean

Más detalles

8. CÁLCULO DE ELEMENTOS

8. CÁLCULO DE ELEMENTOS 8. CÁLCULO DE ELEMENTOS 8.1 Procedimiento utilizado. Para el cálculo de elementos estructurales se ha utilizado el cálculo manual efectuado de acuerdo con la teoría general de la Resistencia de Materiales,

Más detalles

Robótica Dr. José Antonio Garrido Natarén INGENIERÍA MECATRÓNICA. Unidad 1.- Morfología del robot. 1.3 Transmisiones y reducciones.

Robótica Dr. José Antonio Garrido Natarén INGENIERÍA MECATRÓNICA. Unidad 1.- Morfología del robot. 1.3 Transmisiones y reducciones. SECRETARÍA DE EDUCACIÓN PÚBLICA TECNOLÓGICA NACIONAL DE MÉXICO INSTITUTIO TECNOLÓGICO DE VERACRUZ Robótica Dr. José Antonio Garrido Natarén INGENIERÍA MECATRÓNICA Unidad 1.- Morfología del robot 1.3 Transmisiones

Más detalles

Aplicaciones industriales con servomotores de alta dinámica operados con Micromaster 440. SeM003 Versión 1

Aplicaciones industriales con servomotores de alta dinámica operados con Micromaster 440. SeM003 Versión 1 Aplicaciones industriales con servomotores de alta dinámica operados con Micromaster 440 SeM003 Versión 1 Aplicaciones industriales con servomotores de alta dinámica operados con Micromaster 440 Las máquinas

Más detalles

Características del husillo de bolas

Características del husillo de bolas Par de torsión motriz igual a un tercio del tornillo deslizante Con el husillo de bolas, las bolas giran entre el eje de husillo para poder lograr una alta efi ciencia. Su par de torsión motriz requerido

Más detalles

SERVOMOTORES. AADECA - Asociación Argentina de Control Automático JORNADA SOBRE CONTROL DE MOVIMIENTOS

SERVOMOTORES. AADECA - Asociación Argentina de Control Automático JORNADA SOBRE CONTROL DE MOVIMIENTOS SERVOMOTORES 1 Contenido 1. Tipos de motores. 2. Motores asincrónicos y sincrónicos 3. Servomotores 4. Sistemas de realimentación. 2 1. Tipos de Motores Motor Con escobilla Sin Escobilla Motor DC sincrónico

Más detalles

RESUMEN. El propósito de ésta Tesis de Grado trata del diseño de un elevador de

RESUMEN. El propósito de ésta Tesis de Grado trata del diseño de un elevador de II RESUMEN El propósito de ésta Tesis de Grado trata del diseño de un elevador de cangilones para transportar arena de moldeo en un sistema de producción continua para una planta de fundición de metales

Más detalles

Material de apoyo curricular para Tecnología de la Madera y Taller de Carpintería. Cálculos aplicados a la carpintería. Máquinas

Material de apoyo curricular para Tecnología de la Madera y Taller de Carpintería. Cálculos aplicados a la carpintería. Máquinas Material de apoyo curricular para Tecnología de la Madera y Taller de Carpintería Cálculos aplicados a la carpintería Máquinas Material preparado por el Maestro Técnico Sergio Adorno Programa de Educación

Más detalles

Unidad 4. Dinámica de la partícula

Unidad 4. Dinámica de la partícula Unidad 4. Dinámica de la partícula Qué es una fuerza? Una influencia externa sobre un cuerpo que causa su aceleración con respecto a un sistema de referencia inercial. La fuerza F se define en función

Más detalles

1. RODADURA SOBRE UN PLANO INCLINADO: MONTAJE EXPERIMENTAL

1. RODADURA SOBRE UN PLANO INCLINADO: MONTAJE EXPERIMENTAL UNIVERSIDAD DEL VALLE Departamento de Física Laboratorio de Física Fundamental I Profesor: Otto Vergara. Diciembre 2 de 2012 NOTAS CLASE 4 1. RODADURA SOBRE UN PLANO INCLINADO: MONTAJE EXPERIMENTAL Figura

Más detalles

TEORÍA DE CONTROL. Modelo de Estado. Ejercicio Ascensor

TEORÍA DE CONTROL. Modelo de Estado. Ejercicio Ascensor TEORÍ DE CONTROL Modelo de Estado Ejercicio scensor Ejercicio scensor El diagrama representa esquemáticamente el funcionamiento de un control de velocidad de un ascensor. El mismo es accionado por un motor

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 SOLUCIÓN Analice las siguientes preguntas

Más detalles

FÍSICA. 2º BCN CONTROL BLOQUE I Examen 1

FÍSICA. 2º BCN CONTROL BLOQUE I Examen 1 Examen 1 1. La ley de la gravitación universal de Newton. 2. Dibuja la órbita de un planeta alrededor del Sol y las fuerzas que intervienen en el movimiento de aquél, así como la velocidad del planeta

Más detalles

60N. Solo hay que tener en cuenta las fuerzas perpendiculares a la barra y en qué sentido la hacen girar: M sen45 1,5 70cos ,51N m

60N. Solo hay que tener en cuenta las fuerzas perpendiculares a la barra y en qué sentido la hacen girar: M sen45 1,5 70cos ,51N m . Calcular en momento de las fuerzas que actúan sobre la barra de la figura que puede girar alrededor de un eje que pasa por el punto. qué fuerza aplicada en el centro de la barra impide el giro? Dinámica

Más detalles

60N. Solo hay que tener en cuenta las fuerzas perpendiculares a la barra y en qué sentido la hacen girar: M sen45 1,5 70cos ,51N m

60N. Solo hay que tener en cuenta las fuerzas perpendiculares a la barra y en qué sentido la hacen girar: M sen45 1,5 70cos ,51N m . Calcular en momento de las fuerzas que actúan sobre la barra de la figura que puede girar alrededor de un eje que pasa por el punto O. qué fuerza aplicada en el centro de la barra impide el giro? Dinámica

Más detalles

EQUIPO LM 90 PARA PERFORACIÓN SUBTERRÁNEA. Descripción técnica. Copyright 2018 Boart Longyear. Todos los derechos reservados.

EQUIPO LM 90 PARA PERFORACIÓN SUBTERRÁNEA. Descripción técnica. Copyright 2018 Boart Longyear. Todos los derechos reservados. EQUIPO LM 90 PARA PERFORACIÓN SUBTERRÁNEA Descripción técnica "Q" es una marca de Boart Longyear EQUIPO LM 90 PARA PERFORACIÓN SUB- TERRÁNEA La LM 90 es un equipo de perforación diamantina para perforación

Más detalles

PRIMER LABORATORIO EL 7032

PRIMER LABORATORIO EL 7032 PRIMER LABORATORIO EL 7032 1.- OBJETIVOS.- 1.1.- Analizar las formas de onda y el comportamiento dinámico de un motor de corriente continua alimentado por un conversor Eurotherm Drives, 590+ Series DC

Más detalles

L1 (Longitud de motor estándar) L2 (Longitud de motor con freno)

L1 (Longitud de motor estándar) L2 (Longitud de motor con freno) HepcoMotion S onexiones Motor onnections de motor S Opción de motorreductor de A El motorreductor de A es la opción preferida para muchas aplicaciones, ya que ofrece una excelente combinación de potencia,

Más detalles

PLAN DE RECUPERACIÓN 3º ESO (2ª Ev.)

PLAN DE RECUPERACIÓN 3º ESO (2ª Ev.) Departamento de Tecnología PLAN DE RECUPERACIÓN 3º ESO (2ª Ev.) Para recuperar la evaluación deberás: -Realizar estas Actividades -Realizar una Prueba de conocimientos (Las actividades deberás entregarlas

Más detalles

GUÍA DE PROBLEMAS Nº 5: CUERPO RÍGIDO

GUÍA DE PROBLEMAS Nº 5: CUERPO RÍGIDO GUÍ DE PROLEMS Nº 5: UERPO RÍGIDO PROLEM Nº 1: Un avión cuando aterriza apaga sus motores. El rotor de uno de los motores tiene una rapidez angular inicial de 2000 rad/s en el sentido de giro de las manecillas

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

C A T E D R A C Á L C U L O DE E L E M E N T O S D E M Á Q U I N A S

C A T E D R A C Á L C U L O DE E L E M E N T O S D E M Á Q U I N A S C A T E D R A C Á L C U L O DE E L E M E N T O S D E M Á Q U I N A S Reductores y Motorreductores MOTORREDUCTOR DE EJES A 90º REDUCTOR DE EJES A 90º MOTORREDUCTOR DE EJES COLINEALES REDUCTOR DE EJESCOLINEALES

Más detalles

MESAS LINEALES KK. INFORMACIÓN GENERAL

MESAS LINEALES KK. INFORMACIÓN GENERAL CARACTERÍSTICAS DE LAS MESAS LINEALES KK Las mesas lineales KK de HIWIN son mesas de posicionamiento compactas que se suministran totalmente equipadas con servomotor HIWIN y driver HIWIN. Alternativamente,

Más detalles

GUIA PARA ELECCIÓN MOTOVIBRADORES

GUIA PARA ELECCIÓN MOTOVIBRADORES GUIA PARA ELECCIÓN equipos para el procesamiento de sólidos a granel GUÍA PARA LA ELECCIÓN DEL MOTOVIBRADOR Método de vibración: Para sistemas aislados de forma elástica, tenemos dos métodos de vibración:

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL-

UNIVERSIDAD TECNOLÓGICA NACIONAL- UNIVERSIDAD TECNOLÓGICA NACIONAL- Facultad Regional Bahía Blanca CÁTEDRA: ELEMENTOS DE MAQUINA Trabajo Práctico N 14 Unidad: Análisis de Elementos de Transmisión (Capítulos 8 y 9). Tema: Cálculo de engranajes,

Más detalles

DINÁMICA DE LA ROTACIÓN

DINÁMICA DE LA ROTACIÓN DINÁMICA DE LA ROTACIÓN 1. La polea de la figura tiene radio R y momento de inercia, respecto a un eje que pasa por su centro de masa perpendicular al plano del papel. La cuerda no resbala sobre la polea

Más detalles

Ejercicios resueltos 2: Horno de Carbón Cátedra de Control y Servomecanismos

Ejercicios resueltos 2: Horno de Carbón Cátedra de Control y Servomecanismos Ejercicios resueltos : Horno de Carbón Cátedra de Control y Servomecanismos Idea y desarrollo: Ing. Cristian Zujew Corregido por el Dr. Ing. Cristian Kunusch Objetivo: en esta guía práctica se presenta

Más detalles

7.- ACTUADORES NEUMÁTICOS. J.Garrigós

7.- ACTUADORES NEUMÁTICOS. J.Garrigós 7.- ACTUADORES NEUMÁTICOS 1 ACTUADORES: GENERALIDADES El trabajo realizado por un actuador neumático puede ser lineal o rotativo: El movimiento lineal se obtienen por cilindros de émbolos (éstos también

Más detalles

Contenidos que serán evaluados en el examen escrito, correpondiente segundo parcial en la asignatura Física III

Contenidos que serán evaluados en el examen escrito, correpondiente segundo parcial en la asignatura Física III Contenidos que serán evaluados en el examen escrito, correpondiente segundo parcial en la asignatura Física III Movimiento rotacional Movimiento circular uniforme. Física 3er curso texto del estudiante.

Más detalles

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s.

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s. Dinámica de sistemas en rotación 1) Momento y aceleración angular. Sobre una rueda actúa durante 10 s un momento constante de 20 N m, y durante ese tiempo la velocidad angular de la rueda crece desde cero

Más detalles

SLIDE SCREW SLIDE SCREW I-1

SLIDE SCREW SLIDE SCREW I-1 I-1 El rodamiento de tornillo NB convierte el movimiento de rotación en movimiento lineal utilizando fricción entre rodamientos radiales de bolas y el eje. Este simple mecanismo facilita el mantenimiento

Más detalles

INSTRUMENTACION TEMARIO

INSTRUMENTACION TEMARIO INSTRUMENTACION TEMARIO 1. Introducción a la toma de medidas en sistemas físicos 2. Sensores y Transductores 3. Acondicionamiento de la señal: amplificación, normalización y filtrado 4. Sistemas de adquisición

Más detalles

XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA

XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVIII..- EFICACIA DE LOS INTERCAMBIADORES DE CALOR En muchas situaciones lo único que se conoce es la descripción física del intercambiador, como

Más detalles

Trabajo Práctico n 2. Estática de los Fluidos

Trabajo Práctico n 2. Estática de los Fluidos Trabajo Práctico n 2 Estática de los Fluidos Objetivo del Práctico: Este práctico está destinado a: - Determinar la variación de la presión en un fluido en reposo - Calcular las fuerzas que ejerce un fluido

Más detalles

Universidad de Valladolid. Control y Programación de Robots. Morfología del robot: E.T.S. de Ingenieros Industriales. Estructura mecánica

Universidad de Valladolid. Control y Programación de Robots. Morfología del robot: E.T.S. de Ingenieros Industriales. Estructura mecánica Universidad de Valladolid E.T.S. de Ingenieros Industriales Control y Programación de Robots Morfología del robot: Estructura mecánica Morfología del robot Un robot está formado por los siguientes elementos:

Más detalles

Cuesta detenerlos. Cuesta sacarlos del reposo

Cuesta detenerlos. Cuesta sacarlos del reposo INERCIA EN LAS ROTACIONES: Inercia en el movimiento de traslación: Inercia: Resistencia que presenta un cuerpo a cambiar su estado de movimiento Más masa Cuesta detenerlos Cuesta sacarlos del reposo La

Más detalles

IX. Análisis dinámico de fuerzas

IX. Análisis dinámico de fuerzas Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.

Más detalles

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 13: Aceleración angular y momento de inercia. Fotosensores.

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 13: Aceleración angular y momento de inercia. Fotosensores. IM, Institución universitaria Guía de Laboratorio de Física Mecánica Práctica 13: Aceleración angular y momento de inercia Implementos Sistema rotante (base), hilo, cinta, cilindro con regla de aluminio,

Más detalles

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria.

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. IM, Institución universitaria. Práctica 11. Aceleración angular. Implementos Sistema rotante (base), hilo, cinta, cilindro con regla de aluminio, nuez, polea pequeña,

Más detalles

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras Departamento de Ciencias y Tecnología Miss Yorma Rivera M. Prof. Jonathan Castro F. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras Guía de repaso Prueba Semestral de Física

Más detalles

NOTA: En los siguientes ejercicios, si no pone nada, entenderemos que es una palanca de primer grado. Recordemos la Ley de la Palanca:

NOTA: En los siguientes ejercicios, si no pone nada, entenderemos que es una palanca de primer grado. Recordemos la Ley de la Palanca: OBLIGATORIO: Realiza en todos los ejercicios un esquema del sistema. En él deben aparecer reflejados todos los datos del ejercicio. Palancas NOTA: En los siguientes ejercicios, si no pone nada, entenderemos

Más detalles

CTJ L 1 R 1

CTJ L 1 R 1 CTJ. características Y DISEÑO La serie CTJ se compone de módulos lineales con correa dentada y dos sistemas paralelos de guías lineales de bolas integrados. Su tamaño compacto permite capacidades de carga

Más detalles

Mecanismos 2. Rotación en rotación. Poleas y engranajes Transmisión por cadena.

Mecanismos 2. Rotación en rotación. Poleas y engranajes Transmisión por cadena. Mecanismos 2. Mecanismos que transforman movimientos: Rotación en rotación. Poleas y engranajes Transmisión por cadena. Rotación en traslación y viceversa : Piñón Cremallera. Rotación en alternativo regular

Más detalles

CARRERA : Ing. MECÁNICA GUIA DE PROBLEMAS Nº6

CARRERA : Ing. MECÁNICA GUIA DE PROBLEMAS Nº6 ASIGNATURA : CARRERA : Ing. MECÁNICA GUIA DE PROBLEMAS Nº6 FACULTAD DE INGENIERÍA 2018 1 CURSO 2018 GUIA DE PROBLEMAS Nº6 PROBLEMA Nº1 En el instante t un sistema de partículas tiene las siguientes velocidades

Más detalles

rad/s = Iω Solución. a.- La figura muestra la situación

rad/s = Iω Solución. a.- La figura muestra la situación 1.- Un cilindro esmeril eléctrico de masa 8 kg, radio externo 15 cm y ancho 5 cm gira con frecuencia 1000 rpm. Al apagar el motor el cilindro se detiene producto de una aceleración de 4 rad/s. a.- Calcule

Más detalles

MTJZ La correa de poliuretano protege los componentes internos de la entrada de polvo y elementos extraños.

MTJZ La correa de poliuretano protege los componentes internos de la entrada de polvo y elementos extraños. MTJz. características Y DISEÑO La serie MTJZ está formada por módulos lineales de eje Z con correa dentada y un sistema de guía lineal de bolas. Su tamaño compacto permite capacidades de carga elevadas,

Más detalles

CAPÍTULO 3 3. DESARROLLO DEL SOFTWARE DE CONTROL

CAPÍTULO 3 3. DESARROLLO DEL SOFTWARE DE CONTROL 8 CAPÍTULO 3 3. DESARROLLO DEL SOFTWARE DE CONTROL En este capítulo se explica lo concerniente a la obtención de modelos matemáticos que sirven como base para el diseño del controlador de corriente y velocidad

Más detalles

Área: EDUCACION TECNOLOGICA Asignatura: TECNOLOGIA II. Título TRANSMISIONES MECANICAS. Curso 2 AÑO Año: Pag.1/15

Área: EDUCACION TECNOLOGICA Asignatura: TECNOLOGIA II. Título TRANSMISIONES MECANICAS. Curso 2 AÑO Año: Pag.1/15 Área: EDUCACION TECNOLOGICA Asignatura: TECNOLOGIA II Título TRANSMISIONES MECANICAS Curso 2 AÑO Año: 2006 Pag.1/15 INTRODUCCION Desde tiempos inmemorables el hombre realizó grandes esfuerzos para las

Más detalles

Sistemas de transmisión Mecánica. Ingenieria Hidroneumatica y Capacitacion S.A. de C.V.

Sistemas de transmisión Mecánica. Ingenieria Hidroneumatica y Capacitacion S.A. de C.V. Sistemas de transmisión Mecánica OBJETIVOS Mostrar las ventajas y desventajas, de los diferentes arreglos de transmisión n de potencia mecánica, conducidos por motores eléctricos. Los consumos de energía

Más detalles

GUIA DE PROBLEMAS PROPUESTOS Nº5: CUERPO RÍGIDO- ELASTICIDAD

GUIA DE PROBLEMAS PROPUESTOS Nº5: CUERPO RÍGIDO- ELASTICIDAD GUI DE PROLEMS PROPUESTOS Nº5: CUERPO RÍGIDO- ELSTICIDD Premisa de Trabajo: En la resolución de cada ejercicio debe quedar manifiesto: el diagrama de fuerzas y/o torcas que actúan sobre el cuerpo o sistema

Más detalles

Mecanismos. El tipo de movimientos que pueden producir los mecanismos son diversos: lineales, circulares, alternativos y oscilantes.

Mecanismos. El tipo de movimientos que pueden producir los mecanismos son diversos: lineales, circulares, alternativos y oscilantes. Mecanismos 1. Introducción Desde la existencia del hombre, éste ha fabricado útiles que le ayudan en sus tareas cotidianas de supervivencia, como hachas y cuchillos. A medida que las sociedades se organizaban,

Más detalles

Centro de Estudios de Bachillerato 4/1 Maestro Moisés Sáenz Garza Segundo Examen Parcial. Temas Selectos de Física I. Grupo: Fecha: Firma:

Centro de Estudios de Bachillerato 4/1 Maestro Moisés Sáenz Garza Segundo Examen Parcial. Temas Selectos de Física I. Grupo: Fecha: Firma: Centro de Estudios de Bachillerato 4/1 Maestro Moisés Sáenz Garza Segundo Examen Parcial Temas Selectos de Física I Atividades para preparar Portafolio de evidencias Elaboro: Enrique Galindo Chávez. Nombre:

Más detalles