EJERCICIOS RESUELTOS
|
|
|
- Gloria de la Fuente Salas
- hace 7 años
- Vistas:
Transcripción
1 CAPÍTULO 10 ESTIMACIÓN POR PUNTO Y POR INTERVALO Generar 100 muestras de tamaño 200 de una variable aleatoria N(0,1). Calcular los correspondientes intervalos de confianza para la media al nivel del 95%, y el número de ellos que no la contienen. SOLUCIÓN Generar una lista de 20 valores provenientes de una población normal de media 10 y varianza 4. Utilizando estos datos calcular un intervalo de confianza al 99% para la media de la población y otro al 95% para la varianza de la población. SOLUCIÓN Para el conjunto de datos vitcap, perteneciente al paquete IswR, estimar la diferencia entre las medias de la variable vital.capacity cuando la variable group toma los valores 1 y 3. Se supone normalidad. SOLUCIÓN Se quiere contrastar si el precio medio del metro cuadrado de vivienda nueva en el municipio de Getxo es 2850 o, por el contrario, ha aumentado. Para ello se han tomado 12 viviendas al azar, obteniéndose los valores siguientes en miles de euros por metro cuadrado. Se supone normalidad SOLUCIÓN
2 SOLUCIÓN 10.1 > # Generaremos en primer lugar las 100 muestras; tendremos en total valores aleatorios de una N(0,1) > valores.aleatorios<-rnorm(20000) > # Organizamos los valores anteriores en una matriz de 100 filas y 200 columnas (100 muestras de tamaño 200) > x<-matrix(valores.aleatorios,nrow=100) > # Vamos a generar los vectores lim.inf y lim.sup que inicialmente son los vectores nulos y que representan los extremos inferiores y superiores de los intervalos de confianza > lim.inf<-c(rep(0,100)) > lim.sup<-c(rep(0,100)) > # Ahora, mediante un bucle, iremos asignando los verdaderos valores de los extremos de los intervalos de confianza > for(i in 1:100) + {IC<-t.test(x[i,])$conf + lim.inf[i]<-ic[1];lim.sup[i]<-ic[2]} > lim.inf [1] [6] [96] > lim.sup [1] [6] [96] > IntConf<-matrix(c(lim.inf,lim.sup),nrow=100) > IntConf [,1] [,2] [1,] [2,] [99,] [100,] > plot(lim.inf,type="n",ylim=c(-0.3,0.3),xlab=" ",ylab=" ") 2
3 CAPÍTULO 10 ESTIMACIÓN POR PUNTO Y POR INTERVALO > # Con la opción type="n" no dibujamos el gráfico, sólo los ejes > # A continuación dibujamos los segmentos que representan los diferentes IntConf > coordx<-1:100 > segments(coordx,lim.inf,coordx,lim.sup) > # Dibujamos la línea de la media (cero) > abline(h=0) > # El gráfico de los 200 IC es > # Calculemos cuántos IntConf no contienen a la media > a<-c(rep(0,100)) > for (i in 1:100) +{if (IntConf[i,1]>0 IntConf[i,2]<0) a[i]<-1 else 0} > a [1] [38] [75] > # El número de IntConf que no contienen a la media es: > sum(a) [1] 8 > # Aviso al lector: como es lógico, los resultados serán diferentes para cada simulación 3
4 SOLUCIÓN 10.2 > # Generamos la lista de los 20 valores aleatorios > valores<-rnorm(20,10,2) > valores [1] [8] [15] > # Calculamos en primer lugar el intervalo de confianza para la varianza al nivel 99% > t.test(valores,conf.level=0.99)$conf [1] [1] 0.99 > # Este intervalo puede ser calculado alternativamente con la fórmula adecuada > xraya<-mean(valores) > destip<-sd(valores) > IC.media<-c(xraya-qt(1-0.01/2,19)*destip/sqrt(20),xraya+qt(1-0.01/2,19)*destip/sqrt(20)) > IC.media [1] > # Calculamos el intervalo de confianza para la varianza al nivel 95% > IC.varianza<c(9*var(valores)/qchisq(0.975,9),9*var(valores)/qc hisq(0.025,9)) > IC.varianza [1] SOLUCIÓN 10.3 > library(iswr) Loading required package: survival Loading required package: splines Attaching package: 'ISwR' The following object(s) are masked from package:survival : lung > data(vitcap) > attach(vitcap) > vitcap 4
5 CAPÍTULO 10 ESTIMACIÓN POR PUNTO Y POR INTERVALO group age vital.capacity > vc1<-vital.capacity[group==1] > vc3<-vital.capacity[group==3] > vc1 [1] > vc3 [1] > mean(vc1)-mean(vc3) [1] > var.test(vc1,vc3)$conf [1] [1] 0.95 > # Como el valor 1 está contenido en el anterior intervalo de confianza podemos considerar iguales las varianzas > t.test(vc1,vc3,var.equal=t)$conf [1] [1]
6 SOLUCIÓN 10.4 > datos<c(4.01,3.87,4.68,2.83,3.88,4.92,4.46,5.64,4.91,2.3 5,4.12,1.11) > t.test(datos,mu=2.85,alternative = c("greater")) One Sample t-test data: datos t = , df = 11, p-value = alternative hypothesis: true mean is greater than percent confidence interval: Inf sample estimates: mean of x > #Como se trata de un contraste unilateral, en la función t.test se ha puesto el argumento alternative = c("greater"), ya que la hipótesis alternativa es que el precio medio ha aumentado > t.test(datos)$conf [1] [1] 0.95 > #Conclusión: como el valor-p es muy pequeño (menor que 0.01) se concluye que el precio medio ha aumentado, siendo una estimación puntual de ese precio medio 3898 y una estimación por intervalo [ ; ] 6
> t.test (datos_x, datos_y =NULL, alternative = "two.sided", mu = 0, paired =FALSE, var.equal = FALSE, conf.level= 0.95)
INTERVALOS DE CONFIANZA Y TEST DE HIPOTESIS CON R Estudiemos ahora la función en el lenguaje R, que nos ofrece tanto estimaciones puntuales y por intervalos de confianza como test de hipótesis, es: > t.test
CAPÍTULO 10 ESTIMACIÓN POR PUNTO Y POR INTERVALO 1.- ESTIMACIÓN PUNTUAL DE LA MEDIA Y DE LA VARIANZA 2.- INTERVALO DE CONFIANZA PARA LA MEDIA
CAPÍTULO 10 ESTIMACIÓN POR PUNTO Y POR INTERVALO 1.- ESTIMACIÓN PUNTUAL DE LA MEDIA Y DE LA VARIANZA 2.- INTERVALO DE CONFIANZA PARA LA MEDIA 3.- INTERVALO DE CONFIANZA PARA LA VARIANZA 4.- INTERVALO DE
ESTADÍSTICA I Tema 4: Estimación por intervalos de confianza
ESTADÍSTICA I Tema 4: Estimación por intervalos de confianza El concepto de intervalo de confianza (IC) IC aproximados basados en el TCL: intervalos para una proporción Determinación del mínimo tamaño
Métodos Estadísticos de la Ingeniería Tema 11: Contrastes de Hipótesis Grupo B
Métodos Estadísticos de la Ingeniería Tema 11: Contrastes de Hipótesis Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Abril 2010 Contenidos...............................................................
Titulo: MATLAB como herramienta metodológica en la enseñanza y su incidencia en el rendimiento académico universitario.
Titulo: MATLAB como herramienta metodológica en la enseñanza y su incidencia en el rendimiento académico universitario. Autores: Eder Lenin Cruz Siguenza, Carlos José Santillán Mariño,, Luis Fernando Buenaño
PRÁCTICAS DE ESTADÍSTICA CON R
PRÁCTICAS DE ESTADÍSTICA CON R PRÁCTICA 4: INFERENCIA ESTADÍSTICA 4.1 Estimación de la media Los conceptos que vamos a ir desarrollando a lo largo de la primera parte de la práctica hacen referencia a
Modelos de probabilidad en R
Modelos de probabilidad en R Contents Probabilidades Discretas 1 Ejemplo: suma de la cara de dos dados................................. 1 Distribución Binomial:...........................................
Ejemplo de Regresión Lineal Simple.
Ejemplo de Regresión Lineal Simple. El archivo sargos.csv contiene datos morfométricos de una muestra de 200 sargos. Estos datos pueden leerse en R mediante la sintaxis: sargos=read.table(file="http://dl.dropbox.com/u/7610774/sargos.csv",
peso edad grasas Regresión lineal simple Los datos
Regresión lineal simple Los datos Los datos del fichero EdadPesoGrasas.txt corresponden a tres variables medidas en 25 individuos: edad, peso y cantidad de grasas en sangre. Para leer el fichero de datos
Aplicación del Análisis de la Varianza para estudiar el tiempo de acceso en las aulas informáticas
Aplicación del Análisis de la Varianza para estudiar el tiempo de acceso en las aulas informáticas Apellidos, nombre Capilla Romá, Carmen 1 ([email protected]) Departamento Centro 1 Estadística e Investigación
Parte de las notas tomadas de: Prof. Edgar Acuña UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ
Estadística stica No Paramétrica Parte de las notas tomadas de: Prof. Edgar Acuña http://math.uprm math.uprm/edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ METODOS ESTADISTICOS
Intervalos de confianza con STATGRAPHICS
Intervalos de confianza con STATGRAPHICS Ficheros empleados: TiempoaccesoWeb.sf3 ; TiempoBucle.sf3; 1. Ejemplo 1: Tiempo de acceso a una página Web Se desean construir intervalos de confianza para la media
Práctica 3 vgaribay PRÁCTICA 3. INTERVALOS DE CONFIANZA
PRÁCTICA 3. INTERVALOS DE CONFIANZA Práctica 3 vgaribay OBJETIVOS: Comprobación del concepto de intervalo de confianza. Construcción de intervalos de confianza para poblaciones normales. Cálculo del tamaño
Estadística I Solución Examen Final- 19 de junio de Nombre y Apellido:... Grupo:...
Estadística I Examen Final- 19 de junio de 2009 Nombre y Apellido:... Grupo:... (1) La siguiente tabla muestra las distribuciones de frecuencias absolutas de la variable altura (en metros) de n = 500 estudiantes
Análisis Estadísticos con R
Análisis Estadísticos con R Ibon Martínez http://fdesnedecor.wordpress.com/ µ ¹ ½ http://fdesnedecor.wordpress.com/, Agosto 2011 p. 1/22 Los datos Vamos a plantear una serie de análisis estadísticos con
Escuela de Economía Universidad de Carabobo Profesor: Exaú Navarro Pérez.
Escuela de Economía Universidad de Carabobo Profesor: Exaú Navarro Pérez. Econometría Regresión Múltiple: Municipio Ocupados Población Analfabeta Mayor de 10 años Total de Viviendas Bejuma 18.874 1.835
Análisis de dos muestras
Análisis de dos muestras Supongamos el siguiente ejemplo. La resistencia a la rotura de un componente eléctrico constituye una característica importante de un cierto proceso. Un fabricante utiliza un material
Estadística I Examen Final - 19 de junio de Nombre:... Grupo:...
Estadística I Examen Final - 19 de junio de 2009 Nombre:... Grupo:... Realizar los cálculos intermedios con 4 decimales y redondear el resultado final a 2 decimales. 1. La siguiente tabla muestra las distribuciones
IIC 3633 - Sistemas Recomendadores
Tests Estadísticos para Comparar Recomendaciones IIC 3633 - Sistemas Recomendadores Denis Parra Profesor Asistente, DCC, PUC CHile Page 1 of 11 TOC En esta clase 1. Significancia Estadistica de los Resultados
ACTIVIDAD 3: Intervalos de Confianza para 1 población
ACTIVIDAD 3: Intervalos de Confianza para 1 población CASO 3-1: REAJUSTE DE MÁQUINAS Trabajamos como supervisores de una máquina dedicada a la producción de piezas metálicas cuya longitud sigue una distribución
Estadística II Tema 4. Regresión lineal simple. Curso 2009/10
Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores
R E S O L U C I Ó N. σ σ a) El intervalo de confianza de la media poblacional viene dado por: IC.. μ zα
Se sabe que la estatura de los individuos de una población es una variable aleatoria que sigue una distribución normal con desviación típica 6 cm. Se toma una muestra aleatoria de 5 individuos que da una
Estadística Básica con R y R Commander
Estadística Básica con R y R Commander 2 a Edición Revisada (Versión Marzo 2013) Autores: A. J. Arriaza Gómez F. Fernández Palacín M. A. López Sánchez M. Muñoz Márquez S. Pérez Plaza A. Sánchez Navas Copyright
1. Estadística Descriptiva 9
Índice 1. Estadística Descriptiva 9 1.1. Introducción............................. 9 1.2. Representaciones gráficas..................... 9 1.2.1. Representaciones de datos de tipo cualitativo...... 10
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4,
Estadística I Solución Examen Final - 28 Mayo de 2009
Estadística I Examen Final - 28 Mayo de 2009 (1 (10 puntos A 16 estudiantes de Filosofía se les preguntó cuántas clases de esta asignatura habían perdido durante el cuatrimestre. Las respuestas obtenidas
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva
Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias
Estructura de este tema Tema 4 Regresión lineal simple José R. Berrendero Departamento de Matemáticas Universidad utónoma de Madrid Planteamiento del problema. Ejemplos Recta de regresión de mínimos cuadrados
EJERCICIO T1 NOMBRE: Correctas Incorrectas En Blanco Puntos
ECONOMETRÍA EJERCICIO T1 APELLIDOS: NOMBRE: FIRMA: GRUPO: DNI: Pregunta 1 A B C En Blanco Pregunta A B C En Blanco Pregunta 3 A B C En Blanco Pregunta 4 A B C En Blanco Pregunta 5 A B C En Blanco Pregunta
Práctica 4 vgaribay PRÁCTICA 4. CONTRASTE DE HIPOTESIS. 1 ESTUDIO DE NORMALIDAD Plot de normalidad. Camino 1
PRÁCTICA 4. CONTRASTE DE HIPOTESIS OBJETIVOS: Estudiar el plot de normalidad Manejar los módulos de contrastes de hipótesis. Obtener las probabilidades de error de tipo I y II, la función de potencia y
LEC/LADE/LECD/LADED. (a) Deducir la expresión de la desviación típica de la media muestral, y calcularla para esta muestra.
LEC/LADE/LECD/LADED HOJA DE PROBLEMAS 4 CONTRASTES DE HIPÓTESIS Y DIAGNOSIS DEL MODELO 1.- El tiempo en minutos que dura un viaje en tren entre dos ciudades A y B, es una variable aleatoria normal con
Cómo se hace la Prueba t a mano?
Cómo se hace la Prueba t a mano? Sujeto Grupo Grupo Grupo Grupo 33 089 74 5476 84 7056 75 565 3 94 8836 75 565 4 5 704 76 5776 5 4 6 76 5776 6 9 8 76 5776 7 4 78 6084 8 65 45 79 64 9 86 7396 80 6400 0
Práctica 3. Emilio Torres. Departamento de Estadística Universidad de Oviedo http://uce.uniovi.es/gradoacero/ February 23, 2011
Práctica 3 Emilio Torres Departamento de Estadística Universidad de Oviedo http://uce.uniovi.es/gradoacero/ February 23, 2011 Emilio Torres (Universidad de Oviedo) Práctica 3 February 23, 2011 1 / 21 1
R E S O L U C I Ó N. a) La distribución de las medias muestrales es: N µ, = N 17 '4, = Como el nivel de confianza es del 95%, podemos calcular.
En una muestra aleatoria de 56 individuos se ha obtenido una edad media de 17 4 años. Se sabe que la desviación típica de la población normal de la que procede esa muestra es de años. a) Obtenga un intervalo
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva
Estadística II Examen final junio 27/6/17 Curso 2016/17 Soluciones
Estadística II Examen final junio 27/6/7 Curso 206/7 Soluciones Duración del examen: 2 h y 5 min. (3 puntos) Los responsables de un aeropuerto afirman que el retraso medido en minutos en el tiempo de salida
Convocatoria Ordinaria de Junio, Curso 2011/12 8/6/2012
Grado en Ciencias del Mar Estadística Convocatoria Ordinaria de Junio, Curso 2011/12 8/6/2012 Entre los años 1999 y 2004 se llevaron a cabo diversas campañas para el estudio del anidamiento y éxito reproductivo
Métodos Estadísticos de la Ingeniería Tema 10: Inferencia Estadística, Intervalos de Confianza Grupo B
Métodos Estadísticos de la Ingeniería Tema 10: Inferencia Estadística, Intervalos de Confianza Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Abril 010 Contenidos...............................................................
Estadística II Ejercicios Tema 5
Estadística II Ejercicios Tema 5 1. Considera los cuatro conjuntos de datos dados en las transparencias del Tema 5 (sección 5.1) (a) Comprueba que los cuatro conjuntos de datos dan lugar a la misma recta
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva
ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA
www.jmontenegro.wordpress.com UNI ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA PROF. JOHNNY MONTENEGRO MOLINA Objetivos Desarrollar el concepto de estimación de parámetros Explicar qué es una
Estadística Inferencial. Resúmen
Ofimega - Estadística inferencial - 1 Estadística Inferencial. Resúmen Métodos y técnicas que permiten inducir el comportamiento de una población. Muestreo o selección de la muestra: 1. Aleatorio simple:
Inferencia estadística Selectividad CCSS MasMates.com Colecciones de ejercicios
1. [ANDA] [JUN-A] Una máquina está preparada para fabricar piezas de, a lo sumo, 10 cm de longitud. Se toma una muestra de 1000 piezas, comprobándose que la media de sus longitudes es de 10.0037 cm. La
ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE
ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE Jorge Fallas [email protected] 2010 1 Temario Introducción: correlación y regresión Supuestos del análisis Variación total de Y y variación explicada por
Relación 3 de problemas
ESTADÍSTICA II Curso 2016/2017 Grado en Matemáticas Relación 3 de problemas 1. La Comunidad de Madrid evalúa anualmente a los alumnos de sexto de primaria de todos los colegios sobre varias materias. Con
TEMA 7. Estimación. Alicia Nieto Reyes BIOESTADÍSTICA. Alicia Nieto Reyes (BIOESTADÍSTICA) TEMA 7. Estimación 1 / 13
TEMA 7. Estimación Alicia Nieto Reyes BIOESTADÍSTICA Alicia Nieto Reyes (BIOESTADÍSTICA) TEMA 7. Estimación 1 / 13 1 Estimación Puntual 1 Estimación por intervalos Estimación por intervalos de la Media
1.- Lo primero que debemos hacer es plantear como hasta ahora la hipótesis nula y la alternativa
PRUEBA DE HIPÓTESIS PARA DIFERENCIA DE MEDIAS Introducción Como hemos visto hasta ahora ya sabemos cómo hacer inferencia sobre bases de datos para medias con valores conocidos y desconocidos de desviación
Inferencia Estadística II: Estimación por Intervalos de Confianza
Capítulo 5 Inferencia Estadística II: Estimación por Intervalos de Confianza Problemas. Las larvas de algunas mariposas monarchi concentran glucósidos a partir de plantas de algoncillo. En cierta localidad
ESTADISTICA AVANZADA MODULO I
ESTADISTICA AVANZADA MODULO I Análisis de Regresión Modelo Supuestos Multiple 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 Consumo Energetico Gráfico de Dispersión 110.000 105.000
Estadística II Ejercicios Tema 4
Estadística II Ejercicios Tema 4 1. Los siguientes datos muestran la estatura (en cm.) y el peso (en Kg.) para una muestra de cinco alumnos de una clase: estatura (cm.) peso (Kg.) 154 60 158 62 162 61
Metodos de validación de clusters
Metodos de validación de clusters Por qué es importante validar un cluster? Los métodos de clustering siempre van a encontrar grupos, aun cuando no haya patrones. Puede ser un primer paso para determinar
Estadística II Examen final enero 19/1/17 Curso 2016/17 Soluciones Duración del examen: 2 h y 15 min
Estadística II Examen final enero 19/1/17 Curso 016/17 Soluciones Duración del examen: h y 15 min 1. 3 puntos El Instituto para la Diversificación y Ahorro de la Energía IDAE ha publicado un estudio sobre
Inferencia estadística en la EBAU de Murcia INFERENCIA ESTADÍSTICA EN LA EBAU DE MURCIA
INFERENCIA ESTADÍSTICA EN LA EBAU DE MURCIA 1. (Septiembre 2017) El consumo de carne por persona en un año para una población es una variable aleatoria con distribución normal con desviación típica igual
Examen Final de Estadística I, 27 de Mayo de Grados en ADE, DER-ADE, ADE-INF, FICO, ECO, ECO-DER.
Examen Final de Estadística I, 27 de Mayo de 203. Grados en ADE, DER-ADE, ADE-INF, FICO, ECO, ECO-DER. NORMAS: ) Entregar cada problema en un cuadernillo distinto, aunque esté en blanco. 2) Realizar los
PRÁCTICA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICOS
PRÁCTICA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICOS Objetivos Plantear y resolver problemas mediante la técnica de contraste de hipótesis. Asimilar los conceptos relativos a contrastes de hipótesis, tales
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva
ESTADÍSTICA Y PROBABILIDAD
(distribución normal) 1 1.- Calcular las probabilidades de los siguientes intervalos, empleando para ello las tablas de la distribución de probabilidad normal estándar N(0, 1): (1) P(z 2 14) (2) P(z 0
Ajuste de Regresión Lineal Simple
Ajuste de Regresión Lineal Simple Hugo Alberto Brango García 1 1 Universidad de Córdoba Estadística II Mayo de 2014 Análisis de Regresión Mayo de 2014 1 / 33 Supuestos sobre los residuales del modelo Normalidad
Estimación. Diseño Estadístico y Herramientas para la Calidad. Estimación. Estimación. Inferencia Estadística
Diseño Estadístico y Herramientas para la Calidad Estimación Epositor: Dr. Juan José Flores Romero [email protected] http://lsc.fie.umich.m/~juan M. en Calidad Total y Competitividad Estimación Inferencia
ESTADÍSTICA. Tema 4 Regresión lineal simple
ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del
R E S O L U C I Ó N. a) El intervalo de confianza de la media poblacional viene dado por: I. C. z
Un estudio realizado sobre 100 usuarios revela que un automóvil recorre anualmente un promedio de 15.00 Km con una desviación típica de.50 Km. a) Determine un intervalo de confianza, al 99%, para la cantidad
Modelo Lineal Generalizado Guía de R
Modelo Lineal Generalizado Guía de R (Fuente: Faraway, 2006) 1. Tablas de 2 2 Crearemos una tabla en R. Para ello usaremos el comando gl que genera factores siguiendo un patrón determinado. Así, por ejemplo:
Algoritmo Para Resolver Operaciones Combinadas Con Números Reales
Algoritmo Para Resolver Operaciones Combinadas Con Números Reales Leonidas Cerda, Doctor Martha Dávalos, Matemático Janneth Morocho, Matemático Escuela Superior Politécnica de Chimborazo, Ecuador Doi:
ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA PARA LA MEDIA POBLACIONAL.
ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA PARA LA MEDIA POBLACIONAL. Un intervalo de confianza, para un parámetro poblacional θ, a un nivel de confianza 1 α 100 %, no es más que un intervalo L
(a) Calculate a point estimate of the mean pull-off force of all connectors in the population. State which estimator you used and why.
PROBLEMAS DE CLASE Problema 7.22 Data on pull-off force (pounds) for connectors used in an automobile engine application are as follows: 79.3, 75.1, 78.2, 74.1, 73.9, 75.0, 77.6, 77.3, 73.8, 74.6, 75.5,
Inferencia Estadística
Felipe José Bravo Márquez 11 de noviembre de 2013 Para realizar conclusiones sobre una población, generalmente no es factible reunir todos los datos de ésta. Debemos realizar conclusiones razonables respecto
R E S O L U C I Ó N. σ σ a) El intervalo de confianza de la media poblacional viene dado por: IC.. µ zα, µ+ zα
En una población una variable aleatoria sigue una ley Normal de media desconocida y desviación típica. a) Observada una muestra de tamaño 400, tomada al azar, se ha obtenido una media muestral igual a
INTRODUCCIÓN A REGRESIÓN LINEAL. Simple y Múltiple
1 INTRODUCCIÓN A REGRESIÓN LINEAL Simple y Múltiple 2 Introducción Aprendizaje Supervisado Predicción: estimar una función f(x) de forma que y = f(x) Donde Y puede ser: Número real: Regresión Categorías:
Selectividad Septiembre 2007 SEPTIEMBRE 2007
Bloque A SEPTIEMBRE 2007 1.- Cada instalación de una televisión analógica necesita 10 metros de cable y cada instalación de televisión digital necesita 20 metros. Cada televisión analógica necesita 20
(b) Entre qué valores se encontrará la verdadera media, µ, del tiempo que dura el viaje en tren de A a B, a un nivel de confianza al 95%?
LEC/LADE/LECD/LADED CURSO 2006/07 HOJA DE PROBLEMAS 4 CONTRASTES DE HIPÓTESIS Y DIAGNOSIS DEL MODELO 1.- El tiempo en minutos que dura un viaje en tren entre dos ciudades A y B, es una variable aleatoria
7. Inferencia Estadística. Métodos Estadísticos para la Mejora de la Calidad 1
7. Inferencia Estadística Métodos Estadísticos para la Mejora de la Calidad 1 Tema 7: Inferencia Estadística 1. Intervalos de confianza para μ con muestras grandes 2. Introducción al contraste de hipótesis
Poniendo R a trabajar: Evaluación y comparativa de varios algoritmos de inducción utilizando el dataset iris
Poniendo R a trabajar: Evaluación y comparativa de varios algoritmos de inducción utilizando el dataset iris. pág. Poniendo R a trabajar: Evaluación y comparativa de varios algoritmos de inducción utilizando
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. / L.O.C.E.
PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE / LOCE CURSO 3-4 CONVOCATORIA: MATERIA: Matemáticas Aplicadas a las CC SS - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo debe
TEMA 10 COMPARAR MEDIAS
TEMA 10 COMPARAR MEDIAS Los procedimientos incluidos en el menú Comparar medias permiten el cálculo de medias y otros estadísticos, así como la comparación de medias para diferentes tipos de variables,
Elaborado por: Pelay, C. y Pérez, J. Prueba t para muestras independientes
Prueba t para muestras independientes 1 El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente
TEMA 5 Estadística descriptiva. Análisis de datos
TEMA 5 Estadística descriptiva. Análisis de datos Florence Nightingale (1820-1910) 1. Introducción. Modelos matemáticos 2. Métodos numéricos. Resolución de sistemas lineales y ecuaciones no lineales 3.
Estadística. Contrastes para los parámetros de la Normal
Contrastes para los parámetros de la Normal Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Contrastes para los parámetros de la Normal Contrastes para los parámetros
Prácticas Tema 4: Modelo con variables cualitativas
Prácticas Tema 4: Modelo con variables cualitativas Ana J. López y Rigoberto Pérez Departamento de Economía Aplicada. Universidad de Oviedo PRACTICA 4.1- Se dispone de información sobre 16 familias sobre
Tema 14: Inferencia estadística
Tema 14: Inferencia estadística La inferencia estadística es el proceso de sacar conclusiones de la población basados en la información de una muestra de esa población. 1. Estimación de parámetros Cuando
