SEGUNDO PRINCIPIO DE LA TERMODINÁMICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SEGUNDO PRINCIPIO DE LA TERMODINÁMICA"

Transcripción

1 SEGUNDO PRINCIPIO DE LA ERMODINÁMICA ÍNDICE. Introduión. Máquinas érmias. Segundo Prinipio de la ermodinámia. Enuniado de Kelvin-Plank. Rerigeradores. Bombas de alor 5. Segundo Prinipio de la ermodinámia. Enuniado de Clausius 6. La Máquina de Carnot. Cilo de Carnot 7. Esala ermodinámia de emperaturas 8. Cilos Comunes BIBLIOGRAFÍA: Cap. 9 del ipler Mosa, vol., 5ª ed. Cap. del Serway Jewett, vol., 7ª ed.

2 . INRODUCCIÓN La primera ley de la termodinámia es un enuniado de la onservaión de la energía, que airma que ualquier ambio en la energía interna de un sistema puede presentar una transerenia de energía por alor, por trabajo o por ambos, pero no hae distinión entre los proesos que se presentan espontáneamente y los que no. El º prinipio de la termodinámia establee qué proesos son posibles en la naturaleza y uales no. Ejemplo de proesos que no violan el er prinipio de la termodinámia, pero que sólo se observan en una direión (proesos irreversibles): Cuando dos objetos a dierente temperatura se ponen en ontato térmio, la transerenia de energía por alor siempre se produe del objeto más aliente al objeto más río, nuna al revés. Al empujar un objeto por una mesa on rozamiento siguiendo una trayetoria errada, el trabajo de rozamiento se transorma en energía térmia que eleva la temperatura del onjunto bloque-mesa. El onjunto ede alor al entorno hasta llegar al equilibrio térmio. El proeso inverso no ourre: un bloque y una mesa no se enriarán nuna espontáneamente para onvertir su energía interna en energía inétia que ponga en movimiento el bloque sobre la mesa. Una bola de goma que se deja aer sobre el suelo rebota varias vees y on el tiempo llega al reposo, pero una bola en reposo sobre el suelo nuna reúne la energía interna del suelo y omienza a botar por uenta propia. Un péndulo en osilaión al inal llega al reposo debido al rozamiento on el aire. La energía inétia del péndulo se onvierte en energía interna del aire (se aliente debido al rozamiento). La inversa nuna suede, es deir, un péndulo en reposo nuna va a adquirir energía inétia espontáneamente a partir de la energía interna del aire.

3 . MÁUINAS ÉRMICAS Una determinada antidad de trabajo se puede onvertir ompletamente en alor de orma direta, pero para onvertir el alor en trabajo es neesario la utilizaión de dispositivos espeiales llamados Máquinas érmias. Una máquina térmia es un dispositivo que toma energía en orma de alor de una uente de alta temperatura y al unionar en un proeso ílio transorma una raión de ese alor en trabajo. Caraterístias de las Máquinas érmias: Realizan proesos ílios Contienen una sustania de trabajo Reiben energía en orma de alor,, de una uente a alta temperatura ransorman una raión del alor reibido en trabajo Ceden una raión de alor,, a un sumidero de alor a baja temperatura Ejemplos de máquinas térmias son las entrales elétrias de vapor para produir eletriidad o los motores de ombustión interna de los ohes. Las uentes y sumideros de alor son sustanias on alta apaidad aloríia, es deir, suministran o absorben alor sin que se modiique apreiablemente su temperatura.

4 . MÁUINAS ÉRMICAS Apliando el er prinipio de la termodinámia a un proeso ílio: U W W El trabajo realizado por la máquina queda: Representaión esquemátia de una máquina térmia Fuente W Calor absorbido Calor edido Rendimiento de la Máquina érmia (oiente entre el trabajo realizado por la máquina y el alor absorbido): Máquina érmia W W alores típios de rendimiento: 0-50 % Sumidero

5 . SEGUNDO PRINCIPIO DE LA ERMODINAMICA. ENUNCIADO DE KELIN-PLANCK Es imposible que una máquina térmia unionando íliamente no produza otro eeto que la absorión de alor de un oo aliente y la realizaión de una antidad de trabajo igual al alor absorbido. Diho de otra orma, una máquina térmia debe interambiar alor on un oo río que absorba la energía que no utiliza la máquina para haer trabajo. Así, el rendimiento de ualquier máquina térmia ha der ser orzosamente inerior a la unidad (o al 00%). Problema Una máquina térmia absorbe 500 Julios de energía de un oo aliente durante ada ilo, realiza una antidad de trabajo y ede 00 Julios a un oo río. La máquina térmia realiza 0 ilos por segundo. Determinar: a) El rendimiento de la máquina. b) El trabajo realizado por la máquina en ada ilo. ) La potenia de la máquina.

6 . REFRIGERADORES. BOMBAS DE CALOR En una máquina térmia la direión de transerenia de energía es del oo aliente al río, que es la direión natural, realizándose en ese aso una antidad de trabajo útil por la máquina. Un rerigerador realiza el proeso inverso: Extrae alor de un oo río y lo ede a un oo aliente. Dado que esta direión de transerenia no es natural, se debe emplear ierta antidad de trabajo. La mayor o menor apaidad de extraer alor del oo río respeto del trabajo realizado sobre el rerigerador se mide a través de la eiienia, deinida omo el oiente entre el alor extraído y el trabajo realizado sobre el rigoríio W: Representaión esquemátia de un rerigerador/bomba de alor Fuente Rerigerador/ Bomba de Calor W R W alores típios de η: 5-6 Sumidero

7 . REFRIGERADORES. BOMBAS DE CALOR Aunque el esquema de unionamiento de rerigeradores y bombas de alor es el mismo, el propósito de ada uno de ellos es dierente: El objetivo de un rerigerador es mantener baja la temperatura de un espaio río (por ejemplo el interior de un rigoríio). Eso se onsigue extrayendo alor de ese espaio a baja temperatura. Para ello es preiso eder alor a un medio a mayor temperatura (en el aso de un rigoríio, a través de los serpentines situados en su parte trasera). El objetivo de una bomba de alor es mantener alta la temperatura de un espaio aliente (por ejemplo en una asa). Eso se onsigue ediendo parte del alor extraído de un medio a baja temperatura (por ejemplo del aire río exterior en invierno). En el aso de las bombas de alor, la eiienia se deine omo el oiente entre el alor edido al oo aliente y el trabajo realizado sobre la bomba de alor W: BC R W La relaión entre las eiienias del rerigerador y de la bomba de alor se obtiene utilizando: W

8 5. SEGUNDO PRINCIPIO DE LA ERMODINAMICA. ENUNCIADO DE CLAUSIUS Es imposible onstruir un dispositivo que opere íliamente uyo únio eeto sea transerir energía en orma de alor desde un objeto a otro de mayor temperatura. Diho de otra orma, la energía no se transiere espontáneamente por alor de un objeto río a otro más aliente. Para que se produza tal transerenia, es neesario realizar un trabajo. Los enuniados de Kelvin-Plank (máquina térmia) y de Clausius (rerigerador) de la segunda ley de la ermodinámia son equivalentes. Puede demostrarse esta equivalenia omprobando que si se supone also uno ualquiera de ellos, el otro debe también ser also.

9 6. LA MÁUINA DE CARNO. CICLO DE CARNO El segundo prinipio de la termodinámia establee que ninguna máquina térmia puede tener un rendimiento del 00%. La pregunta que surge es, uál es el máximo rendimiento que abe esperar para una máquina térmia? La respuesta, dada por Sadi Carnot, es que una máquina reversible es la máquina más eiiente que puede operar entre dos oos térmios determinados: eorema de Carnot Ninguna máquina térmia unionando entre dos oos térmios puede tener un rendimiento mayor que el de una máquina reversible operando entre esos mismos oos. La razón por la que el proeso ha de ser reversible es que el trabajo neto realizado es máximo en este tipo de proesos.. No haya uerzas disipativas (rozamiento). Condiiones neesarias para. ranserenia de alor entre sistemas a igual temperatura (o que un proeso dierenia ininitesimal de temperaturas). sea reversible. Proesos uasiestátios (el sistema ha de estar siempre en estados de equilibrio o ininitesimalmente era ellos).

10 6. LA MÁUINA DE CARNO. CICLO DE CARNO Cualquier proeso que viole alguna de las ondiiones anteriores es irreversible. odos los proesos reales son irreversibles. Los proesos reversibles ideales se estudian porque nos dan el valor máximo posible para el rendimiento. Al ompletar un ilo reversible, todo (sustania de trabajo y resto del universo) vuelve a su situaión iniial. Cilo de Carnot Cilo de Carnot Expansión isotérmia Expansión adiabátia P GAS Aislante Foo térmio a GAS Aislante GAS Compresión adiabátia Aislante GAS Compresión isotérmia Aislante W Foo térmio a

11 6. LA MÁUINA DE CARNO. CICLO DE CARNO EXPANSIÓN ISOÉRMICA EXPANSIÓN ADIABÁICA COMPRESIÓN ISOÉRMICA COMPRESIÓN ADIABÁICA P P U W P P, U W P P U W W nr 0 W C W nr 0 P P W, U W C 0 0 es onstante W < 0, el trabajo lo realiza el gas > 0, el alor es absorbido por el gas = 0 W < 0, el trabajo lo realiza el gas ( > ) es onstante W > 0, trabajo realizado sobre el gas < 0, el alor es edido por el gas = 0 W > 0, trabajo realizado sobre el gas ( > )

12 6. LA MÁUINA DE CARNO. CICLO DE CARNO rabajo neto realizado durante un ilo: W neto W W W W nr nr 0 El gas realiza un trabajo neto puesto que es negativo. (Reordad riterio de signos!!!) Rendimiento del ilo: W Además: nr nr nr nr nr nr El rendimiento de una máquina de Carnot es independiente de la sustania de trabajo y depende solamente de la temperatura de los dos oos.

13 6. LA MÁUINA DE CARNO. CICLO DE CARNO Cualquier máquina reversible (máquina de Carnot) operando entre las mismas dos temperaturas, y, para sus dos oos de alor tendrá siempre el mismo rendimiento, que es el rendimiento anteriormente alulado para la máquina de Carnot. Así, ualquier máquina irreversible operando entre esas mismas dos temperaturas tendrá un rendimiento menor. Calidad de la energía Rendimiento de Carnot ( = 00 K) Máquinas reales (irreversibles) (K) Máquina de Carnot (reversible) La energía en orma de trabajo es más valiosa que la energía en orma de alor, puesto que el 00% del trabajo se puede onvertir en alor, pero de auerdo on el º Prinipio de la ermodinámia, es imposible onvertir el 00% del alor en trabajo (en un proeso ílio). Además, uanto mayor sea la temperatura del oo aliente en una máquina de Carnot, mayor será el rendimiento de ésta (más porentaje de energía térmia podrá ser onvertida en trabajo).

14 6. LA MÁUINA DE CARNO. CICLO DE CARNO Cilo de Carnot inverso: El ilo de Carnot se puede invertir al ser un proeso reversible. En ese aso se onvierte en un rerigerador (o bomba de alor) de Carnot, en donde el sistema absorbe una antidad de alor de un depósito a baja temperatura y ede otra antidad, a un depósito a alta temperatura. La eiienias, para en modo rerigerador y en modo bomba de alor serían: Modo rerigerador: Modo bomba de alor: R BC Realizando ilos inversos de Carnot, el rerigerador de Carnot resultante tiene la eiienia más alta que pueda tener un rerigerador. Así, ualquier rerigerador real (irreversible) operando entre esas mismas dos temperaturas, tendrá una eiienia menor.

15 7. ESCALA ERMODINÁMICA DE EMPERAURAS Como el rendimiento del ilo de Carnot sólo depende de las temperaturas de los dos oos, independientemente de las propiedades de la sustania de trabajo, puede utilizarse un ilo de Carnot para deinir la relaión entre dos temperaturas. Para ello, se neesita:. Una máquina reversible que opere entre las dos temperaturas y.. Medir los alores edido ( ) y absorbido ( ) por los oos a esas temperaturas y respetivamente. La temperatura termodinámia quedará ompletamente determinada por la relaión, que se obtiene para ualquier máquina reversible.. Elegir un punto ijo. Si este punto ijo se deine igual a 7.6 K para el punto triple del agua, la esala de temperaturas oinidirá on la esala de temperaturas del gas ideal. Hay que notar que esta esala mara el ero en el ero absoluto de temperaturas, por lo tanto pertenee a una esala absoluta de temperaturas.

16 8. CICLOS COMUNES Cilo de Otto: Es un modelo idealizado de máquina de ombustión interna al que se aproxima el unionamiento de los motores de gasolina. Para ada ilo el pistón se mueve arriba y abajo dos vees (motor de tiempos). Cilo de 6 pasos Fase 0 : Admisión de gases y ombustible. P Fase : Compresión adiabátia. Fase : Expansión isóora (ombustión). Fase : Expansión adiabátia (potenia). Fase : Proeso isóoro. Fase 0: Expulsión de gases residuales (esape). P at 0

17 8. CICLOS COMUNES Ejeriio Determinar el rendimiento del ilo de Otto y expresar el resultado en unión del oiente de volúmenes o ator de ompresión r= /. C C C C te r r r r r Proesos adiabátios

18 8. CICLOS COMUNES Cilo Diesel: Es un modelo idealizado de máquina de ombustión interna al que se aproxima el unionamiento de los motores diesel. Para ada ilo el pistón se mueve arriba y abajo dos vees (motor de tiempos). Cilo de 6 pasos Fase 0 : Admisión de gases y ombustible. P Fase : Compresión adiabátia. Fase : Expansión isóbara (ombustión). Fase : Expansión adiabátia (potenia). Fase : Proeso isóoro. Fase 0: Expulsión de gases residuales (esape). P at 0

TERMODINÁMICA y FÍSICA ESTADÍSTICA I

TERMODINÁMICA y FÍSICA ESTADÍSTICA I TERMODINÁMICA y FÍSICA ESTADÍSTICA I Tema 5 - LAS MÁUINAS TÉRMICAS Y EL SEGUNDO PRINCIPIO DE LA TERMODINÁMICA Transormaión de trabajo en alor y vieversa. Cilo de Otto. Cilo de Diesel. Cilo de Rankine.

Más detalles

Equivalencia de los enunciados del Segundo. Trabajo perdido en una máquina térmica real. Ingeniería Industrial Dpto. Física Aplicada III

Equivalencia de los enunciados del Segundo. Trabajo perdido en una máquina térmica real. Ingeniería Industrial Dpto. Física Aplicada III Índie Introduión Desigualdad de Clausius Entropía Prinipio del inremento de entropía Equivalenia de los enuniados del Segundo Prinipio rabajo perdido en una máquina térmia real Resumen ema 2: Entropía

Más detalles

Física II Grado en Ingeniería de Organización Industrial Primer Curso. Departamento de Física Aplicada III Universidad de Sevilla

Física II Grado en Ingeniería de Organización Industrial Primer Curso. Departamento de Física Aplicada III Universidad de Sevilla Físia II Grado en Ingeniería de Organizaión Industrial Primer Curso Joaquín Bernal Méndez Curso 2011-2012 Departamento de Físia Apliada III Universidad de Sevilla Índie Introduión Prinipio del inremento

Más detalles

Física II Grado en Ingeniería de Organización Industrial Primer Curso. Departamento de Física Aplicada III Universidad de Sevilla

Física II Grado en Ingeniería de Organización Industrial Primer Curso. Departamento de Física Aplicada III Universidad de Sevilla Físia II Grado en Ingeniería de Organizaión Industrial Primer Curso Joaquín Bernal Méndez/Ana Mª Maro Ramírez Curso 2013-2014 Departamento de Físia Apliada III Universidad de Sevilla Índie Introduión Prinipio

Más detalles

Enunciado de Kelvin-Planck del Segundo Principio. Máquinas frigoríficas y bombas de calor. Enunciado de Clausius del Segundo Principio

Enunciado de Kelvin-Planck del Segundo Principio. Máquinas frigoríficas y bombas de calor. Enunciado de Clausius del Segundo Principio TERMODINÁMICA Tm Tema 11S 11: Segundo Prinipi Prinipio Fundamentos Físios de la Ingeniería 1 er Curso Ingeniería Industrial Joaquín Bernal Méndez Dpto. Físia 1 Índie Introduión s térmias Enuniado de Kelvin-Plank

Más detalles

Tema 6 El Segundo Principio de la Termodinámica

Tema 6 El Segundo Principio de la Termodinámica Tema 6 El Segundo Prinipio de la Termodinámia mia 1. Introduión Tema 6 - El Segundo Prinipio 2. Proesos Reversibles e Irreversibles 3. Máquinas Térmias 4. Formulaiones del Segundo Prinipio 5. Conseuenias

Más detalles

Segundo Principio de la Termodinámica

Segundo Principio de la Termodinámica ermodinámia. ema 4 Segundo Prinipio de la ermodinámia. Segundo Prinipio de la ermodinámia Enuniado de Kelvin-Plank en 85: No es posible onstruir una máuina térmia de funionamiento ílio ue permita extraer

Más detalles

Energía útil: segundo P pio de la termodinámica.

Energía útil: segundo P pio de la termodinámica. Energía útil: segundo P pio de la termodinámia. Físia Ambiental. ema 3. ema 3. FA (Pro. RAMOS) ema 3.- " Energía útil: segundo P pio de la termodinámia" Conversión alor-trabajo. Máquinas térmias y rigoríias.

Más detalles

SEGUNDO PRINCIPIO DE LA TERMODINÁMICA

SEGUNDO PRINCIPIO DE LA TERMODINÁMICA SEGUNDO PRINCIPIO DE L ERMODINÁMIC UNIDD 3: 2 PRINCIPIO Muas osas ourren espontáneamente y otras no. De la observaión de los suesos otidianos puede deduirse ue los proesos espontáneos ourren en la direión

Más detalles

BLOQUE 2(II): MÁQUINAS FRIGORÍFICAS

BLOQUE 2(II): MÁQUINAS FRIGORÍFICAS BLOUE 2(II): MÁUINAS FRIGORÍFICAS 1. Imagina que tienes en asa un ongelador que uniona según el ilo rigoríio de Carnot y enría a una veloidad de 850 K./h. La temperatura de tu ongelador debe ser la adeuada

Más detalles

BLOQUE 2(II): MÁQUINAS FRIGORÍFICAS

BLOQUE 2(II): MÁQUINAS FRIGORÍFICAS BLOUE 2(II): MÁUINAS FRIGORÍFICAS 1. Imagina que tienes en asa un ongelador que uniona según el ilo rigoríio de Carnot y enría a una veloidad de 850 K./h. La temperatura de tu ongelador debe ser la adeuada

Más detalles

CONTENIDO SEGUNDO PRINCIPIO. Introducción. Máquinas térmicas. Rendimiento. Segundo principio. Enunciado de kelvin-planck

CONTENIDO SEGUNDO PRINCIPIO. Introducción. Máquinas térmicas. Rendimiento. Segundo principio. Enunciado de kelvin-planck FÍSIA I ONTENIDO SEGUNDO PRINIPIO Introducción Máquinas térmicas. Rendimiento Segundo principio. Enunciado de kelvin-planck Refrigeradores y bombas de calor Segundo principio. Enunciado de lausius iclo

Más detalles

Física I Clase 13, 2016 Módulo 2. Turno D Prof. Pedro Mendoza Zélis

Física I Clase 13, 2016 Módulo 2. Turno D Prof. Pedro Mendoza Zélis Física I Clase 13, 2016 Módulo 2 Turno D Prof. Pedro Mendoza Zélis Procesos reversibles e irrevesibles Procesos reversibles e irrevesibles tiempo Máquinas térmicas y la segunda ley de la termodinámica

Más detalles

Procesos reversibles e irrevesibles

Procesos reversibles e irrevesibles Procesos reversibles e irrevesibles Procesos reversibles e irrevesibles tiempo Máquinas térmicas y la segunda ley de la termodinámica La segunda ley de la termodinámica establece cuáles procesos pueden

Más detalles

Calor específico Calorimetría

Calor específico Calorimetría Calor espeíio Calorimetría Físia II Lieniatura en Físia 2003 Autores: Andrea Fourty María de los Angeles Bertinetti Adriana Foussats Calor espeíio y alorimetría Cátedra Físia II (Lieniatura en Físia) 1.-

Más detalles

Tema 6 - EL SEGUNDO PRINCIPIO

Tema 6 - EL SEGUNDO PRINCIPIO ema 6 - EL SEGUNDO RINCIIO ÍNDICE. INRODUCCIÓN...6.. ROCESOS REVERSIBLES E IRREVERSIBLES...6.. CARACERÍSICAS DE UN ROCESO REVERSIBLE...6.. IOS DE IRREVERSIBILIDADES...6.. MÁUINAS ÉRMICAS...6.. CICLOS DE

Más detalles

Tema 11: Segundo Principio

Tema 11: Segundo Principio 1/40 átima Masot onde Ing. Industrial 2007/08 2/40 Índice: 1. Introducción. 2. Máquinas térmicas 3. Refrigeradores. Bombas de calor. 4. Segundo Principio de la Termodinámica. Enunciado de Kelvin-Planck.

Más detalles

-14 - ENTALPÍA DE FUSIÓN DEL HIELO

-14 - ENTALPÍA DE FUSIÓN DEL HIELO -4 - ENTALPÍA DE FUSIÓN DEL HIELO OBJETIVO Determinar la entalpía de usión del hielo utilizando el método de las mezlas. Previamente, ha de determinarse el equivalente en agua del alorímetro, K, para uantiiar

Más detalles

CONTENIDO ENTROPÍA. Introducción. Desigualdad de Clausius. Entropía. Procesos reversibles. Entropía de un gas ideal. Entropía. Procesos irreversibles

CONTENIDO ENTROPÍA. Introducción. Desigualdad de Clausius. Entropía. Procesos reversibles. Entropía de un gas ideal. Entropía. Procesos irreversibles FÍSI I ONENIDO ENROPÍ Introducción Desigualdad de lausius Entropía. Procesos reversibles Entropía de un gas ideal Entropía. Procesos irreversibles Segundo principio Diagramas S. iclo de arnot. Savoini

Más detalles

Tema 11: Segundo Principio

Tema 11: Segundo Principio 1/40 Tema 11: Segundo Principio Fátima Masot Conde Ing. Industrial 2010/11 Tema 11: Segundo Principio 2/40 Índice: 1. Introducción. 2. Máquinas térmicas 3. Refrigeradores. Bombas de calor. 4. Segundo Principio

Más detalles

Tema II.3. Segunda Ley de la Termodinámica y Entropía

Tema II.3. Segunda Ley de la Termodinámica y Entropía ema II.3 Segunda Ley de la ermodinámica y Entropía ontenido II.3.1 Procesos termodinámicos reversibles e irreversibles. II.3.2 Máquinas térmicas y su eficiencia - Motores térmicos de combustión interna

Más detalles

2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D.

2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D. 2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D. Dirección de los procesos Termodinámicos Todos los procesos termodinámicos que se dan en la naturaleza son procesos irreversibles, es decir los que

Más detalles

Centro de Preparación de Ingenieros TERMODINÁMICA

Centro de Preparación de Ingenieros TERMODINÁMICA Ríos Rosas, 34. 8008 Madrid eléfono: 954639 Hoja: Asignatura: ermodinámica ERMODINÁMICA 3.- EMA 3. SEGUNDO PRINCIPIO DE LA ERMODINÁMICA. 3..- INRODUCCIÓN Una fuente térmica es un sistema cerrado cuya temperatura

Más detalles

Tema VII. Segunda Ley de la Termodinámica y Máquinas Térmicas

Tema VII. Segunda Ley de la Termodinámica y Máquinas Térmicas Tema VII Segunda Ley de la Termodinámica y Máquinas Térmicas ontenido I. Introducción 2. Máquinas térmicas y su eficiencia 2.1 Motores térmicos de combustión interna y externa. 2.2 Refrigeradores. 3. Enunciados

Más detalles

VI. Segunda ley de la termodinámica

VI. Segunda ley de la termodinámica Objetivos: 1. Introducir la segunda ley de la. 2. Identificar los procesos validos como aquellos que satisfacen tanto la primera ley como la segunda ley de la. 3. Discutir fuentes y sumideros de energía

Más detalles

MÁQUINA FRIGORÍFICA Y BOMBA DE CALOR

MÁQUINA FRIGORÍFICA Y BOMBA DE CALOR Unidad 9. CIRCUIO FRIGORÍFICO 9 MÁUINA FRIGORÍFICA Y BOMBA DE CALOR OBJEIVOS DIDÁCICOS CONOCIMIENOS PREVIOS Identiiar máquina rigoríia omo máquina térmia. Estableer los lujos energétios en una máquina

Más detalles

2ª Ley de la Termodinámica. Máquinas térmicas. Entropía

2ª Ley de la Termodinámica. Máquinas térmicas. Entropía 2ª Ley de la ermodinámica. Máquinas térmicas. Entropía Máquinas térmicas y la 2ª ley La primera ley de la termodinámica trata la transerencia de energía entre un sistema y su entorno de tal orma que en

Más detalles

Motores térmicos o maquinas de calor

Motores térmicos o maquinas de calor Cómo funciona una maquina térmica? Motores térmicos o maquinas de calor conversión energía mecánica a eléctrica En nuestra sociedad tecnológica la energía muscular para desarrollar un trabajo mecánico

Más detalles

Módulo 2: Termodinámica Segundo principio de la Termodinámica

Módulo 2: Termodinámica Segundo principio de la Termodinámica Módulo 2: Termodinámica Segundo principio de la Termodinámica 1 Transferencias de energía Sabemos por el primer principio de la Termodinámica que la energía de un sistema se conserva. Sólo que en diferentes

Más detalles

DATO: Calor de fusión del hielo=3, J/kg. 1 J ; masa de hielo=aumento de masa de agua 0,099kg, que sumada a los 100g

DATO: Calor de fusión del hielo=3, J/kg. 1 J ; masa de hielo=aumento de masa de agua 0,099kg, que sumada a los 100g TERMODINÁMICA 15. Calorimetría 281*.En 1780, Lavoisier y Laplae, publian la memoria Sur la Chaleur, en Reueil de l Aademie, y en ella desriben el primer alorímetro (nombre propuesto por Lavoisier), o alorímetro

Más detalles

Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos

Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos El segundo principio de la termodinámica Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos Dirección de los procesos Q T i >T o Tiempo T T o Los procesos inversos no son posibles espontáneamente

Más detalles

5_2ª LEY DE LA TERMODINÁMICA

5_2ª LEY DE LA TERMODINÁMICA 5_2ª EY DE A ERMODINÁMICA 5. DIRECCIÓN DE OS PROCESOS 5.2 FOCOS, DEPÓSIOS O BAÑOS 5.3 MÁUINAS ÉRMICAS 5.4 REFRIGERADORES Y BOMBAS DE CAOR 5.5 PROCESOS REVERSIBES Y PROCESOS IRREVERSIBES 5.6 CICO DE CARNO

Más detalles

SEGUNDA LEY DE LA TERMODINÁMICA

SEGUNDA LEY DE LA TERMODINÁMICA Tema 2 SEGUNDA EY DE A TERMODINÁMICA ING. JOANNA KRIJNEN CONTENIDO 1. Introducción a la segunda ley de la termodinámica. 2. Máquinas térmicas (MT) Concepto Descripción del ciclo termodinámico. Eficiencia

Más detalles

SEGUNDA LEY DE LA TERMODINAMICA

SEGUNDA LEY DE LA TERMODINAMICA U n i v e r s i d a d C a t ó l i c a d e l N o r t e E s c u e l a d e I n g e n i e r í a Unidad 4 SEGUNDA EY DE A ERMODINAMICA Segunda ey a 2 ey de la ermodinámica nos permite establecer la direc ción

Más detalles

Ejercicios propuestos para las asignaturas SISTEMAS TERMODINÁMICOS Y ELECTROMAGNETISMO FUNDAMENTOS DE TERMODINÁMICA Y ELECTROMAGNETISMO

Ejercicios propuestos para las asignaturas SISTEMAS TERMODINÁMICOS Y ELECTROMAGNETISMO FUNDAMENTOS DE TERMODINÁMICA Y ELECTROMAGNETISMO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS Ejercicios propuestos para las asignaturas SISTEMAS TERMODINÁMICOS Y ELECTROMAGNETISMO FUNDAMENTOS DE TERMODINÁMICA

Más detalles

Evaporador de alta. Evaporador de baja. Figura 1.A: Esquema del ciclo con dos evaporadores

Evaporador de alta. Evaporador de baja. Figura 1.A: Esquema del ciclo con dos evaporadores Problema La figura.a muestra el esquema de una instalaión de R-34a on dos evaporadores. El evaporador de baja temperatura suministra 0 kw de refrigeraión on una temperatura de evaporaión de -30 C y el

Más detalles

UNEFA Ext. La Isabelica TERMODINÁMICA I. Ing. Petroquímica Unidad 4: Segunda ley de la termodinámica

UNEFA Ext. La Isabelica TERMODINÁMICA I. Ing. Petroquímica Unidad 4: Segunda ley de la termodinámica UNEFA Ext. La Isabelica TERMODINÁMICA I Ing. Petroquímica Unidad 4: Segunda ley de la termodinámica 4to Semestre Objetivo: Interpretar la segunda ley de la termodinámica. Materia: Termodinámica I Docente:

Más detalles

Capítulo 5: La segunda ley de la termodinámica.

Capítulo 5: La segunda ley de la termodinámica. Capítulo 5: La segunda ley de la termodinámica. 5.1 Introducción Por qué es necesario un segundo principio de la termodinámica? Hay muchos procesos en la naturaleza que aunque son compatibles con la conservación

Más detalles

TEMA 11. TERMODINÁMICA OBJETIVOS

TEMA 11. TERMODINÁMICA OBJETIVOS OBJETIVOS Aplicar de forma correcta el primer principio de la Termodinámica a procesos termodinámicos sencillos Expresar con sus propias palabras los conceptos de energía interna y entropía Explicar el

Más detalles

Termodinámica: Segunda Ley

Termodinámica: Segunda Ley Termodinámica: Segunda Ley Presenta: M. I. Ruiz Gasca Marco Antonio Instituto Tecnológico de Tláhuac II Octubre, 2015 Marco Antonio (ITT II) México D.F., Tláhuac Octubre, 2015 1 / 20 1 Introducción y objetivo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO PROBLEMAS RESUELOS SELECIVIDAD ANDALUCÍA 001 QUÍMICA EMA 5: EQUILIBRIO QUÍMICO Junio, Ejeriio 4, Opión A Junio, Ejeriio 3, Opión B Junio, Ejeriio 6, Opión B Reserva 1, Ejeriio 3, Opión A Reserva 1, Ejeriio

Más detalles

SEGUNDA LEY DE LA TERMODINÁMICA. Fís. Carlos Adrián Jiménez Carballo Escuela de Física Instituto Tecnológico de Costa Rica

SEGUNDA LEY DE LA TERMODINÁMICA. Fís. Carlos Adrián Jiménez Carballo Escuela de Física Instituto Tecnológico de Costa Rica SEGUNDA LEY DE LA TERMODINÁMICA Fís. Carlos Adrián Jiménez Carballo Escuela de Física Instituto Tecnológico de Costa Rica 1 / 31 Objetivos El estudiante debe ser capaz de: Interpretar los conceptos de

Más detalles

TERMODINÁMICA FUNDAMENTAL. TEMA 5. Segundo principio de la termodinámica. Máquinas térmicas

TERMODINÁMICA FUNDAMENTAL. TEMA 5. Segundo principio de la termodinámica. Máquinas térmicas ERMODINÁMIA UNDAMENAL EMA 5. Segundo principio de la termodinámica. Máquinas térmicas. Máquinas térmicas.. iclo de arnot. Rendimiento El ciclo de arnot es un ciclo reversible formado por dos procesos isotermos

Más detalles

independiente de la cantidad de masa y es propio de cada sustancia c =.

independiente de la cantidad de masa y es propio de cada sustancia c =. Tema 7 Termodinámia 7.. Calorimetría y ambios de fase. 7... Capaidad alorífia y alor espeífio. La temperatura de un uerpo aumenta uando se añade alor o disminuye uando el uerpo desprende alor. (Por el

Más detalles

CAMPO Y POTENCIAL ELECTROSTÁTICOS

CAMPO Y POTENCIAL ELECTROSTÁTICOS 1 Un eletrón de arga e y masa m se lanza orizontalmente en el punto O on una veloidad v a lo largo de la direión equidistante de las plaas de un ondensador plano entre las que existe el vaío. La longitud

Más detalles

SOLUIONES A LOS ESS MONOEMÁIOS DE ERMODINAMIA.-. La curva que representa una expansión adiabática tiene una pendiente mayor que la correspondiente expansión isoterma, como se puede comprobar en la igura.

Más detalles

PRINCIPIOS FISICOQUIMICOS EN GEOFISICA I ENTALPIA DE FORMACIÓN 2DA. LEY DE LA TERMODINÁMICA RENDIMIENTO

PRINCIPIOS FISICOQUIMICOS EN GEOFISICA I ENTALPIA DE FORMACIÓN 2DA. LEY DE LA TERMODINÁMICA RENDIMIENTO PRINIPIS FISIUIMIS EN GEFISIA I ENALPIA DE FRMAIÓN DA. LEY DE LA ERMDINÁMIA RENDIMIEN ENALPÍA DE FRMAIÓN Y REAIÓN En un proceso a presión constante DH = P Si P > 0 El sistema absorbe calor Si P < 0 El

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE CIENCIAS. NOMBRE DE LA UNIDAD DE APRENDIZAJE: Termodinámica

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE CIENCIAS. NOMBRE DE LA UNIDAD DE APRENDIZAJE: Termodinámica UNIVERSIDAD AUÓNOMA DEL ESADO DE MÉXICO FACULAD DE CIENCIAS. NOMBRE DE LA UNIDAD DE APRENDIZAJE: ermodinámica Diapositivas Sobre la Unidad de Competencia III. En esta Unidad de Competencia el estudiante

Más detalles

Ciclo de refrigeración por la compresión de un vapor. M del Carmen Maldonado Susano

Ciclo de refrigeración por la compresión de un vapor. M del Carmen Maldonado Susano Ciclo de refrigeración por la compresión de un vapor 1 Depósito térmico Es un sistema incapaz de recibir o efectuar trabajo, mantiene su temperatura constante y cuenta solamente con la transmisión de calor

Más detalles

Resumen de Termometría y Termodinámica

Resumen de Termometría y Termodinámica Resumen de ermometría y ermodinámia R. Boyle. Carnot L. Boltzmann R. Classius ermometría. La temperatura se mide en el sistema I en grados Celsius entígrado. ientras que las temperaturas absolutas se realizan

Más detalles

Introducción a la Segunda Ley de la Termodinámica

Introducción a la Segunda Ley de la Termodinámica Segunda Ley/JHT p. 1/29 Introducción a la Segunda Ley de la Termodinámica Prof. Jesús Hernández Trujillo Facultad de Química,UNAM Segunda Ley/JHT p. 2/29 Espontaneidad Variables termodinámicas: Ley cero

Más detalles

La Segunda Ley de la Termodinámica

La Segunda Ley de la Termodinámica La Segunda Ley de la ermodinámica Procesos espontáneos No todo proceso consistente con el principio de conservación de energía ocurre Segunda ley de la termodinámica La segunda ley de la termodinámica

Más detalles

Capítulo 5: la segunda ley de la termodinámica. La segunda ley de la termodinámica establece que los procesos ocurren en una cierta

Capítulo 5: la segunda ley de la termodinámica. La segunda ley de la termodinámica establece que los procesos ocurren en una cierta Capítulo 5: la segunda ley de la termodinámica a segunda ley de la termodinámica establece que los procesos ocurren en una cierta dirección, no en cualquiera. os procesos de naturaleza física pueden dirigirse

Más detalles

Elaboró: Efrén Giraldo MSc.

Elaboró: Efrén Giraldo MSc. TERMODINÁMICA ENTROPÍA II. Elaboró: Efrén Giraldo MSc. evisó: Carlos A. Acevedo Ph.D Presentación hecha exclusívamente con el fin de facilitar el estudio Medellín 2016 Contenido: Entropía en procesos Reversibles

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO PROBLEMAS RESUELOS SELECIVIDAD ANDALUCÍA 001 QUÍMICA EMA 5: EQUILIBRIO QUÍMICO Junio, Ejeriio 4, Opión A Junio, Ejeriio 3, Opión B Junio, Ejeriio 6, Opión B Reserva 1, Ejeriio 3, Opión A Reserva 1, Ejeriio

Más detalles

Tema 3. TRABAJO Y ENERGÍA

Tema 3. TRABAJO Y ENERGÍA Tema 3. TRABAJO Y ENERGÍA Físia, J.. Kane, M. M. Sternheim, Reverté, 989 Tema 3 Trabajo y Energía Cap.6 Trabajo, energía y potenia Cap. 6, pp 9-39 TS 6. La arrera Cap. 6, pp 56-57 . INTRODUCCIÓN: TRABAJO

Más detalles

Tercer Parcial de Física I Dic. 2, 1999 Termometría y Termodinámica

Tercer Parcial de Física I Dic. 2, 1999 Termometría y Termodinámica Terer Parial de Físia I Di. 2, 1999 Termometría y Termodinámia 1. Un Mol de un gas ideal monoatómio tiene un volumen 0 =25L, presión =1 At, realiza un ilo omo el desripto en la figura 1. P Adiaátio a=

Más detalles

Física 2 (Biólogos y Geólogos) SERIE 8

Física 2 (Biólogos y Geólogos) SERIE 8 Física 2 (Biólogos y Geólogos) SERIE 8 i) Máquinas térmicas 1. Un mol de gas ideal (C v = 3 / 2 R) realiza el siguiente ciclo: AB) Se expande contra una presión exterior constante, en contacto térmico

Más detalles

Esquematizar experimentos de equilibrio térmico: agua-fe y agua-pb

Esquematizar experimentos de equilibrio térmico: agua-fe y agua-pb ermodinámia eoría (1212) Calor, trabajo y ambios de fase Esquematizar experimentos de uilibrio térmio: agua-fe y agua-pb CALOR () es la energía transferida entre un sistema termodinámio y sus alrededores,

Más detalles

Segundo Principio de la Termodinámica

Segundo Principio de la Termodinámica Segundo Principio de la ermodinámica 1. Insuficiencia del Primer Principio. 2. Máquinas érmicas. Rendimiento de una máquina térmica 3. Enunciados clásicos del Segundo Principio de la ermodinámica. 4. Máquina

Más detalles

1RA Y 2DA LEY DE LA TERMODINÁMICA. M. En C. José Antonio González Moreno FisicoQuímica Noviembre del 2016

1RA Y 2DA LEY DE LA TERMODINÁMICA. M. En C. José Antonio González Moreno FisicoQuímica Noviembre del 2016 1RA Y 2DA LEY DE LA TERMODINÁMICA M. En C. José Antonio González Moreno FisicoQuímica Noviembre del 2016 INTRODUCCIÓN: En esta presentación se estudiarán los enunciados correspondientes a la 1ra y 2da

Más detalles

INTERCAMBIADORES DE CALOR

INTERCAMBIADORES DE CALOR INERCAMBIADORES DE CALOR 1 EMA 4. INERCAMBIADORES 1. Interambaidores (2h Indie Interambiadores de alor. Utilidad. ipos Estudio térmio de los interambiadores de alor. Coeiiente global de transmision de

Más detalles

CAPÍTULO 3 ETAPA DE AMPLIFICACIÓN 3.1 AMPLIFICACIÓN EN AYUDA AUDITIVA

CAPÍTULO 3 ETAPA DE AMPLIFICACIÓN 3.1 AMPLIFICACIÓN EN AYUDA AUDITIVA CPÍTUO 3 ETP DE MPFCCÓN 3.1 MPFCCÓN EN YUD UDT Una vez que ha sido reibida por el miróono, la señal tiene un valor tan pequeño que de ser reproduida inmediatamente por un audíono, este no entregaría un

Más detalles

Facultad de Ingeniería División de Ciencias Básicas. Ciclo de Diesel. Martín Bárcenas

Facultad de Ingeniería División de Ciencias Básicas. Ciclo de Diesel. Martín Bárcenas Admisión Inicio compresión Fin de compresión Combustión Expansión Escape de gases 0 Admisión (Proceso Isobárico): Se supone que la circulación de los gases desde la atmósfera al interior del cilindro se

Más detalles

Se le presentará a los alumnos el siguiente juego. Se llevaran cuatro fichas como estas.

Se le presentará a los alumnos el siguiente juego. Se llevaran cuatro fichas como estas. Aión Nº4 y 5: Funión arítmia. Definiión. Logaritmo de un número. Logaritmo deimal y aritmo natural. Núleo temátio: Funión exponenial y arítmia. Feha: Junio 0 Espaio de apaitaión. CIE. Doente: De Virgilio,

Más detalles

Tecnología de Fluidos y Calor

Tecnología de Fluidos y Calor ecnología de Fluidos y Calor Ciclos de potencia Ingeniería écnica Industrial.Especialidad Electrónica Escuela Universitaria Politécnica Universidad de evilla º principio: Máquina térmica cedido η cedido

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO PROBLEMAS RESUELOS SELECIVIDAD ANDALUCÍA 01 QUÍMICA EMA 5: EQUILIBRIO QUÍMICO Junio, Ejeriio 5, Opión B Reserva 1, Ejeriio 6, Opión A Reserva, Ejeriio 3, Opión A Reserva, Ejeriio 6, Opión B Reserva 3,

Más detalles

F. Tipos de transformaciones. Ciclos termodinámicos. Rendimientos de una máquina térmica

F. Tipos de transformaciones. Ciclos termodinámicos. Rendimientos de una máquina térmica F. Tipos de transformaciones. Ciclos termodinámicos. Rendimientos de una máquina térmica El trabajo no depende solamente del estado energético inicial y final del sistema, sino también depende del camino

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO Junio, Ejeriio 5, Opión B Reserva 1, Ejeriio 6, Opión A Reserva, Ejeriio 3, Opión B Reserva, Ejeriio 6, Opión B Reserva

Más detalles

Ciclo de Otto (de cuatro tiempos)

Ciclo de Otto (de cuatro tiempos) Admisión Inicio compresión Fin de compresión Combustión Expansión Escape de gases 0 Admisión (Proceso Isobárico): Se supone que la circulación de los gases desde la atmósfera al interior del cilindro se

Más detalles

Sentido natural de los procesos

Sentido natural de los procesos Sentido natural de los procesos Sentido natural de los procesos H H H H H H H H O O O O H O H O H H H O H O H H H H H H H H H H O O O O H O H O H H O H H H O H dos volumenes de H un volúmen de O dos volumenes

Más detalles

UNIDAD II: CICLOS DE POTENCIA DE VAPOR

UNIDAD II: CICLOS DE POTENCIA DE VAPOR UNIDAD II: CICLOS DE POTENCIA DE VAPOR 1. Expansion isotermica. Expansion adiabatica 3. Compresion isotermica 4. Compresión adiabatica ETAPAS DEL CICLO DE CARNOT 1. Expansión isotérmica. Expansión adiabática

Más detalles

SEGUNDA LEY DE LA TERMODINÁMICA. CONCEPTO DE ENTROPÍA

SEGUNDA LEY DE LA TERMODINÁMICA. CONCEPTO DE ENTROPÍA SEGUNDA LEY DE LA TERMODINÁMICA. CONCEPTO DE ENTROPÍA ""El motor cero en lugar de trabajo nos entregará entropía, aproximando, si confiamos en Clausius, el fin del mundo" V.M.Brodianski, sobre el motor

Más detalles

PRODUCTOS Y COCIENTES NOTABLES

PRODUCTOS Y COCIENTES NOTABLES INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA DURACION 0 DE Julio

Más detalles

Ciclo de refrigeración por la compresión de un vapor. M del Carmen Maldonado Susano

Ciclo de refrigeración por la compresión de un vapor. M del Carmen Maldonado Susano Ciclo de refrigeración por la compresión de un vapor 1 Depósito térmico Es un sistema incapaz de recibir o efectuar trabajo. Mantiene su temperatura constante y cuenta solamente con la transmisión de calor

Más detalles

TEMA 10: EQUILIBRIO QUÍMICO

TEMA 10: EQUILIBRIO QUÍMICO TEMA : EQUILIBRIO QUÍMICO. Conepto de equilibrio químio: reaiones reversibles. Existen reaiones, denominadas irreversibles, que se araterizan por transurrir disminuyendo progresivamente la antidad de sustanias

Más detalles

Resumen de Termometría y Termodinámica Física 1 - S.Gil UNSAM

Resumen de Termometría y Termodinámica Física 1 - S.Gil UNSAM Resumen de ermometría y ermodinámia Físia -.Gil UAM sgil@isiarereativa.om R. Boyle. Carnot L. Boltzmann R. Classius ermometría. La temperatura se mide en el sistema I en grados Celsius entígrado. Mientras

Más detalles

Segundo Principio de la Termodinámica

Segundo Principio de la Termodinámica ema egundo Principio de la ermodinámica EMA EGUNDO PRINCIPIO DE LA ERMODINÁMICA. EPONANEIDAD. EGUNDO PRINCIPIO DE LA ERMODINÁMICA 3. ENROPÍA 4. ECUACIÓN FUNDAMENAL DE LA ERMODINÁMICA 5. DEERMINACIÓN DE

Más detalles

Capítulo 6 Acciones de control

Capítulo 6 Acciones de control Capítulo 6 Aiones de ontrol 6.1 Desripión de un bule de ontrol Un bule de ontrol por retroalimentaión se ompone de un proeso, el sistema de mediión de la variable ontrolada, el sistema de ontrol y el elemento

Más detalles

VELOCIDAD INSTANTANEA

VELOCIDAD INSTANTANEA VELOCIDAD INSTANTANEA OBJETIVOS DE APRENDIZAJE Determinar experimentalmente la veloidad instantánea de un móvil en un punto fijo de su trayetoria a través de un gráfio de veloidad media versus tiempo en

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE CIENCIAS. NOMBRE DE LA UNIDAD DE APRENDIZAJE: FÍSICA TÉRMICA

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE CIENCIAS. NOMBRE DE LA UNIDAD DE APRENDIZAJE: FÍSICA TÉRMICA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE CIENCIAS. NOMBRE DE LA UNIDAD DE APRENDIZAJE: FÍSICA TÉRMICA UNIDAD DE COMPETENCIA V: MÁQUINAS TÉRMICAS, ENTROPÍA Y SEGUNDA LEY DE LA TERMODINÁMICA.

Más detalles

1. Señale como verdadero (V) o falso (F) cada una de las siguientes afirmaciones. (Cada acierto = +1 punto; fallo = 1 punto; blanco = 0 puntos)

1. Señale como verdadero (V) o falso (F) cada una de las siguientes afirmaciones. (Cada acierto = +1 punto; fallo = 1 punto; blanco = 0 puntos) Universidad de Navarra Nafarroako Unibertsitatea Escuela Superior de Ingenieros Ingeniarien Goi Mailako Eskola ASIGNATURA GAIA CURSO KURTSOA TERMODINÁMICA 2º NOMBRE IZENA FECHA DATA 15/09/07 Teoría (40

Más detalles

Soluciones Hoja 1: Relatividad (I)

Soluciones Hoja 1: Relatividad (I) Soluiones Hoja 1: Relatividad (I) 1) Una nave abandona la Tierra on una veloidad de 3/5. Cuando el reloj de la nave mara 1 h transurrida, la nave envía una señal de vuelta a la Tierra. (a) De auerdo on

Más detalles

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO TERMOINÁMI PROLEMS I: PRIMER PRINIPIO Problema 1 Un gas ideal experimenta un proceso cíclico ---- como indica la figura El gas inicialmente tiene un volumen de 1L y una presión de 2 atm y se expansiona

Más detalles

Proceso selectivo profesores secundaria Madrid 2012, Física y Química 2 de julio de 2012 Revisado 21 junio 2018

Proceso selectivo profesores secundaria Madrid 2012, Física y Química 2 de julio de 2012 Revisado 21 junio 2018 Proeso seletivo profesores seundaria Madrid 212, Físia y Químia 2 de julio de 212 3. Consideremos el esquema representado en la figura. En él una fuente láser F emite un haz (que supondremos, por senillez,

Más detalles

RELATIVIDAD. Conceptos previos:

RELATIVIDAD. Conceptos previos: Coneptos muy básios de Relatiidad Espeial RELATIVIDAD Coneptos preios: Sistema de referenia inerial: Se trata de un sistema que se muee on eloidad onstante. En él se umple el prinipio de la ineria. Sistema

Más detalles

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA La termodinámica es la parte de la física que se ocupa de las relaciones existentes entre el calor y el trabajo. El calor es una

Más detalles

11 La teoría de la relatividad

11 La teoría de la relatividad La teoría de la relatividad de Einstein Atividades del interior de la unidad. Desde una nave que se mueve a 50 000 km/s se emite un rayo de luz en la direión y sentido del movimiento. Calula la veloidad

Más detalles

4. RELACIONES CONSTITUTIVAS. LEY DE HOOKE GENERALIZADA

4. RELACIONES CONSTITUTIVAS. LEY DE HOOKE GENERALIZADA 4. RLACIONS CONSTITUTIVAS. LY D HOOK GNRALIZADA 4. Ley de Hooke. Robert Hooke planteó en 678 que existe proporionalidad entre las fuerzas apliadas a un uerpo elástio y las deformaiones produidas por dihas

Más detalles

Ingeniería en Energía

Ingeniería en Energía Ingeniería en Energía Ingeniería en Energía Energía y Medio Ambiente Clase ermodinámia ECy - UNSAM Doentes: Diana Mielniki y Salvador Gil ECy -UNSAM 4 - Cl.3-4 UNSAM - S.Gil 4 4 - Cl.3-4 UNSAM - S.Gil

Más detalles

1. Definición de trabajo

1. Definición de trabajo ermodinámica. ema rimer rincipio de la ermodinámica. Definición de trabajo Energía transmitida por medio de una conexión mecánica entre el sistema y los alrededores. El trabajo siempre se define a partir

Más detalles

TEMA 1. P V = nrt (1.2)

TEMA 1. P V = nrt (1.2) EMA 1 SISEMAS ERMODINÁMICOS SIMPLES 1.1 Introducción Supongamos que hemos realizado un experimento sobre un sistema y que las coordenadas termodinámicas del mismo han sido determinadas. Cuando estas coordenadas

Más detalles