ISLD. Diagrama de Karnaugh
|
|
|
- Mercedes Villalobos Ríos
- hace 7 años
- Vistas:
Transcripción
1 Página de Introducción a los Sistemas Lógicos y igitales TPNº 3 ISL TPNº3 iagrama de Karnaugh Ejercicio nº Convertir las siguientes funciones a la primera forma canónica y representarlas utilizando el diagrama de Karnaugh. a) F = C + C + C + C Primero transformamos la expresión en unión de mintérminos: F F = C + C + C + C ( + ) = C + C + C + C Esta expresión puede también representarse así: F = m(,,6,7) El diagrama de Karnaugh correspondiente es : C Ejercicio Nº 2 Idem anterior pero a segunda forma canónica b) G = m(,,2,5,7,9,,3,5),, C, plicando el teorema de e Morgan : G =,, C, m( 3,4,6,8,,2,4) (I) Puede observarse que en la expresión (I) esta el complemento de G
2 Página 2 de Introducción a los Sistemas Lógicos y igitales TPNº 3 Escrito en forma explícita en función de,,cy obtenemos G = C + C + C + C + C + C + C si negamos otra vez y aplicamos e Morgan queda : G= ( + + ) ( + + )( + + ) ( + + ) ( + + ) ( + + ) ( + + ) G = 2 M(, 3, 4, 7, 9,, 2) 9 otra forma de obtener los maxtérminos directamente de (I) cuando se tienen 4 variables es restarle a 5 ( por tratarse de un Karnaugh de 4 variables) los números correspondientes a los mintérminos 5-4= ; 5-2=3; 5-=4; 5-8=7; 5-6=9; 5-4=; 5-3=2. C ebemos recordar que los números de las casillas están negados (se indicaron solo dos numeros ) Por ej 9 equivale al maxterm + + C + Ejercicio Nº3 Expresar siguientes funciones en primera forma y simplificar utilizando el diagrama de Karnaugh a) H = m(, 5, 8,,, 2, 4, 5) C el diagrama se deduce que: H = + C + 8 9
3 Página 3 de Introducción a los Sistemas Lógicos y igitales TPNº 3 c) R = M (, 7,9,, 3, 5) Como se trata de una intersección de uniones representamos con ceros en lugar de unos ebemos recordar que los números de las casillas NO están negados, así que la disposición de variables en el diagrama K se invierte C Por inspección del diagrama K obtenemos R = ( + )( + C + )( + C + ) Podemos pasar a primera forma recordando que R =,, C, ( los minterminos pueden ser obtenidos reemplazado por ceros ) R = m(,2,3, 4,5, 6,8,,,, C, M (,2,3,4,5,6,8,,2,4) 2, 4) e donde resulta R = + C + C = + ( C) Nota: para verificar consideremos R = ( + )( + C + )( + C + ) de aquí R = + + = ( + C + C) = ( + C) = ( + C) + R = + ( C) f) P = m(7,8,9,2,4,9, 23, 24, 27, 29,3) + d(,,7, 26, 28,3) Se trata de un W,, Y, Z ejemplo con especificación incompleta. En este caso puede utilizarse cualquier x para simplificar el diseño pudiendo utilizarlas de acuerdo a nuestra conveniencia para agrupar
4 Página 4 de Introducción a los Sistemas Lógicos y igitales TPNº 3 C = E 3 2 C = E F = E + E + + E + C + E Ejercicio Nº 4 Simplificar las siguientes funciones utilizando el diagrama de Karnaugh sin pasar previamente a primera o segunda forma H = ( + C) ( + C + ) ( + + C ) ( + ) ( C + ).Se consideran los números de las casillas sin invertir /C Por ej se ha representado +C incluyendo las casillas,,4,5 Simplificando H = ( + C)( + )( + C )( C + ) el diagrama K se observa que faltan los maxterms 3,7,8,9. Como no se han invertido los numeros de las casillas para obtener la expresión en minterms basta con invertir las variables del diagrama K e indicar unos en las casillas vacías obteniendose H = (3,7,8,9) = + + +,, C, Simplificando por inspección del diagrama K ( basta con suponer unos en 3,7,8 y 9 queda H = + C
5 Página 5 de Introducción a los Sistemas Lógicos y igitales TPNº 3 Ejercicio Nº 5 ada la siguiente función sintetizarla e implementar el circuito con compuertas or exclusivas y nor. J = m(3,6,9,,2,5) /C / Como debemos trabajar con compuertas OR exclusivas (ORE) del diagrama se ve que C intersecta a + =, siguiendo este razonamiento encontramos las otras dos intersecciones dos intersecciones, J = C ( ) + C( ) + C( ) J = ( )( C) + C( ) l pero C = ( C + C) C = ( C)( + C) () y ( )( C) = ( )( C)( + C) (2) con esto J = ( C)( )( + C) + ( + C)( C)( ) J = ( + C)( C ) Los pasos () y (2) son bastante difíciles para deducir, por eso a veces es conveniente trabajar con los diagramas K. El primer diagrama se eligió pues representa la función F = C mientras que el segundo es F2=+C que intersectados con el segundo producen el diagrama original
6 Página 6 de Introducción a los Sistemas Lógicos y igitales TPNº sí J = ( C )( + C) o J = C + + C Que puede implementarse con compuertas NOR y OR exclusiva solamente
7 Página 7 de Introducción a los Sistemas Lógicos y igitales TPNº 3 Ejercicio Nº 6 iseñar un comparador de numeros binarios sin signo ( y ) y ( y ) Con tres salidas que permitan detectar >, < y = Representaremos las situaciones posibles en la tabla > = < Para sintetizar cada función construiremos 2 diagramas de Karnaugh uno para cada desigualdad < > Las ecuaciones correspondientes serán < = + ( > = + ( + ) + )
8 Página 8 de Introducción a los Sistemas Lógicos y igitales TPNº 3 La igualdad obviamente se cumplirá cuando ninguna de las condiciones anteriores sea válida El circuito obtenido es
9 Página 9 de Introducción a los Sistemas Lógicos y igitales TPNº 3 Ejercicio Nº 9 adas las siguientes funciones encontrar posibles subfunciones comunes a ambas fin de minimizar la cantidad de compuertas necesarias para implementarlas. ibujar el circuito a) H = G = + C + + C e los diagramas se deduce G = + C Y G = ( C) + ( C) La región común, como surge del diagrama K es El circuito que se obtiene es
10 Página de Introducción a los Sistemas Lógicos y igitales TPNº 3 Ejercicio Nº Uncircuito recibe 2 números binarios de 2 bits Y =Y,Y y =,. La salida Z=Z,Z debe ser igual a si =Y, si Y> y si Y<. Realizar ) La tabla de Verdad,)Minimizar la función de salida,c) sintetizar el circuito. )Tabla de verdad Y Y Z Z ) Salidas minimizadas Z + = Y + Y + Y + YY Y Z = Y + Y + Y + Y + Y Y
11 Página de Introducción a los Sistemas Lógicos y igitales TPNº 3 c) Síntesis del circuito.
IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES
IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES SIMPLIFICACIÓN DE FUNCIONES LÓGICAS Para implementar mediante un circuito digital formado por puertas lógicas una función lógica el primer paso consiste en realizar
TRABAJO PRÁCTICO Nº 3 - EJERCICIOS RESUELTOS
TRBJO PRÁCTICO Nº 3 - EJERCICIOS RESUELTOS Ejercicio 1) a) F = B + BC + BC + C Comenzamos representando la función en el diagrama de Karnaugh (que nos permitirá visualizar los minitérminos y los maxitérminos
Tabla 5.2 Compuertas básicas A B A B A B
Compuertas lógicas Un bloque lógico es una representación simbólica gráfica de una o más variables de entrada a un operador lógico, para obtener una señal determinada o resultado. Los símbolos varían de
ARQUITECTURA DE LAS COMPUTADORAS PRÁCTICA
RQUITETUR E LS OMPUTORS PRÁTI INTROUION TEORI: IRUITOS LÓGIOS El Álgebra de oole o Álgebra ooleana es de dos estados o binaria. Los circuitos lógicos son circuitos que pueden analizarse con este álgebra.
ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas
ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I TEMA 4 Algebra booleana y puertas lógicas TEMA 4. Algebra booleana y puertas lógicas 4.1 Definición de álgebra de Boole 4.2 Teoremas del álgebra de Boole 4.3
3-Formas Canónicas. 3: Canónicas 1
3-Formas Canónicas 3.1 Expresiones canónicas: mintérminos y maxtérminos 3.2 Expansión a las formas canónicas 3.3 Síntesis de las formas canónicas 3.4 Diseño lógico y simplificación 3: Canónicas 1 Expresiones
EL LENGUAJE DE LAS COMPUTADORAS
EL LENGUAJE DE LAS COMPUTADORAS AUTORÍA ANGEL MANUEL RUBIO ORTEGA TEMÁTICA ELECTRICIDAD, ELECTRÓNICA ETAPA ESO, BACHILLERATO Resumen Actualmente nos encontramos rodeados dispositivos digitales. Por ello
ARQUITECTURA DE LAS COMPUTADORAS TÉCNICAS DIGITALES (PRÁCTICA)
RQUITETUR DE LS OMPUTDORS TÉNIS DIGITLES (PRÁTI) INTRODUION TEORI: IRUITOS LÓGIOS El Álgebra de oole o Álgebra ooleana es de dos estados o binaria. Los circuitos lógicos son circuitos que pueden analizarse
EJERCICIOS. a. Se les pide: b. Escriba la tabla de verdad c. Exprese la función en minterminos d. Exprese la función en maxterminos
Instituto Tecnológico de osta Rica Escuela de Ingeniería Electrónica urso: EL-3307 Diseño Lógico I Semestre 2007 Pro. Ing. José lberto Díaz García 24 de Febrero 2007 EJERIIOS I PRTE Simpliicación de unciones
Diseño de circuitos con puertas NAND y NOR. Fundamentos de los Computadores Grado en Ingeniería Informática
2. Simplificación de funciones booleanas: Método de Karnaugh Diseño de circuitos con puertas NND y NOR Fundamentos de los Computadores Grado en Ingeniería Informática Introducción Las puertas NND y NOR
Álgebra de Boole. Valparaíso, 1 er Semestre Prof. Rodrigo Araya E.
Prof. Rodrigo Araya E. [email protected] Universidad Técnica Federico Santa María Departamento de Informática Valparaíso, 1 er Semestre 2006 1 2 3 4 Contenido En 1815 George Boole propuso una herramienta
El diagrama de bloques propuesto, se presenta a continuación: Los Circuitos Integrados que se van a utilizar: 7483.
Ejercicio 6.1: Realizar un convertidor BCD-Aiken a BCD-Natural y otro BCD-Natural a BCD-Aiken. Para ello, deben utilizarse el sumador 7483 y el mínimo numero de puertas lógicas necesarias. Utilizando estos
GUIA 4: ALGEBRA DE BOOLE
GUIA 4: ALGEBRA DE BOOLE En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra de Boole nos
Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta
Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 3 Algebra Booleana y Puertas Lógicas
Universidad Autónoma de Baja California
Universidad Autónoma de Baja California Facultad de Ingeniería, Arquitectura y Diseño Práctica de laboratorio Programa educativo Plan de estudio Clave asignatura Nombre de la asignatura Bioingeniería 2009-2
Circuitos Electrónicos Digitales E.T.S.I. Telecomunicación Universidad Politécnica de Madrid
Circuitos Electrónicos Digitales E.T.S.I. Telecomunicación Universidad Politécnica de Madrid Álgebra de conmutación y simplificación de funciones lógicas Álgebra Booleana. Análisis de circuitos combinacionales.
Certamen 2 Sistemas Digitales 01/2003 Nombre Solución Rol
Certamen Sistemas igitales /3 Nombre Solución Rol. Implementar un sumador binario de dos bits. AB forman un numero binario de dos bits y C forma el otro número binario de dos bits. La salida es un número
LECCIÓN Nº 02 FUNCIONES DE LOGICA COMBINACIONAL (PARTE 1)
LECCIÓN Nº 02 FUNCIONES DE LOGICA COMBINACIONAL (PARTE 1) 1. CONVERSORES DE CODIGO La disponibilidad de una gran variedad de códigos para los mismos elementos discretos de información origina el uso de
Tema I EXIGENCIAS COMPUTACIONALES DEL PROCESAMIENTO DIGITAL DE LA INFORMACION
Tema I EXIGENCIAS COMPUTACIONALES DEL PROCESAMIENTO DIGITAL DE LA INFORMACION Tutor: Manuel Fernández Barcell Centro asociado de Cádiz http://prof.mfbarcell.es TEMA 1: EXIGENCIAS COMPUTACIONALES DEL PROCESAMIENTO
Simplificación de funciones lógicas utilizando Karnaugh
Simplificación de funciones lógicas utilizando Página Objetivos de la simplificación Objetivo: minimizar el costo de la función lógica Medición del costo y otras consideraciones Número de compuertas Número
El número decimal 57, en formato binario es igual a:
CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. NÚMEROS BINARIOS EJEMPLO En el cuadro anterior, está la representación de los números binarios en formato
BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS
Bloque V. Control y programación de sistemas automáticos pág. 1 Bloque V. Control y programación de sistemas automáticos pág. 2 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN
BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS
Bloque V. Control y programación de sistemas automáticos pág. 1 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN BINARIA 1.1. Sistemas de numeración y códigos Def. Sistema de
Técnicas de Reducción de Funciones Lógicas
apítulo 6 ❻ Técnicas de Reducción de Funciones Lógicas En este capítulo se presentan las técnicas tradicionales para la simplificación de funciones lógicas en forma manual, es decir, el uso de los Mapas
ALGEBRA DE BOOLE. Curso Completo de Electrónica Digital. Capítulo La operación CURSO
CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 3 ALGEBRA DE BOOLE Continuación...
TEMA PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS.
PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS. ÍNDICE.- INTRODUCCIÓN... 2.- ELECTRÓNICA DIGITAL... 3.. SISTEMAS DE NUMERACIÓN... 3.2. SEÑAL DIGITAL BINARIA... 3.3. SISTEMAS
ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES.
1 ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES. Podemos dividir la electrónica en dos grandes campos: la electrónica analógica y la electrónica digital, según el tipo de señales
Lógica Digital - Circuitos Combinatorios
Lógica Digital - Circuitos Combinatorios Expositor: Esteban Pontnau Primer Cuatrimestre de 2012 Departamento de Computación, FCEyN,Universidad de Buenos Aires. 3 de abril de 2012 Objetivos de la clase
Axiomas Básicos. ...Axiomas Básicos. Arquitecturas de Computadores Prof. MAURICIO SOLAR 3 Algebra de Boole. Temario.
27-4-2 Temario Arquitecturas de Computadores Prof. MAURICIO SOLAR 3 Algebra de Boole Introducción 2 Axiomas Básicos 3 Definiciones 4 Teoremas 5 Funciones 6 Compuertas Lógicas 7 Minimización de Funciones
Figura 1. La puerta NAND
Otras Compuertas Lógicas Los más complejos sistemas digitales, como, por ejemplo, las grandes computadoras, se construyen con puertas lógicas básicas. Las puertas NOT, OR y AND son las fundamentales. Cuatro
Sistemas Digitales I
UNIVERSIDAD INDUSTRIAL DE SANTANDER Sistemas Digitales I Taller No1 Profesor: Carlos A. Fajardo Mayo de 2015 Temas: Representación digital de los Datos, Algebra de Boole, Funciones Lógicas, Introducción
Funciones Lógicas Y Métodos De Minimización
Circuitos Digitales I Funciones lógicas Tema III Funciones Lógicas Y Métodos De Minimización Circuito combinacional: Un circuito cuya salida depende únicamente del estado actual de sus entradas. Puedes
Circuitos combinacionales. Tema 6
Circuitos combinacionales Tema 6 Qué sabrás al final del tema? Conocer las formas canónicas de una función Implementar funciones con dos niveles de puertas lógicas AND / OR OR / AND Implementación con
Tema 5: Álgebra de Boole Funciones LógicasL
Tema 5: Álgebra de Boole Funciones LógicasL Ingeniería Informática Universidad Autónoma de Madrid 1 Álgebra de Boole.. Funciones LógicasL O B J E T I V O S Conocer el Álgebra de Boole, sus teoremas y las
d)la primera función con un mux de 2 entradas de control, tomando como variables de control las dos más significativas
HOJAS DE PROBLEMAS CORRESPONDIENTE A LOS TEMAS 3 Y 4 PROBLEMA Partiendo de la suma de productos canónica implementar un sistema combinacional de tres entradas y dos salidas de manera que una salida se
GUIA 6: MAPAS DE KARNAUGH. A B C f A A
RQUITETUR DEL OMPUTDOR Prof. Sandro ostantini GUI 6: MPS DE RNUGH Los mapas de arnaugh constituyen un método sencillo y apropiado para la minimización de funciones lógicas. El tamaño del mapa depende depende
Funciones canónicas. Diagramas de Karnaugh
Funciones canónicas y Diagramas de Karnaugh Realizado por Sergio Noriega Introducción a los Sistemas Lógicos y Digitales Departamento de Electrotécnia Facultad de Ingeniería Universidad Nacional de La
Arquitectura de Computadoras 2015 Práctico 03. Práctico 3. Álgebra de Boole. Método de Karnaugh. Circuitos lógicos combinatorios.
Práctico 3 Álgebra de Boole. Método de Karnaugh. Circuitos lógicos combinatorios. Objetivo Conocer y entrenarse en las técnicas para la construcción de circuitos combinatorios de mediano porte. Conocer
Puertas lógicas. Técnicas de diseño y simplificación de funciones lógicas.
Puertas lógicas. Técnicas de diseño y simplificación de funciones lógicas. Introducción La electrónica digital está basada en una teoría binaria cuya estructura matemática fue desarrollada por George Boole
Codificación de la información y álgebra de conmutación EDIG
Codificación de la información y álgebra de conmutación Analógico vs. digital Analógico: Las señales varían de forma continua en un rango dado de tensiones, corrientes, etc. Digital: Las señales varían
Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores
Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores Bloque : Sistemas combinacionales Tema 4: Algebra de Boole y funciones lógicas Pablo Huerta Pellitero ÍNDICE Bibliografía
Circuitos Combinatorios
Circuitos Combinatorios Primer Cuatrimestre de 2010 Departamento de Computación, FCEyN,Universidad de Buenos Aires. 7 de abril de 2010 Objetivos de la clase de hoy Repasar los operadores y propiedades
Algebra de Boole. Introducción a los Sistemas Lógicos y Digitales 2018
Introducción a los Sistemas Lógicos y Digitales 2018 Sergio Noriega Introducción a los Sistemas Lógicos y Digitales - 2018 Los sistemas digitales emplean generalmente señales que pueden adoptar dos estados
Algebra de Boole Introducción a los Sistemas Lógicos y Digitales 2008 Sergio Noriega Introducción a los Sistemas Lógicos y Digitales
lgebra de Boole Introducción n a los Sistemas Lógicos y Digitales 28 Sergio Noriega Introducción a los Sistemas Lógicos y Digitales - 28 lgebra de Boole Los sistemas digitales emplean generalmente señales
HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS
f Universidad Rey Juan Carlos Grado en Ingeniería Informática Fundamentos de Computadores HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS. Dado el módulo combinacional de la figura se pide dibujar
Profesor Rubén Martín Pérez ELECTRÓNICA DIGITAL. TECNOLOGÍA 4º ESO ELECTRÓNICA DIGITAL
INDICE: ELECTRÓNICA DIGITAL. INTRODUCCIÓN.. TIPOS DE SEÑALES. 2. REPRESENTACIÓN DE LAS SEÑALES DIGITALES. 3. SISTEMA BINARIO. 4. FUNCIONES BÁSICAS. 5. COMBINACIONES ENTRE FUNCIONES BÁSICAS. 6. PROPIEDADES
SUMADORES Y COMPARADORES
Universidad Nacional de Quilmes Diplomatura en Ciencia y Tecnología Circuito semisumador de un bit. TÉCNICAS DIGITALES Los circuitos sumadores entregan 2 datos: suma (S) y acarreo (A), y, este circuito
TECNOLOGÍA DE COMPUTADORES. CURSO 2017/18. Problemas propuestos tema 7
TECNOLOGÍA DE COMPUTADORES. CURSO 2017/18. Problemas propuestos tema 7 1) Identifica el circuito de la figura: A Codificador 2x4 con Enable invertido B Decodificador 2x4 con salida invertida C Decodificador
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Índice Algebra de Boole. Definición. Operaciones lógicas: OR, AND, XOR y NOT Puertas lógicas Algebra de Boole Postulados Teoremas
Álgebra de Boole. Diseño Lógico
Álgebra de Boole. Diseño Lógico Fundamentos de Computadores Escuela Politécnica Superior. UAM Alguna de las trasparencias utilizadas son traducción de las facilitadas con el libro Digital Design & Computer
HOJA DE PROBLEMAS 5: ESPECIFICACIÓN Y DISEÑO DE CIRCUITOS COMBINACIONALES
Universidad Rey Juan Carlos Grado en Ingeniería de Computadores Tecnología de Computadores HOJA DE PROBLEMAS 5: ESPECIFICACIÓN Y DISEÑO DE CIRCUITOS COMBINACIONALES 1. Para cada una de las funciones dadas
TRABAJO PRÁCTICO Nº 3. Expresiones booleanas, tablas de verdad y compuertas lógicas
Sistemas Digitales TRABAJO PRÁCTICO Nº 3 Expresiones booleanas, tablas de verdad y compuertas lógicas Ejercicio Nº 1: Dadas las siguientes funciones: F ( A, B, C, D) = C.( D + A) + A. C.( B + D 1 ) F 2
Unidad Didáctica Electrónica Digital 4º ESO
Unidad Didáctica Electrónica Digital 4º ESO ÍNDICE 1. INTRODUCCIÓN 2. SISTEMAS DE NUMERACIÓN 3. PUERTAS LÓGICAS 4. FUNCIONES LÓGICAS 1.- Introducción Señal analógica. Señal digital Una señal analógica
Compuertas Lógicas, Algebra Booleana
Compuertas Lógicas, Algebra Booleana Representación de números negativos Herramientas para conversión y operaciones aritméticas Evaluación BIN DEC DEC Revisión Evaluación Compuertas lógicas Algebra Booleana
EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES
EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES Ejercicio PAU Septiembre 2010/2011 a) Rellenamos la tabla de la verdad colocando salidas 1 en las posiciones indicadas: Posición a b c d f 0 0 0
Sistemas informáticos industriales. Algebra de Boole
Sistemas informáticos industriales 2016 lgebra de oole lgebra oole Se denomina así en honor a George oole (1815-1864). El algebra de oole se emplea en sistema de control digitales, desde los sistemas de
DESIGUALDADES. AXIOMA 1.- Tricotomía de los números reales. Si a y b son números reales entonces se cumple una y solo una de las relaciones
DESIGUALDADES 4.1.- AXIOMAS DE ORDEN. Cualquier conjunto o Campo de números que satisface los siguientes 4 Axiomas se dice que es un conjunto de números ORDENADO. El conjunto o Campo de los números reales
Realizar la siguiente suma y expresar el resultado en hexadecimal: Teniendo los 3 valores expresados en la misma base, podemos realizar la suma:
Realizar la siguiente suma y expresar el resultado en hexadecimal: 83/ d + 33/ 4 + 0/ b El primer paso consiste en expresar todos lo valores con la misma base. Para eso convertiremos los dos primeros valores
03. Introducción a los circuitos lógicos
03. Introducción a los circuitos lógicos 1. LÓGICA DE PROPOSICIONES...2 PROPOSICIÓN...2 CONECTORES U OPERADORES LÓGICOS...2 Tablas de...2 Tautología...2 Contradicción...2 2. ÁLGEBRA DE BOOLE...3 AXIOMAS
MATEMÁTICAS DISCRETAS. UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios
MATEMÁTICAS DISCRETAS UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios 2.1 CIRCUITOS COMBINATORIOS Inicie dando lectura a la subunidad 11.1, deténgase en el ejemplo 11.1.4, compare las tablas de los
Circuitos Combinatorios
Circuitos Combinatorios Expositor: Esteban Pontnau Autor: Luis Agustín Nieto Primer Cuatrimestre de 2011 Departamento de Computación, FCEyN,Universidad de Buenos Aires. 5 de abril de 2011 Objetivos de
Compuertas Lógicas. Sergio Stive Solano Sabié. Agosto de 2012 MATEMÁTICA. Sergio Solano. Compuertas lógicas NAND, NOR, XOR y XNOR
XOR y Lógicas Sergio Stive Solano Agosto de 2012 XOR y Lógicas Sergio Stive Solano Agosto de 2012 XOR y XOR y Con las puertas básicas podemos implementar cualquier función booleana. Sin embargo existen
Curso Completo de Electrónica Digital
CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez 4.3. Diseño de circuitos combinacionales
Existen diferentes compuertas lógicas y aquí mencionaremos las básicas pero a la vez quizá las más usadas:
Compuertas lógicas Las compuertas lógicas son dispositivos electrónicos utilizados para realizar lógica de conmutación. Son el equivalente a interruptores eléctricos o electromagnéticos. para utilizar
ALGEBRA BOOLEANA (ALGEBRA LOGICA)
ALGEBRA BOOLEANA Un sistema axiomático es una colección de conocimientos ordenados jerárquica-mente mediante reglas o leyes lógicas aplicadas a un número limitado de conceptos o principios básicos. Un
Tema 3. 2 Sistemas Combinacionales
Tema 3. 2 Sistemas Combinacionales Índice Circuitos combinacionales: concepto, análisis y síntesis. Métodos de simplificación de funciones lógicas. Estructuras combinacionales básicas Multiplexores Demultiplexores
Problemas propuestos. Simplificar las siguientes expresiones lógicas
Razonar en base a los postulados y teoremas del álgebra de Boole si es posible o no definir un álgebra de Boole para tres elementos B = {0, a, 1} Demostrar los teoremas T1, T2, T7 y T9 mediante los postulados
LECCIÓN Nº 01 SISTEMAS COMBINACIONALES
LECCIÓN Nº 01 SISTEMAS COMBINACIONALES 1. GENERALIDADES PUERTAS LOGICAS Una puerta lógica es un elemento que recibe varias entradas binarias (variables) y, dependiendo del estado de las entradas, su salida
Control y programación de sistemas automáticos: Algebra de Boole
Control y programación de sistemas automáticos: Algebra de Boole Se denomina así en honor a George Boole, matemático inglés 1815-1864, que fue el primero en definirla como parte de un sistema lógico, a
CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA
CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA Las compuertas lógicas son bloques que realizan las operaciones básicas de la aritmética binaria del álgebra
2. ÁLGEBRA DE BOOLE OPERACIONES BÁSICAS DEL ÁLGEBRA DE BOOLE. OPERACIONES LÓGICAS.
2. ÁLGEBRA DE BOOLE 2..- Definición. 2.2.- Operaciones básicas. 2.3.- Propiedades o teoremas del álgebra de Boole. 2.4.- Función Booleana / Lógica. 2.5.- Representación de función Booleana. 2.6.- Formas
Suma de productos Producto de sumas. Fundamentos de los Computadores Grado en Ingeniería Informática
2. Simplificación de funciones booleanas: as Método de Karnaugh aug Suma de productos Producto de sumas Fundamentos de los Computadores Grado en Ingeniería Informática Introducción Los circuitos digitales
Operaciones Booleanas y Compuertas Básicas
Álgebra de Boole El álgebra booleana es la teoría matemática que se aplica en la lógica combinatoria. Las variables booleanas son símbolos utilizados para representar magnitudes lógicas y pueden tener
HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS
f Universidad Rey Juan Carlos Grado en Ingeniería de Computadores Tecnología de Computadores HOJA DE PROBLEMAS 6: MÓDULOS COMBINACIONALES BÁSICOS. Dado el módulo combinacional de la figura se pide dibujar
NOT. Ejemplo: Circuito C1
Métodos de diseño de circuitos digitales Sistemas combinacionales En un circuito combinacional los valores de las salidas dependen únicamente de los valores que tienen las entradas en el presente. Se construen
Sistemas Digitales I Taller No 2: Diseño de Circuitos combinacionales usando VHDL
UNIVERSIDAD INDUSTRIAL DE SANTANDER Escuela de Ingenierías Eléctrica, Electrónica y Telecomunicaciones Sistemas Digitales I Taller No 2: Diseño de Circuitos combinacionales usando VHDL Profesor: Carlos
Electrónica Digital: Sistemas Numéricos y Algebra de Boole
Electrónica Digital: Sistemas Numéricos y Algebra de Boole Profesor: Ing. Andrés Felipe Suárez Sánchez Grupo de Investigación en Percepción y Sistemas Inteligentes. Email: [email protected]
LABELN-ELN Laboratorio Nº 5 Circuitos Lógicos Combinacionales
1 LABELN-ELN Laboratorio Nº 5 Circuitos Lógicos Combinacionales Objetivos Diseñar un circuito digital combinacional que permita realizar la suma de dos números binarios de 3 bits cada uno. Utilizar LEDs
EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES
EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES Ejercicio PAU Septiembre 2010/2011 a) Rellenamos la tabla de la verdad colocando salidas 1 en las posiciones indicadas: Posición a b c d f 0 0 0
TEMA 1. Sistemas Combinacionales.
TEMA. Sistemas Combinacionales.. Introducción a los sistemas digitales. Familias lógicas (2-20) 2. Definición de circuito combinacional (2-25) 3. Funciones combinacionales. Simplificación e implementación
CIRCUITOS LÓGICOS. Lógica FCE 1. ALGEBRA DE BOOLE
Lógica FE IRUITOS LÓGIOS 1. LGER DE OOLE 1.1 Introducción Tanto la teoría de conjuntos como la lógica de enunciados tienen propiedades similares. Tales propiedades se utilizan para definir una estructura
1ª evaluación: 1: INTRODUCCIÓN A LOS SISTEMAS DIGITALES SISTEMAS DE NUMERACIÓN BINARIO OCTAL Y HEXADECIMAL CAMBIOS DE BASE
Electrónica digital Página 1 1ª evaluación: 1: 2: 3: 4: INTRODUCCIÓN A LOS SISTEMAS DIGITALES SISTEMAS DE NUMERACIÓN BINARIO OCTAL Y HEXADECIMAL CAMBIOS DE BASE ALGEBRA DE BOOLE POSTULADOS Y TEOREMAS PUERTAS
Fundamentos lógicos. Dpto. Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada
Fundamentos lógicos Dpto. Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada www.elai.upm.es Álgebra de Boole Buena parte de los automatismos responden a la lógica binaria Las variables binarias
PROBLEMAS DE ELECTRÓNICA DIGITAL
PROBLEMAS DE ELECTRÓNICA DIGITAL 1. Expresa en base decimal y hexadecimal los siguientes números binarios: a. 10111 2. b. 10011011,11 2. 2. Expresa en base dos (binario) y decimal los siguientes número
UNIDAD 28 CIRCUITOS COMBINACIONALES. ÁLGEBRA DE BOOLE
TECNOLOGÍA INDUSTRIAL II > CONTROL Y PROGRAMACIÓN DE SISTEMAS UNIDAD 28 CIRCUITOS COMBINACIONALES. ÁLGEBRA DE BOOLE A-Relación de ejercicios (con solución) 1.- Dada la función F = cba + cba + cba simplifícala
Paso 2. Escribir los términos AND para cada caso donde la salida sea 1. Paso 3. Escribir la expresión de suma de productos para la salida.
Explicación del Tema Sesión 7 Diseño de circuitos lógicos combinatorios Cuando para todas las combinaciones de entrada se dan los niveles de salida para un circuito lógico, los resultados pueden expresarse
FUNDAMENTOS DE COMPUTADORES EJERCICIOS U1: Álgebra de Boole y Diseño Lógico
U1_1. Realizar las siguientes operaciones (verificar las respuestas en decimal) a) onvertir a binario natural los números decimales 321, 1462, 205, 1023, 1024, 135, 45 y 967 b) onvertir a decimal los números
ALGEBRA BOOLEANA. CONMUTATIVO. Se dice que un operador binario º es conmutativo si A º B = B º A para todos los posibles valores de A y B.
ÁLGEBRA BOOLEANA UNEFA NUCLEO ZULIA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario º definido en éste juego de valores
Circuitos Electrónicos Digitales. Tema II Parte II. Álgebra de Conmutación
Circuitos Electrónicos Digitales Tema II Parte II Álgebra de Conmutación Índice 1.Álgebra de Conmutación 2.Funciones combinacionales 3.Formas normalizadas Álgebra de Conmutación Álgebra de Conmutación
Representación de la Información en un computador. Ingeniería de Sistema y Automática Universidad de Valladolid
Representación de la Información en un computador Ingeniería de Sistema y Automática Universidad de Valladolid Índice Sistemas de numeración: Binarios Octales Hexadecimales Operaciones. Transformaciones
Simplificación y minimización por adyacencias
Simplificación y minimización por adyacencias Resumen La simplificación y minimización por adyacencias utiliza los teoremas de complementos y de asociación del algebra booleana, aunada a la disposición
EJERCICIO No. 8 ALGEBRA BOOLEANA NOMBRE:
EJERCICIO No. 8 ALGEBRA BOOLEANA NOMBRE: Algebra de Boole El álgebra de Boole es una forma adecuada y sistemática de expresar y analizar las operaciones de los circuitos lógicos. El álgebra de Boole son
