ISLD. Diagrama de Karnaugh

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ISLD. Diagrama de Karnaugh"

Transcripción

1 Página de Introducción a los Sistemas Lógicos y igitales TPNº 3 ISL TPNº3 iagrama de Karnaugh Ejercicio nº Convertir las siguientes funciones a la primera forma canónica y representarlas utilizando el diagrama de Karnaugh. a) F = C + C + C + C Primero transformamos la expresión en unión de mintérminos: F F = C + C + C + C ( + ) = C + C + C + C Esta expresión puede también representarse así: F = m(,,6,7) El diagrama de Karnaugh correspondiente es : C Ejercicio Nº 2 Idem anterior pero a segunda forma canónica b) G = m(,,2,5,7,9,,3,5),, C, plicando el teorema de e Morgan : G =,, C, m( 3,4,6,8,,2,4) (I) Puede observarse que en la expresión (I) esta el complemento de G

2 Página 2 de Introducción a los Sistemas Lógicos y igitales TPNº 3 Escrito en forma explícita en función de,,cy obtenemos G = C + C + C + C + C + C + C si negamos otra vez y aplicamos e Morgan queda : G= ( + + ) ( + + )( + + ) ( + + ) ( + + ) ( + + ) ( + + ) G = 2 M(, 3, 4, 7, 9,, 2) 9 otra forma de obtener los maxtérminos directamente de (I) cuando se tienen 4 variables es restarle a 5 ( por tratarse de un Karnaugh de 4 variables) los números correspondientes a los mintérminos 5-4= ; 5-2=3; 5-=4; 5-8=7; 5-6=9; 5-4=; 5-3=2. C ebemos recordar que los números de las casillas están negados (se indicaron solo dos numeros ) Por ej 9 equivale al maxterm + + C + Ejercicio Nº3 Expresar siguientes funciones en primera forma y simplificar utilizando el diagrama de Karnaugh a) H = m(, 5, 8,,, 2, 4, 5) C el diagrama se deduce que: H = + C + 8 9

3 Página 3 de Introducción a los Sistemas Lógicos y igitales TPNº 3 c) R = M (, 7,9,, 3, 5) Como se trata de una intersección de uniones representamos con ceros en lugar de unos ebemos recordar que los números de las casillas NO están negados, así que la disposición de variables en el diagrama K se invierte C Por inspección del diagrama K obtenemos R = ( + )( + C + )( + C + ) Podemos pasar a primera forma recordando que R =,, C, ( los minterminos pueden ser obtenidos reemplazado por ceros ) R = m(,2,3, 4,5, 6,8,,,, C, M (,2,3,4,5,6,8,,2,4) 2, 4) e donde resulta R = + C + C = + ( C) Nota: para verificar consideremos R = ( + )( + C + )( + C + ) de aquí R = + + = ( + C + C) = ( + C) = ( + C) + R = + ( C) f) P = m(7,8,9,2,4,9, 23, 24, 27, 29,3) + d(,,7, 26, 28,3) Se trata de un W,, Y, Z ejemplo con especificación incompleta. En este caso puede utilizarse cualquier x para simplificar el diseño pudiendo utilizarlas de acuerdo a nuestra conveniencia para agrupar

4 Página 4 de Introducción a los Sistemas Lógicos y igitales TPNº 3 C = E 3 2 C = E F = E + E + + E + C + E Ejercicio Nº 4 Simplificar las siguientes funciones utilizando el diagrama de Karnaugh sin pasar previamente a primera o segunda forma H = ( + C) ( + C + ) ( + + C ) ( + ) ( C + ).Se consideran los números de las casillas sin invertir /C Por ej se ha representado +C incluyendo las casillas,,4,5 Simplificando H = ( + C)( + )( + C )( C + ) el diagrama K se observa que faltan los maxterms 3,7,8,9. Como no se han invertido los numeros de las casillas para obtener la expresión en minterms basta con invertir las variables del diagrama K e indicar unos en las casillas vacías obteniendose H = (3,7,8,9) = + + +,, C, Simplificando por inspección del diagrama K ( basta con suponer unos en 3,7,8 y 9 queda H = + C

5 Página 5 de Introducción a los Sistemas Lógicos y igitales TPNº 3 Ejercicio Nº 5 ada la siguiente función sintetizarla e implementar el circuito con compuertas or exclusivas y nor. J = m(3,6,9,,2,5) /C / Como debemos trabajar con compuertas OR exclusivas (ORE) del diagrama se ve que C intersecta a + =, siguiendo este razonamiento encontramos las otras dos intersecciones dos intersecciones, J = C ( ) + C( ) + C( ) J = ( )( C) + C( ) l pero C = ( C + C) C = ( C)( + C) () y ( )( C) = ( )( C)( + C) (2) con esto J = ( C)( )( + C) + ( + C)( C)( ) J = ( + C)( C ) Los pasos () y (2) son bastante difíciles para deducir, por eso a veces es conveniente trabajar con los diagramas K. El primer diagrama se eligió pues representa la función F = C mientras que el segundo es F2=+C que intersectados con el segundo producen el diagrama original

6 Página 6 de Introducción a los Sistemas Lógicos y igitales TPNº sí J = ( C )( + C) o J = C + + C Que puede implementarse con compuertas NOR y OR exclusiva solamente

7 Página 7 de Introducción a los Sistemas Lógicos y igitales TPNº 3 Ejercicio Nº 6 iseñar un comparador de numeros binarios sin signo ( y ) y ( y ) Con tres salidas que permitan detectar >, < y = Representaremos las situaciones posibles en la tabla > = < Para sintetizar cada función construiremos 2 diagramas de Karnaugh uno para cada desigualdad < > Las ecuaciones correspondientes serán < = + ( > = + ( + ) + )

8 Página 8 de Introducción a los Sistemas Lógicos y igitales TPNº 3 La igualdad obviamente se cumplirá cuando ninguna de las condiciones anteriores sea válida El circuito obtenido es

9 Página 9 de Introducción a los Sistemas Lógicos y igitales TPNº 3 Ejercicio Nº 9 adas las siguientes funciones encontrar posibles subfunciones comunes a ambas fin de minimizar la cantidad de compuertas necesarias para implementarlas. ibujar el circuito a) H = G = + C + + C e los diagramas se deduce G = + C Y G = ( C) + ( C) La región común, como surge del diagrama K es El circuito que se obtiene es

10 Página de Introducción a los Sistemas Lógicos y igitales TPNº 3 Ejercicio Nº Uncircuito recibe 2 números binarios de 2 bits Y =Y,Y y =,. La salida Z=Z,Z debe ser igual a si =Y, si Y> y si Y<. Realizar ) La tabla de Verdad,)Minimizar la función de salida,c) sintetizar el circuito. )Tabla de verdad Y Y Z Z ) Salidas minimizadas Z + = Y + Y + Y + YY Y Z = Y + Y + Y + Y + Y Y

11 Página de Introducción a los Sistemas Lógicos y igitales TPNº 3 c) Síntesis del circuito.

IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES

IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES SIMPLIFICACIÓN DE FUNCIONES LÓGICAS Para implementar mediante un circuito digital formado por puertas lógicas una función lógica el primer paso consiste en realizar

Más detalles

TRABAJO PRÁCTICO Nº 3 - EJERCICIOS RESUELTOS

TRABAJO PRÁCTICO Nº 3 - EJERCICIOS RESUELTOS TRBJO PRÁCTICO Nº 3 - EJERCICIOS RESUELTOS Ejercicio 1) a) F = B + BC + BC + C Comenzamos representando la función en el diagrama de Karnaugh (que nos permitirá visualizar los minitérminos y los maxitérminos

Más detalles

Tabla 5.2 Compuertas básicas A B A B A B

Tabla 5.2 Compuertas básicas A B A B A B Compuertas lógicas Un bloque lógico es una representación simbólica gráfica de una o más variables de entrada a un operador lógico, para obtener una señal determinada o resultado. Los símbolos varían de

Más detalles

ARQUITECTURA DE LAS COMPUTADORAS PRÁCTICA

ARQUITECTURA DE LAS COMPUTADORAS PRÁCTICA RQUITETUR E LS OMPUTORS PRÁTI INTROUION TEORI: IRUITOS LÓGIOS El Álgebra de oole o Álgebra ooleana es de dos estados o binaria. Los circuitos lógicos son circuitos que pueden analizarse con este álgebra.

Más detalles

ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas

ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I TEMA 4 Algebra booleana y puertas lógicas TEMA 4. Algebra booleana y puertas lógicas 4.1 Definición de álgebra de Boole 4.2 Teoremas del álgebra de Boole 4.3

Más detalles

3-Formas Canónicas. 3: Canónicas 1

3-Formas Canónicas. 3: Canónicas 1 3-Formas Canónicas 3.1 Expresiones canónicas: mintérminos y maxtérminos 3.2 Expansión a las formas canónicas 3.3 Síntesis de las formas canónicas 3.4 Diseño lógico y simplificación 3: Canónicas 1 Expresiones

Más detalles

EL LENGUAJE DE LAS COMPUTADORAS

EL LENGUAJE DE LAS COMPUTADORAS EL LENGUAJE DE LAS COMPUTADORAS AUTORÍA ANGEL MANUEL RUBIO ORTEGA TEMÁTICA ELECTRICIDAD, ELECTRÓNICA ETAPA ESO, BACHILLERATO Resumen Actualmente nos encontramos rodeados dispositivos digitales. Por ello

Más detalles

ARQUITECTURA DE LAS COMPUTADORAS TÉCNICAS DIGITALES (PRÁCTICA)

ARQUITECTURA DE LAS COMPUTADORAS TÉCNICAS DIGITALES (PRÁCTICA) RQUITETUR DE LS OMPUTDORS TÉNIS DIGITLES (PRÁTI) INTRODUION TEORI: IRUITOS LÓGIOS El Álgebra de oole o Álgebra ooleana es de dos estados o binaria. Los circuitos lógicos son circuitos que pueden analizarse

Más detalles

EJERCICIOS. a. Se les pide: b. Escriba la tabla de verdad c. Exprese la función en minterminos d. Exprese la función en maxterminos

EJERCICIOS. a. Se les pide: b. Escriba la tabla de verdad c. Exprese la función en minterminos d. Exprese la función en maxterminos Instituto Tecnológico de osta Rica Escuela de Ingeniería Electrónica urso: EL-3307 Diseño Lógico I Semestre 2007 Pro. Ing. José lberto Díaz García 24 de Febrero 2007 EJERIIOS I PRTE Simpliicación de unciones

Más detalles

Diseño de circuitos con puertas NAND y NOR. Fundamentos de los Computadores Grado en Ingeniería Informática

Diseño de circuitos con puertas NAND y NOR. Fundamentos de los Computadores Grado en Ingeniería Informática 2. Simplificación de funciones booleanas: Método de Karnaugh Diseño de circuitos con puertas NND y NOR Fundamentos de los Computadores Grado en Ingeniería Informática Introducción Las puertas NND y NOR

Más detalles

Álgebra de Boole. Valparaíso, 1 er Semestre Prof. Rodrigo Araya E.

Álgebra de Boole. Valparaíso, 1 er Semestre Prof. Rodrigo Araya E. Prof. Rodrigo Araya E. [email protected] Universidad Técnica Federico Santa María Departamento de Informática Valparaíso, 1 er Semestre 2006 1 2 3 4 Contenido En 1815 George Boole propuso una herramienta

Más detalles

El diagrama de bloques propuesto, se presenta a continuación: Los Circuitos Integrados que se van a utilizar: 7483.

El diagrama de bloques propuesto, se presenta a continuación: Los Circuitos Integrados que se van a utilizar: 7483. Ejercicio 6.1: Realizar un convertidor BCD-Aiken a BCD-Natural y otro BCD-Natural a BCD-Aiken. Para ello, deben utilizarse el sumador 7483 y el mínimo numero de puertas lógicas necesarias. Utilizando estos

Más detalles

GUIA 4: ALGEBRA DE BOOLE

GUIA 4: ALGEBRA DE BOOLE GUIA 4: ALGEBRA DE BOOLE En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra de Boole nos

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 3 Algebra Booleana y Puertas Lógicas

Más detalles

Universidad Autónoma de Baja California

Universidad Autónoma de Baja California Universidad Autónoma de Baja California Facultad de Ingeniería, Arquitectura y Diseño Práctica de laboratorio Programa educativo Plan de estudio Clave asignatura Nombre de la asignatura Bioingeniería 2009-2

Más detalles

Circuitos Electrónicos Digitales E.T.S.I. Telecomunicación Universidad Politécnica de Madrid

Circuitos Electrónicos Digitales E.T.S.I. Telecomunicación Universidad Politécnica de Madrid Circuitos Electrónicos Digitales E.T.S.I. Telecomunicación Universidad Politécnica de Madrid Álgebra de conmutación y simplificación de funciones lógicas Álgebra Booleana. Análisis de circuitos combinacionales.

Más detalles

Certamen 2 Sistemas Digitales 01/2003 Nombre Solución Rol

Certamen 2 Sistemas Digitales 01/2003 Nombre Solución Rol Certamen Sistemas igitales /3 Nombre Solución Rol. Implementar un sumador binario de dos bits. AB forman un numero binario de dos bits y C forma el otro número binario de dos bits. La salida es un número

Más detalles

LECCIÓN Nº 02 FUNCIONES DE LOGICA COMBINACIONAL (PARTE 1)

LECCIÓN Nº 02 FUNCIONES DE LOGICA COMBINACIONAL (PARTE 1) LECCIÓN Nº 02 FUNCIONES DE LOGICA COMBINACIONAL (PARTE 1) 1. CONVERSORES DE CODIGO La disponibilidad de una gran variedad de códigos para los mismos elementos discretos de información origina el uso de

Más detalles

Tema I EXIGENCIAS COMPUTACIONALES DEL PROCESAMIENTO DIGITAL DE LA INFORMACION

Tema I EXIGENCIAS COMPUTACIONALES DEL PROCESAMIENTO DIGITAL DE LA INFORMACION Tema I EXIGENCIAS COMPUTACIONALES DEL PROCESAMIENTO DIGITAL DE LA INFORMACION Tutor: Manuel Fernández Barcell Centro asociado de Cádiz http://prof.mfbarcell.es TEMA 1: EXIGENCIAS COMPUTACIONALES DEL PROCESAMIENTO

Más detalles

Simplificación de funciones lógicas utilizando Karnaugh

Simplificación de funciones lógicas utilizando Karnaugh Simplificación de funciones lógicas utilizando Página Objetivos de la simplificación Objetivo: minimizar el costo de la función lógica Medición del costo y otras consideraciones Número de compuertas Número

Más detalles

El número decimal 57, en formato binario es igual a:

El número decimal 57, en formato binario es igual a: CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. NÚMEROS BINARIOS EJEMPLO En el cuadro anterior, está la representación de los números binarios en formato

Más detalles

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS Bloque V. Control y programación de sistemas automáticos pág. 1 Bloque V. Control y programación de sistemas automáticos pág. 2 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN

Más detalles

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS Bloque V. Control y programación de sistemas automáticos pág. 1 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN BINARIA 1.1. Sistemas de numeración y códigos Def. Sistema de

Más detalles

Técnicas de Reducción de Funciones Lógicas

Técnicas de Reducción de Funciones Lógicas apítulo 6 ❻ Técnicas de Reducción de Funciones Lógicas En este capítulo se presentan las técnicas tradicionales para la simplificación de funciones lógicas en forma manual, es decir, el uso de los Mapas

Más detalles

ALGEBRA DE BOOLE. Curso Completo de Electrónica Digital. Capítulo La operación CURSO

ALGEBRA DE BOOLE. Curso Completo de Electrónica Digital. Capítulo La operación CURSO CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 3 ALGEBRA DE BOOLE Continuación...

Más detalles

TEMA PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS.

TEMA PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS. PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS. ÍNDICE.- INTRODUCCIÓN... 2.- ELECTRÓNICA DIGITAL... 3.. SISTEMAS DE NUMERACIÓN... 3.2. SEÑAL DIGITAL BINARIA... 3.3. SISTEMAS

Más detalles

ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES.

ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES. 1 ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES. Podemos dividir la electrónica en dos grandes campos: la electrónica analógica y la electrónica digital, según el tipo de señales

Más detalles

Lógica Digital - Circuitos Combinatorios

Lógica Digital - Circuitos Combinatorios Lógica Digital - Circuitos Combinatorios Expositor: Esteban Pontnau Primer Cuatrimestre de 2012 Departamento de Computación, FCEyN,Universidad de Buenos Aires. 3 de abril de 2012 Objetivos de la clase

Más detalles

Axiomas Básicos. ...Axiomas Básicos. Arquitecturas de Computadores Prof. MAURICIO SOLAR 3 Algebra de Boole. Temario.

Axiomas Básicos. ...Axiomas Básicos. Arquitecturas de Computadores Prof. MAURICIO SOLAR 3 Algebra de Boole. Temario. 27-4-2 Temario Arquitecturas de Computadores Prof. MAURICIO SOLAR 3 Algebra de Boole Introducción 2 Axiomas Básicos 3 Definiciones 4 Teoremas 5 Funciones 6 Compuertas Lógicas 7 Minimización de Funciones

Más detalles

Figura 1. La puerta NAND

Figura 1. La puerta NAND Otras Compuertas Lógicas Los más complejos sistemas digitales, como, por ejemplo, las grandes computadoras, se construyen con puertas lógicas básicas. Las puertas NOT, OR y AND son las fundamentales. Cuatro

Más detalles

Sistemas Digitales I

Sistemas Digitales I UNIVERSIDAD INDUSTRIAL DE SANTANDER Sistemas Digitales I Taller No1 Profesor: Carlos A. Fajardo Mayo de 2015 Temas: Representación digital de los Datos, Algebra de Boole, Funciones Lógicas, Introducción

Más detalles

Funciones Lógicas Y Métodos De Minimización

Funciones Lógicas Y Métodos De Minimización Circuitos Digitales I Funciones lógicas Tema III Funciones Lógicas Y Métodos De Minimización Circuito combinacional: Un circuito cuya salida depende únicamente del estado actual de sus entradas. Puedes

Más detalles

Circuitos combinacionales. Tema 6

Circuitos combinacionales. Tema 6 Circuitos combinacionales Tema 6 Qué sabrás al final del tema? Conocer las formas canónicas de una función Implementar funciones con dos niveles de puertas lógicas AND / OR OR / AND Implementación con

Más detalles

Tema 5: Álgebra de Boole Funciones LógicasL

Tema 5: Álgebra de Boole Funciones LógicasL Tema 5: Álgebra de Boole Funciones LógicasL Ingeniería Informática Universidad Autónoma de Madrid 1 Álgebra de Boole.. Funciones LógicasL O B J E T I V O S Conocer el Álgebra de Boole, sus teoremas y las

Más detalles

d)la primera función con un mux de 2 entradas de control, tomando como variables de control las dos más significativas

d)la primera función con un mux de 2 entradas de control, tomando como variables de control las dos más significativas HOJAS DE PROBLEMAS CORRESPONDIENTE A LOS TEMAS 3 Y 4 PROBLEMA Partiendo de la suma de productos canónica implementar un sistema combinacional de tres entradas y dos salidas de manera que una salida se

Más detalles

GUIA 6: MAPAS DE KARNAUGH. A B C f A A

GUIA 6: MAPAS DE KARNAUGH. A B C f A A RQUITETUR DEL OMPUTDOR Prof. Sandro ostantini GUI 6: MPS DE RNUGH Los mapas de arnaugh constituyen un método sencillo y apropiado para la minimización de funciones lógicas. El tamaño del mapa depende depende

Más detalles

Funciones canónicas. Diagramas de Karnaugh

Funciones canónicas. Diagramas de Karnaugh Funciones canónicas y Diagramas de Karnaugh Realizado por Sergio Noriega Introducción a los Sistemas Lógicos y Digitales Departamento de Electrotécnia Facultad de Ingeniería Universidad Nacional de La

Más detalles

Arquitectura de Computadoras 2015 Práctico 03. Práctico 3. Álgebra de Boole. Método de Karnaugh. Circuitos lógicos combinatorios.

Arquitectura de Computadoras 2015 Práctico 03. Práctico 3. Álgebra de Boole. Método de Karnaugh. Circuitos lógicos combinatorios. Práctico 3 Álgebra de Boole. Método de Karnaugh. Circuitos lógicos combinatorios. Objetivo Conocer y entrenarse en las técnicas para la construcción de circuitos combinatorios de mediano porte. Conocer

Más detalles

Puertas lógicas. Técnicas de diseño y simplificación de funciones lógicas.

Puertas lógicas. Técnicas de diseño y simplificación de funciones lógicas. Puertas lógicas. Técnicas de diseño y simplificación de funciones lógicas. Introducción La electrónica digital está basada en una teoría binaria cuya estructura matemática fue desarrollada por George Boole

Más detalles

Codificación de la información y álgebra de conmutación EDIG

Codificación de la información y álgebra de conmutación EDIG Codificación de la información y álgebra de conmutación Analógico vs. digital Analógico: Las señales varían de forma continua en un rango dado de tensiones, corrientes, etc. Digital: Las señales varían

Más detalles

Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores

Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores Bloque : Sistemas combinacionales Tema 4: Algebra de Boole y funciones lógicas Pablo Huerta Pellitero ÍNDICE Bibliografía

Más detalles

Circuitos Combinatorios

Circuitos Combinatorios Circuitos Combinatorios Primer Cuatrimestre de 2010 Departamento de Computación, FCEyN,Universidad de Buenos Aires. 7 de abril de 2010 Objetivos de la clase de hoy Repasar los operadores y propiedades

Más detalles

Algebra de Boole. Introducción a los Sistemas Lógicos y Digitales 2018

Algebra de Boole. Introducción a los Sistemas Lógicos y Digitales 2018 Introducción a los Sistemas Lógicos y Digitales 2018 Sergio Noriega Introducción a los Sistemas Lógicos y Digitales - 2018 Los sistemas digitales emplean generalmente señales que pueden adoptar dos estados

Más detalles

Algebra de Boole Introducción a los Sistemas Lógicos y Digitales 2008 Sergio Noriega Introducción a los Sistemas Lógicos y Digitales

Algebra de Boole Introducción a los Sistemas Lógicos y Digitales 2008 Sergio Noriega Introducción a los Sistemas Lógicos y Digitales lgebra de Boole Introducción n a los Sistemas Lógicos y Digitales 28 Sergio Noriega Introducción a los Sistemas Lógicos y Digitales - 28 lgebra de Boole Los sistemas digitales emplean generalmente señales

Más detalles

HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS

HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS f Universidad Rey Juan Carlos Grado en Ingeniería Informática Fundamentos de Computadores HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS. Dado el módulo combinacional de la figura se pide dibujar

Más detalles

Profesor Rubén Martín Pérez ELECTRÓNICA DIGITAL. TECNOLOGÍA 4º ESO ELECTRÓNICA DIGITAL

Profesor Rubén Martín Pérez ELECTRÓNICA DIGITAL. TECNOLOGÍA 4º ESO ELECTRÓNICA DIGITAL INDICE: ELECTRÓNICA DIGITAL. INTRODUCCIÓN.. TIPOS DE SEÑALES. 2. REPRESENTACIÓN DE LAS SEÑALES DIGITALES. 3. SISTEMA BINARIO. 4. FUNCIONES BÁSICAS. 5. COMBINACIONES ENTRE FUNCIONES BÁSICAS. 6. PROPIEDADES

Más detalles

SUMADORES Y COMPARADORES

SUMADORES Y COMPARADORES Universidad Nacional de Quilmes Diplomatura en Ciencia y Tecnología Circuito semisumador de un bit. TÉCNICAS DIGITALES Los circuitos sumadores entregan 2 datos: suma (S) y acarreo (A), y, este circuito

Más detalles

TECNOLOGÍA DE COMPUTADORES. CURSO 2017/18. Problemas propuestos tema 7

TECNOLOGÍA DE COMPUTADORES. CURSO 2017/18. Problemas propuestos tema 7 TECNOLOGÍA DE COMPUTADORES. CURSO 2017/18. Problemas propuestos tema 7 1) Identifica el circuito de la figura: A Codificador 2x4 con Enable invertido B Decodificador 2x4 con salida invertida C Decodificador

Más detalles

Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole

Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Índice Algebra de Boole. Definición. Operaciones lógicas: OR, AND, XOR y NOT Puertas lógicas Algebra de Boole Postulados Teoremas

Más detalles

Álgebra de Boole. Diseño Lógico

Álgebra de Boole. Diseño Lógico Álgebra de Boole. Diseño Lógico Fundamentos de Computadores Escuela Politécnica Superior. UAM Alguna de las trasparencias utilizadas son traducción de las facilitadas con el libro Digital Design & Computer

Más detalles

HOJA DE PROBLEMAS 5: ESPECIFICACIÓN Y DISEÑO DE CIRCUITOS COMBINACIONALES

HOJA DE PROBLEMAS 5: ESPECIFICACIÓN Y DISEÑO DE CIRCUITOS COMBINACIONALES Universidad Rey Juan Carlos Grado en Ingeniería de Computadores Tecnología de Computadores HOJA DE PROBLEMAS 5: ESPECIFICACIÓN Y DISEÑO DE CIRCUITOS COMBINACIONALES 1. Para cada una de las funciones dadas

Más detalles

TRABAJO PRÁCTICO Nº 3. Expresiones booleanas, tablas de verdad y compuertas lógicas

TRABAJO PRÁCTICO Nº 3. Expresiones booleanas, tablas de verdad y compuertas lógicas Sistemas Digitales TRABAJO PRÁCTICO Nº 3 Expresiones booleanas, tablas de verdad y compuertas lógicas Ejercicio Nº 1: Dadas las siguientes funciones: F ( A, B, C, D) = C.( D + A) + A. C.( B + D 1 ) F 2

Más detalles

Unidad Didáctica Electrónica Digital 4º ESO

Unidad Didáctica Electrónica Digital 4º ESO Unidad Didáctica Electrónica Digital 4º ESO ÍNDICE 1. INTRODUCCIÓN 2. SISTEMAS DE NUMERACIÓN 3. PUERTAS LÓGICAS 4. FUNCIONES LÓGICAS 1.- Introducción Señal analógica. Señal digital Una señal analógica

Más detalles

Compuertas Lógicas, Algebra Booleana

Compuertas Lógicas, Algebra Booleana Compuertas Lógicas, Algebra Booleana Representación de números negativos Herramientas para conversión y operaciones aritméticas Evaluación BIN DEC DEC Revisión Evaluación Compuertas lógicas Algebra Booleana

Más detalles

EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES

EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES Ejercicio PAU Septiembre 2010/2011 a) Rellenamos la tabla de la verdad colocando salidas 1 en las posiciones indicadas: Posición a b c d f 0 0 0

Más detalles

Sistemas informáticos industriales. Algebra de Boole

Sistemas informáticos industriales. Algebra de Boole Sistemas informáticos industriales 2016 lgebra de oole lgebra oole Se denomina así en honor a George oole (1815-1864). El algebra de oole se emplea en sistema de control digitales, desde los sistemas de

Más detalles

DESIGUALDADES. AXIOMA 1.- Tricotomía de los números reales. Si a y b son números reales entonces se cumple una y solo una de las relaciones

DESIGUALDADES. AXIOMA 1.- Tricotomía de los números reales. Si a y b son números reales entonces se cumple una y solo una de las relaciones DESIGUALDADES 4.1.- AXIOMAS DE ORDEN. Cualquier conjunto o Campo de números que satisface los siguientes 4 Axiomas se dice que es un conjunto de números ORDENADO. El conjunto o Campo de los números reales

Más detalles

Realizar la siguiente suma y expresar el resultado en hexadecimal: Teniendo los 3 valores expresados en la misma base, podemos realizar la suma:

Realizar la siguiente suma y expresar el resultado en hexadecimal: Teniendo los 3 valores expresados en la misma base, podemos realizar la suma: Realizar la siguiente suma y expresar el resultado en hexadecimal: 83/ d + 33/ 4 + 0/ b El primer paso consiste en expresar todos lo valores con la misma base. Para eso convertiremos los dos primeros valores

Más detalles

03. Introducción a los circuitos lógicos

03. Introducción a los circuitos lógicos 03. Introducción a los circuitos lógicos 1. LÓGICA DE PROPOSICIONES...2 PROPOSICIÓN...2 CONECTORES U OPERADORES LÓGICOS...2 Tablas de...2 Tautología...2 Contradicción...2 2. ÁLGEBRA DE BOOLE...3 AXIOMAS

Más detalles

MATEMÁTICAS DISCRETAS. UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios

MATEMÁTICAS DISCRETAS. UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios MATEMÁTICAS DISCRETAS UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios 2.1 CIRCUITOS COMBINATORIOS Inicie dando lectura a la subunidad 11.1, deténgase en el ejemplo 11.1.4, compare las tablas de los

Más detalles

Circuitos Combinatorios

Circuitos Combinatorios Circuitos Combinatorios Expositor: Esteban Pontnau Autor: Luis Agustín Nieto Primer Cuatrimestre de 2011 Departamento de Computación, FCEyN,Universidad de Buenos Aires. 5 de abril de 2011 Objetivos de

Más detalles

Compuertas Lógicas. Sergio Stive Solano Sabié. Agosto de 2012 MATEMÁTICA. Sergio Solano. Compuertas lógicas NAND, NOR, XOR y XNOR

Compuertas Lógicas. Sergio Stive Solano Sabié. Agosto de 2012 MATEMÁTICA. Sergio Solano. Compuertas lógicas NAND, NOR, XOR y XNOR XOR y Lógicas Sergio Stive Solano Agosto de 2012 XOR y Lógicas Sergio Stive Solano Agosto de 2012 XOR y XOR y Con las puertas básicas podemos implementar cualquier función booleana. Sin embargo existen

Más detalles

Curso Completo de Electrónica Digital

Curso Completo de Electrónica Digital CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez 4.3. Diseño de circuitos combinacionales

Más detalles

Existen diferentes compuertas lógicas y aquí mencionaremos las básicas pero a la vez quizá las más usadas:

Existen diferentes compuertas lógicas y aquí mencionaremos las básicas pero a la vez quizá las más usadas: Compuertas lógicas Las compuertas lógicas son dispositivos electrónicos utilizados para realizar lógica de conmutación. Son el equivalente a interruptores eléctricos o electromagnéticos. para utilizar

Más detalles

ALGEBRA BOOLEANA (ALGEBRA LOGICA)

ALGEBRA BOOLEANA (ALGEBRA LOGICA) ALGEBRA BOOLEANA Un sistema axiomático es una colección de conocimientos ordenados jerárquica-mente mediante reglas o leyes lógicas aplicadas a un número limitado de conceptos o principios básicos. Un

Más detalles

Tema 3. 2 Sistemas Combinacionales

Tema 3. 2 Sistemas Combinacionales Tema 3. 2 Sistemas Combinacionales Índice Circuitos combinacionales: concepto, análisis y síntesis. Métodos de simplificación de funciones lógicas. Estructuras combinacionales básicas Multiplexores Demultiplexores

Más detalles

Problemas propuestos. Simplificar las siguientes expresiones lógicas

Problemas propuestos. Simplificar las siguientes expresiones lógicas Razonar en base a los postulados y teoremas del álgebra de Boole si es posible o no definir un álgebra de Boole para tres elementos B = {0, a, 1} Demostrar los teoremas T1, T2, T7 y T9 mediante los postulados

Más detalles

LECCIÓN Nº 01 SISTEMAS COMBINACIONALES

LECCIÓN Nº 01 SISTEMAS COMBINACIONALES LECCIÓN Nº 01 SISTEMAS COMBINACIONALES 1. GENERALIDADES PUERTAS LOGICAS Una puerta lógica es un elemento que recibe varias entradas binarias (variables) y, dependiendo del estado de las entradas, su salida

Más detalles

Control y programación de sistemas automáticos: Algebra de Boole

Control y programación de sistemas automáticos: Algebra de Boole Control y programación de sistemas automáticos: Algebra de Boole Se denomina así en honor a George Boole, matemático inglés 1815-1864, que fue el primero en definirla como parte de un sistema lógico, a

Más detalles

CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA

CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA Las compuertas lógicas son bloques que realizan las operaciones básicas de la aritmética binaria del álgebra

Más detalles

2. ÁLGEBRA DE BOOLE OPERACIONES BÁSICAS DEL ÁLGEBRA DE BOOLE. OPERACIONES LÓGICAS.

2. ÁLGEBRA DE BOOLE OPERACIONES BÁSICAS DEL ÁLGEBRA DE BOOLE. OPERACIONES LÓGICAS. 2. ÁLGEBRA DE BOOLE 2..- Definición. 2.2.- Operaciones básicas. 2.3.- Propiedades o teoremas del álgebra de Boole. 2.4.- Función Booleana / Lógica. 2.5.- Representación de función Booleana. 2.6.- Formas

Más detalles

Suma de productos Producto de sumas. Fundamentos de los Computadores Grado en Ingeniería Informática

Suma de productos Producto de sumas. Fundamentos de los Computadores Grado en Ingeniería Informática 2. Simplificación de funciones booleanas: as Método de Karnaugh aug Suma de productos Producto de sumas Fundamentos de los Computadores Grado en Ingeniería Informática Introducción Los circuitos digitales

Más detalles

Operaciones Booleanas y Compuertas Básicas

Operaciones Booleanas y Compuertas Básicas Álgebra de Boole El álgebra booleana es la teoría matemática que se aplica en la lógica combinatoria. Las variables booleanas son símbolos utilizados para representar magnitudes lógicas y pueden tener

Más detalles

HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS

HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS f Universidad Rey Juan Carlos Grado en Ingeniería de Computadores Tecnología de Computadores HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS. Dado el módulo combinacional de la figura se pide dibujar

Más detalles

NOT. Ejemplo: Circuito C1

NOT. Ejemplo: Circuito C1 Métodos de diseño de circuitos digitales Sistemas combinacionales En un circuito combinacional los valores de las salidas dependen únicamente de los valores que tienen las entradas en el presente. Se construen

Más detalles

Sistemas Digitales I Taller No 2: Diseño de Circuitos combinacionales usando VHDL

Sistemas Digitales I Taller No 2: Diseño de Circuitos combinacionales usando VHDL UNIVERSIDAD INDUSTRIAL DE SANTANDER Escuela de Ingenierías Eléctrica, Electrónica y Telecomunicaciones Sistemas Digitales I Taller No 2: Diseño de Circuitos combinacionales usando VHDL Profesor: Carlos

Más detalles

Electrónica Digital: Sistemas Numéricos y Algebra de Boole

Electrónica Digital: Sistemas Numéricos y Algebra de Boole Electrónica Digital: Sistemas Numéricos y Algebra de Boole Profesor: Ing. Andrés Felipe Suárez Sánchez Grupo de Investigación en Percepción y Sistemas Inteligentes. Email: [email protected]

Más detalles

LABELN-ELN Laboratorio Nº 5 Circuitos Lógicos Combinacionales

LABELN-ELN Laboratorio Nº 5 Circuitos Lógicos Combinacionales 1 LABELN-ELN Laboratorio Nº 5 Circuitos Lógicos Combinacionales Objetivos Diseñar un circuito digital combinacional que permita realizar la suma de dos números binarios de 3 bits cada uno. Utilizar LEDs

Más detalles

EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES

EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES Ejercicio PAU Septiembre 2010/2011 a) Rellenamos la tabla de la verdad colocando salidas 1 en las posiciones indicadas: Posición a b c d f 0 0 0

Más detalles

TEMA 1. Sistemas Combinacionales.

TEMA 1. Sistemas Combinacionales. TEMA. Sistemas Combinacionales.. Introducción a los sistemas digitales. Familias lógicas (2-20) 2. Definición de circuito combinacional (2-25) 3. Funciones combinacionales. Simplificación e implementación

Más detalles

CIRCUITOS LÓGICOS. Lógica FCE 1. ALGEBRA DE BOOLE

CIRCUITOS LÓGICOS. Lógica FCE 1. ALGEBRA DE BOOLE Lógica FE IRUITOS LÓGIOS 1. LGER DE OOLE 1.1 Introducción Tanto la teoría de conjuntos como la lógica de enunciados tienen propiedades similares. Tales propiedades se utilizan para definir una estructura

Más detalles

1ª evaluación: 1: INTRODUCCIÓN A LOS SISTEMAS DIGITALES SISTEMAS DE NUMERACIÓN BINARIO OCTAL Y HEXADECIMAL CAMBIOS DE BASE

1ª evaluación: 1: INTRODUCCIÓN A LOS SISTEMAS DIGITALES SISTEMAS DE NUMERACIÓN BINARIO OCTAL Y HEXADECIMAL CAMBIOS DE BASE Electrónica digital Página 1 1ª evaluación: 1: 2: 3: 4: INTRODUCCIÓN A LOS SISTEMAS DIGITALES SISTEMAS DE NUMERACIÓN BINARIO OCTAL Y HEXADECIMAL CAMBIOS DE BASE ALGEBRA DE BOOLE POSTULADOS Y TEOREMAS PUERTAS

Más detalles

Fundamentos lógicos. Dpto. Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada

Fundamentos lógicos. Dpto. Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada Fundamentos lógicos Dpto. Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada www.elai.upm.es Álgebra de Boole Buena parte de los automatismos responden a la lógica binaria Las variables binarias

Más detalles

PROBLEMAS DE ELECTRÓNICA DIGITAL

PROBLEMAS DE ELECTRÓNICA DIGITAL PROBLEMAS DE ELECTRÓNICA DIGITAL 1. Expresa en base decimal y hexadecimal los siguientes números binarios: a. 10111 2. b. 10011011,11 2. 2. Expresa en base dos (binario) y decimal los siguientes número

Más detalles

UNIDAD 28 CIRCUITOS COMBINACIONALES. ÁLGEBRA DE BOOLE

UNIDAD 28 CIRCUITOS COMBINACIONALES. ÁLGEBRA DE BOOLE TECNOLOGÍA INDUSTRIAL II > CONTROL Y PROGRAMACIÓN DE SISTEMAS UNIDAD 28 CIRCUITOS COMBINACIONALES. ÁLGEBRA DE BOOLE A-Relación de ejercicios (con solución) 1.- Dada la función F = cba + cba + cba simplifícala

Más detalles

Paso 2. Escribir los términos AND para cada caso donde la salida sea 1. Paso 3. Escribir la expresión de suma de productos para la salida.

Paso 2. Escribir los términos AND para cada caso donde la salida sea 1. Paso 3. Escribir la expresión de suma de productos para la salida. Explicación del Tema Sesión 7 Diseño de circuitos lógicos combinatorios Cuando para todas las combinaciones de entrada se dan los niveles de salida para un circuito lógico, los resultados pueden expresarse

Más detalles

FUNDAMENTOS DE COMPUTADORES EJERCICIOS U1: Álgebra de Boole y Diseño Lógico

FUNDAMENTOS DE COMPUTADORES EJERCICIOS U1: Álgebra de Boole y Diseño Lógico U1_1. Realizar las siguientes operaciones (verificar las respuestas en decimal) a) onvertir a binario natural los números decimales 321, 1462, 205, 1023, 1024, 135, 45 y 967 b) onvertir a decimal los números

Más detalles

ALGEBRA BOOLEANA. CONMUTATIVO. Se dice que un operador binario º es conmutativo si A º B = B º A para todos los posibles valores de A y B.

ALGEBRA BOOLEANA. CONMUTATIVO. Se dice que un operador binario º es conmutativo si A º B = B º A para todos los posibles valores de A y B. ÁLGEBRA BOOLEANA UNEFA NUCLEO ZULIA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario º definido en éste juego de valores

Más detalles

Circuitos Electrónicos Digitales. Tema II Parte II. Álgebra de Conmutación

Circuitos Electrónicos Digitales. Tema II Parte II. Álgebra de Conmutación Circuitos Electrónicos Digitales Tema II Parte II Álgebra de Conmutación Índice 1.Álgebra de Conmutación 2.Funciones combinacionales 3.Formas normalizadas Álgebra de Conmutación Álgebra de Conmutación

Más detalles

Representación de la Información en un computador. Ingeniería de Sistema y Automática Universidad de Valladolid

Representación de la Información en un computador. Ingeniería de Sistema y Automática Universidad de Valladolid Representación de la Información en un computador Ingeniería de Sistema y Automática Universidad de Valladolid Índice Sistemas de numeración: Binarios Octales Hexadecimales Operaciones. Transformaciones

Más detalles

Simplificación y minimización por adyacencias

Simplificación y minimización por adyacencias Simplificación y minimización por adyacencias Resumen La simplificación y minimización por adyacencias utiliza los teoremas de complementos y de asociación del algebra booleana, aunada a la disposición

Más detalles

EJERCICIO No. 8 ALGEBRA BOOLEANA NOMBRE:

EJERCICIO No. 8 ALGEBRA BOOLEANA NOMBRE: EJERCICIO No. 8 ALGEBRA BOOLEANA NOMBRE: Algebra de Boole El álgebra de Boole es una forma adecuada y sistemática de expresar y analizar las operaciones de los circuitos lógicos. El álgebra de Boole son

Más detalles