Espacios Vectoriales
|
|
|
- María Prado Aguilera
- hace 7 años
- Vistas:
Transcripción
1 Espacios Vectoriales José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 3.- Espacios Vectoriales 1
2 Espacio Vectorial Un espacio vectorial sobre K es una conjunto V que cumple: 1) Existe una regla que asocia a dos elementos u,v V su suma que se denota por u + v, que es también elemento de V y que cumple a) u + v = v + u u,v V. b) u + (v + w) = (u + v) + w u,v,w V. c) Existe un elemento de V llamado 0 (vector cero) tal que v + 0 = v v V. d) Para todo v en V existe un v en V (opuesto de v) tal que v + v = 0. 2) Existe una regla que asocia un escalar α a un vector v V su producto αv, que es tambien un elemento de V y cumple e) α(βv) = (αβ)v α,β K, v V. f) 1v = v v V (1 es el escalar unidad). g) (α + β)v = αv + βv α,β K, v V. h) α(v + w) = αv + αw α K, v,w V. José Vicente Romero Bauset Tema 3.- Espacios Vectoriales 2
3 Espacio Vectorial Ejemplos 1 R 2,R 3,R n. 2 Polinomios de grado n. 3 Funciones continuas en un intervalo. Propiedades En cada espacio vectorial existe un único vector cero. Todo elemento v de un espacio vectorial posee un único elemento opuesto (que se denota por v). 0v = 0 v V. α0 = 0 α K ( 1)v = v v V. Se define la resta de dos vectores u y v como u v = u + ( v). José Vicente Romero Bauset Tema 3.- Espacios Vectoriales 3
4 Subespacios Vectoriales Un subespacio vectorial de un espacio vectorial V es un subconjunto U de V que es por si mismo un espacio vectorial sobre el mismo conjunto de escalares y para las mismas operaciones que V. Ejemplos Un plano en el espacio que pasa por el origen Una recta que pasa por el origen Caracterización de un subespacio Un subconjunto S /0 de un espacio vectorial V es subespacio de V sii i) x + y S x,y S ii) αx S o, de forma equivalente, α K x S αx + βy S α,β K, x,y S. José Vicente Romero Bauset Tema 3.- Espacios Vectoriales 4
5 Subespacios Vectoriales Ejercicio Qué conjuntos son subespacios de R 2 o R 3? a) A = {(0,y) : y R}, b) B = {(x,y) : 2x 3y = 1}, c) C = {(x,y) : xy = 0}, d) D = {(x,y,z) : 2x y + z = 0}, e) E = {(x,y,z) : senx = 0}, f) F = {(x,y,z) : x y}, g) G = {(x,y,z) : x = y = 2} José Vicente Romero Bauset Tema 3.- Espacios Vectoriales 5
6 Envoltura lineal Sea S = {x 1,x 2,...,x n } un subconjunto no vacio de un espacio vectorial V. Una combinación lineal de S es un vector de la forma α 1 x 1 + α 2 x α n x n α i K. El conjunto de todas las combinaciones lineales de S se denota por L(S) y se llama envoltura lineal de S. Proposición La envoltura lineal de cada subconjunto no vacio S de un espacio vectorial V es una subespacio de V. Dado S V se dice que su envoltura lineal L(S) es el subespacio generado por S. Si U es un subespacio de V, un generador de U es un subconjunto S de V tal que U = L(S). José Vicente Romero Bauset Tema 3.- Espacios Vectoriales 6
7 Dependencia e independencia lineal Sea S = {x 1,x 2,...,x n } un subconjunto de un espacio vectorial V. Se dice que S es linealmente dependiente si existen unos escalares α k, i = 1,2,...,n, no todos nulos, tal que Proposición α 1 x 1 + α 2 x α n x n = 0. Un conjunto S es linealmente dependiente si y sólo si existe un elemento x S que es combinación lineal de los demás. Un conjunto de vectores S se dice linealmente independiente si no es linealmente dependiente. José Vicente Romero Bauset Tema 3.- Espacios Vectoriales 7
8 Dependencia e independencia lineal Sean f 1,f 2,...,f n funciones reales definidas en [a,b] derivables hasta el orden n 1, entonces se llama wronskiano de tales funciones a f 1 (x) f 2 (x) f n (x) f 1 (x) f 2 (x) f n (x) W (x) = det.... f 1 (x) (n 1) f 2 (x) (n 1) f n (x) (n 1) Proposición Si existe un punto x 0 [a,b] tal que W (x 0 ) 0, entonces las funciones f 1,f 2,...,f n son linealmente independientes. Ejemplo Estudiar la dependencia lineal de las funciones f 1 (x) = x 2 y f 2 (x) = x x José Vicente Romero Bauset Tema 3.- Espacios Vectoriales 8
9 Base y dimensión de un subespacio Una base de un espacio vectorial es un conjunto linealmente independiente que lo genera. Teorema Si un espacio vectorial V tiene una base formada por n elementos, entonces a) Cada conjunto linealmente independiente de n vectores es una base. b) Cada conjunto con más de n vectores es linealmente dependiente. c) Cada base de V tiene n elementos. Se dice que la dimensión de un espacio vectorial es n si cada una de sus bases está formada por n elementos. Teorema Sea V un espacio de dimensión n. Si k < n, todo conjunto independiente de k elementos puede completarse hasta formar una base José Vicente Romero Bauset Tema 3.- Espacios Vectoriales 9
10 Base y dimensión de un subespacio Un espacio vectorial se dice que es de dimensión infinita si cada para cada número natural n, contiene un subconjunto linealmente independiente de n elementos. Sea B = {b 1,b 2,...,b n } una base de un espacio vectorial V. Si el vector v de V se escribe como combinación lineal de la base B de la forma v = x 1 b 1 + x 2 b x n b n se dice que los coeficientes de esta combinación lineal son las componentes de v respecto de la base B. Proposición Las componentes del vector suma de dos vectores son las sumas de sus componentes. Las componentes de un múltiplo de un vector son los múltiplos de sus componentes. Nota Se suele denotar a las coordenadas de v respecto de B por x 1 x 2 [v] B =... x n José Vicente Romero Bauset Tema 3.- Espacios Vectoriales 10
11 Cambio de base Sea U un espacio vectorial de de dimensión n. Consideremos dos bases B = {u 1,u 2,...,u n } y B = {u 1,u 2,...,u n } bases de U tales que u 1 = p 11 u 1 + p 21 u p n1 u n u 2 = p 12 u 1 + p 22 u p n2 u n.... u n = p 1n u 1 + p 2n u p nn u n Dado u U lo podemos expresar en la base B y en la base B [u] B = x 1 x 2. x n, [u] B = x 1 x 2. x n. José Vicente Romero Bauset Tema 3.- Espacios Vectoriales 11
12 Cambio de base Por lo tanto u = x 1 u 1 + x 2 u x n u n = x 1 ( p11 u 1 + p 21 u p n1 u n) + x 2 ( p12 u 1 + p 22 u p n2 u n) + + xn ( p1n u 1 + p 2n u p nn u n) = (p 11 x 1 + p 12 x p 1n x n )u 1 + (p 21 x 1 + p 22 x p 2n x n )u (p n1 x 1 + p n2 x p nn x n )u n. Igualando coordenadas se obtiene x 1 = p 11 x 1 + p 12 x p 1n x n x 2 = p 21 x 1 + p 22 x p 2n x n Definiendo se tiene.... x n = p n1 x 1 + p n2 x p nn x n p 11 p 12 p 1n p 21 p 22 p 2n P = p n1 p n2 p nn [u] B = P [u] B José Vicente Romero Bauset Tema 3.- Espacios Vectoriales 12
13 Cambio de base [u] B = P [u] B P es la matriz de cambio de base de B a B. Si P es la matriz de cambio de base de B a B, P es invertible y P 1 es la matriz de cambio de base de B a B José Vicente Romero Bauset Tema 3.- Espacios Vectoriales 13
Espacios vectoriales
Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación
ESPACIOS VECTORIALES
ESPACIOS VECTORIALES Luisa Martín Horcajo U.P.M. Definición: Vector libre. Operaciones Un vector fijo es una segmento orientado, que queda caracterizado por su origen A y su extremo B y se representa por
Clase de Álgebra Lineal
Clase de Álgebra Lineal M.Sc. Carlos Mario De Oro Facultad de Ciencias Básicas Departamento de matemáticas 04.2017 Page 1 Espacios vectoriales Definicion. Espacio Vectorial (E.V.) Un V espacio vectorial
Tema 2: Espacios Vectoriales
Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.
Tema 3: Espacios vectoriales
Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación
520142: ALGEBRA y ALGEBRA LINEAL
520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición
1. Espacio vectorial. Subespacios vectoriales
Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Sea k un cuerpo. 1. Espacio vectorial. Subespacios vectoriales Definición 1.1. Un k-espacio vectorial o espacio vectorial
2 Espacios vectoriales
Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 2 Espacios vectoriales 2.1 Espacio vectorial Un espacio vectorial sobre un cuerpo K (en general R o C) es un conjunto V sobre el que hay
ESPACIOS Y SUBESPACIOS VECTORIALES
ESPACIOS Y SUBESPACIOS VECTORIALES. ESPACIO VECTORIAL REAL Un espacio vectorial real V es un conjunto de objetos llamados vectores, junto con dos operaciones, llamadas suma y multiplicación por un escalar
Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21
Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)
4. Espacios vectoriales
Contents 4 Espacios vectoriales 2 4.1 Dependencia e independencia lineal.................................. 4 4.2 Subespacios vectoriales.............................................. 7 4.3 Bases y dimensión..................................................
6 Vectores. Dependencia e independencia lineal.
6 Vectores. Dependencia e independencia lineal. Introducción Hay fenómenos reales que se pueden representar adecuadamente mediante un número con su adecuada unidad de medida. Sin embargo para representar
Espacios Vectoriales. Matemáticas. Espacios Vectoriales CARACTERIZACION COMBINACIONES LINEALES REDUCCION DE GAUSS SISTEMA GENERADOR, BASES
Espacios Vectoriales Matemáticas Espacios Vectoriales CARACTERIZACION COMBINACIONES LINEALES REDUCCION DE GAUSS SISTEMA GENERADOR, BASES 5 ESPACIO VECTORIAL Dados: (E,+) Grupo Abeliano (K,+, ) Cuerpo :
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES
EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que
Geometría afín y proyectiva, 2016 SEMANA 2
Geometría afín y proyectiva, 2016 SEMANA 2 Sonia L. Rueda ETS Arquitectura. UPM September 20, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra
Espacios Vectoriales
Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios
Espacios Vectoriales
Espacios y subespacios vectoriales Espacios Vectoriales 1. Demuestre que con la suma y multiplicación habituales es un espacio vectorial real.. Considere el conjunto C de los números complejos con la suma
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que
CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero
Fundamento Científico del Currículum de Matemáticas en Enseñanza Secundaria CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero ESPACIOS VECTORIALES DEFINICIÓN... 1 PROPIEDADES DE
Ejercicio 1: Proponga al menos 3 conjuntos y las operaciones adecuadas de modo que sean espacios vectoriales.
Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Proponga al menos 3 conjuntos y las operaciones adecuadas de modo que sean espacios vectoriales. Ejercicio 2: Determine si los siguientes conjuntos
Trabajo Práctico N 5: ESPACIOS VECTORIALES
Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
Espacios vectoriales
Espacios vectoriales Juan Medina Molina 21 de septiembre de 2005 Introducción En este tema introducimos la estructura de espacio vectorial y analizamos sus propiedades. Lo hemos dividido en los siguientes
Problemas de Espacios Vectoriales
Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial
Departamento de Ingeniería Matemática - Universidad de Chile
Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-2 SEMANA 7: ESPACIOS VECTORIALES 3.5. Generadores de un espacio vectorial Sea V un espacio vectorial
UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística. Álgebra Lineal. RESUMEN DE TEMAS DEL EXAMEN FINAL
1. Definiciones básicas. UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística. Álgebra Lineal. RESUMEN DE TEMAS DEL EXAMEN FINAL I. Sistemas homogéneos y subespacios de R n. (a) Para el sistema
Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales
Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales (1) Sea n N. Mostrar que el conjunto de polinomios sobre R de grado menor que n es un subespacio vectorial de R[x]. Este
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES
EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A
Bloque 3. Geometría y Trigonometría Tema 2 Vectores Ejercicios resueltos
Bloque 3. Geometría y Trigonometría Tema Vectores Ejercicios resueltos 3.- Obtener el vector PQ, donde los puntos P y Q son los dados 4 5 b) P00,, Q90, a) P,, Q, 83 83 d) P4,, Q3, 7 c) P,, Q, 4 5 PQ 5,
Tema 1. Espacios Vectoriales Definición de Espacio Vectorial
Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.
Espacios Vectoriales
Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido
CAPÍTULO 4 ESPACIOS VECTORIALES
CAPÍTULO 4 ESPACIOS VECTORIALES 4.1.- Concepto y definición de espacio vectorial. 4.2.- Propiedades de los espacios vectoriales. 4.3.- Subespacios vectoriales. 4.4.- Combinación lineal de vectores. 4.5.-
Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales
Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales (1) Decidir si los siguientes conjuntos son R-espacios vectoriales con las operaciones abajo denidas. (a) R n con v w =
Espacios Vectoriales www.math.com.mx
Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................
ESPACIOS VECTORIALES SUBESPACIOS:
SUBESPACIOS: Continuación EJEMPLOS: S 2 = {(x 1, x 2 ) / x 2 =x 12 } R 2 es subespacio del espacio vectorial? Interpretación geométrica: Representa una parábola de eje focal el eje de ordenadas, vértice
Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del / 26
Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del 2016 1 / 26 1 Subespacios y combinaciones lineales 2 Dependencia
REPASO DE ALGEBRA VECTORIAL
REPASO DE ALGEBRA VECTORIAL Vectores en R 2 : Un vector v en el plano R 2 = XY es un par ordenado de números reales (a,b). Los números reales a y b se llaman componentes del vector v. El vector cero es
UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística Álgebra Lineal Ejercicios resueltos- Mayo de 2018
UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística Álgebra Lineal Ejercicios resueltos- Mayo de 2018 I. Sistemas homogéneos, subespacios, dependencia e independencia lineal 1. En cada caso
Trabajo Práctico N 5: ESPACIOS VECTORIALES
Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
Espacios vectoriales
CAPíTULO 2 Espacios vectoriales 1. Definición de espacio vectorial Es frecuente representar ciertas magnitudes físicas (velocidad, fuerza,...) mediante segmentos orientados o vectores. Dados dos de tales
Guía del Examen parcial II de Álgebra II, licenciatura
Guía del Examen parcial II de Álgebra II, licenciatura Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen El estudiante tiene que escribir la demostración de manera breve
ÁLGEBRA LINEAL Y GEOMETRÍA
ÁLGEBRA LINEAL Y GEOMETRÍA Laureano González Vega y Cecilia Valero Revenga Departamento de Matemáticas, Estadística y Computación Universidad de Cantabria Curso 2017 2018 Índice I Lecciones 1 1 Espacios
Matemáticas para la Empresa
Matemáticas para la Empresa 1 o L. A. D. E. Curso 2008/09 Relación 1. Espacios Vectoriales 1. a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy)
1. Espacios Vectoriales Reales.
. Espacios Vectoriales Reales. El Álgebra Lineal es una rama de la Matemática que trata las propiedades comunes de todos los sistemas algebráicos donde tiene sentido las combinaciones lineales y sus consecuencias.
Grado en Ciencias Ambientales. Matemáticas. Curso 11/12
Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Problemas Tema 1. Espacios Vectoriales. 1 Repaso de Estructuras Algebraicas 1.1. Construye explícitamente el conjunto A B, siendo A = {1, 2, 3},
EL ESPACIO AFÍN. se distinguen, además de su origen A y su extremo B, las siguientes
VECTOR FIJO Y VECTOR LIBRE. Sea E el espacio ordinario. EL ESPACIO AFÍN Llamaremos vector fijo a cualquier segmento orientado dado por dos puntos A y B del espacio E. Al punto A lo llamamos origen del
BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN
1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN BANCO DE PREGUNTAS CURSO: ALGEBRA LINEAL LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Mendoza Otoño
Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases...
Álgebra Lineal Grupo A Curso 2011/12 Espacios vectoriales. Bases 61) Dados los vectores v 1,v 2,...,v n linealmente independientes, probar que también lo son los vectores u 1 = v 1 u 2 = v 1 + v 2... u
Si u y v son vectores cualquiera en W, entonces u + v esta en W. Si c es cualquier numero real y u es cualquier vector en W, entonces cu esta en W.
Unidad 4 Espacios vectoriales reales 4.1 Subespacios Si V es un espacio vectorial y W un subconjunto no vacío de V. Entonces W es un subespacio de V si se cumplen las siguientes condiciones Si u y v son
Relación 1. Espacios vectoriales
MATEMÁTICAS PARA LA EMPRESA Curso 2007/08 Relación 1. Espacios vectoriales 1. (a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy) Demuestra que IR
Algebra lineal y conjuntos convexos 1
Algebra lineal y conjuntos convexos Solución de sistemas. Espacios vectoriales. 3 Conjuntos convexos. 4 Soluciones básicas puntos extremos. Rango de una matriz A R m n. Reducir A a una matriz escalonada
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICAS
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICAS 7. ESPACIOS VECTORIALES 7.1 Estructura de Espacio Vectorial. Sea
Tema 2: Espacios vectoriales
Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 Tema 2: Espacios vectoriales Ejercicios 1. En R 2 se definen las siguientes operaciones: (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 +
Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y
Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,
EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
GEOMETRÍA 1- Dados el punto P(1,-1,0) y la recta : 1 0 3 3 0 a) Determine la ecuación general del plano (Ax+By+Cz+D=0) que contiene al punto P y a la recta s. b) Determine el ángulo que forman el plano
1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.
CAPÍTULO 1 El plano vectorial Consideremos P como el plano intuitivo de puntos: A,,C... 1.1. El espacio vectorial de los vectores Definición 1.1 Vectores fijos Dado dos puntos cualesquiera A e del espacio
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)
Algebra Lineal: Aplicaciones a la Física
Algebra Lineal: Aplicaciones a la Física Resumen del curso 2014 para Lic. en Física (2 o año), Depto. de Física, UNLP. Prof.: R. Rossignoli 0. Repaso de estructuras algebraicas básicas Un sistema algebraico
MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009
Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0.2 puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Un sistema generador G de R 3 : a) Está constituido por
MMAF: Espacios normados y espacios de Banach
MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el
Tema 1: Espacios vectoriales
PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina si cada
ETS Arquitectura. UPM Geometría afín y proyectiva. 1. Hoja 1
ETS Arquitectura. UPM Geometría afín y proyectiva. Hoja. Determinar si los siguientes conjuntos son subespacios vectoriales de R 4 A f(x; y; z; t)j 2x + z 0g; B f(x; y; z; t)jx + y 0; z t 0g; C f(x; y;
Universidad Industrial de Santander Algebra Lineal II. Solución Previo I (Espectacular). Abril 20/2017
Universidad Industrial de Santander Algebra Lineal II. Solución Previo I (Espectacular). Abril 20/2017 solespecta-1-17-a.tex Tema A. Nombre Código Pregunta de escogencia múltiple mal contestada baja 2
2.9 Ejercicios resueltos
86 Sistemas de ecuaciones lineales. Espacios vectoriales. 2.9 Ejercicios resueltos Ejercicio 2. Sea A = ( ) 2. Se pide: 3 m a) Encontrar m para que existan matrices cuadradas B ynonulastalesque A B =0.
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES
CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 Unidades: - Matrices (Bloque Álgebra) - Determinantes (Bloque Álgebra) - Sistemas de ecuaciones lineales (Bloque Álgebra) - Vectores (Bloque
2.10 Ejercicios propuestos
Ejercicios propuestos 99 1 0 0 0 x 1 0 1 0 0 x 2 0 0 1 0 x 3 x 2 0 0 0 1 x 4 + x 1 +4x 2 + x 3 x 2 0 0 0 1 x 5 x 2 1 0 0 0 x 1 0 1 0 0 x 2 0 0 1 0 x 3 x 2 0 0 0 1 x 4 + x 1 +4x 2 + x 3 x 2 0 0 0 0 x 5
Espacios vectoriales.
Unidad docente de Matemáticas Matemáticas (CC. Químicas) Espacios vectoriales. Si detectas cualquier error o errata por favor, comunicaselo al profesor de la asignatura. El subíndice can significa canónica/o..
TEMA V. Espacios vectoriales
TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,
