Incertidumbre en los Sistemas de Control
|
|
|
- Luis Herrero Coronel
- hace 7 años
- Vistas:
Transcripción
1 Incertidumbre en los Sistemas de Control
2 Sistema de Control SISO
3 II. INCERTIDUMBRES DEL SISTEMA Ruido de medición: Los datos enviados por los sensores están sujetos a ruido y deriva. Se puede reducir la incertidumbre mejorando la instalación de los sensores (blindajes, posición, etc.) o instalando sensores de mejor calidad. Definido y fijado un determinado sensor la incertidumbre de las mediciones se pueden considerar aleatorias. Perturbaciones externas (entradas no controladas): El sistema está sujeto a señales de perturbación que poseen el carácter de entradas no deseadas. Si las perturbaciones son no medibles constituyen incertidumbre, si son medidas se puede analizar explícitamente la influencia en el sistema (el viento en generadores eólicos, oleaje en embarcaciones, etc.)
4 II. INCERTIDUMBRES DEL SISTEMA Errores de modelado: No linealidades, dinámicas no contempladas (fricciones, elasticidades), estimación incorrecta del orden del sistema, etc. En principio son incertidumbres epistémicas que se pueden reducir mejorando la calidad del modelo fenomenológico hasta un cierto punto. El remanente forma parte del modelo estocástico de perturbación.
5 II. INCERTIDUMBRES DEL SISTEMA La existencia de incertidumbre en el sistema o el medio ambiente implica un comportamiento físico no determinista, esto es, la respuesta del sistema no es predecible precisamente.
6 III. INCERTIDUMBRES DEL SISTEMA Y REALIMENTACIÓN El objetivo primario del control es que el sistema sea lo más insensible posible a las incertidumbres (robustez del sistema de control). De hecho lo que justifica la realimentación es la existencia de incertidumbres en el sistema.
7 III. INCERTIDUMBRES DEL SISTEMA Y REALIMENTACIÓN
8 III. INCERTIDUMBRES DEL SISTEMA Y REALIMENTACIÓN
9 III. INCERTIDUMBRES DEL SISTEMA Y REALIMENTACIÓN
10 III. INCERTIDUMBRES DEL SISTEMA Y REALIMENTACIÓN
11 III. INCERTIDUMBRES DEL SISTEMA Y REALIMENTACIÓN
12 III. INCERTIDUMBRES DEL SISTEMA Y REALIMENTACIÓN
13 IV. MODELOS DE SISTEMAS DINÁMICOS IV.1. CONTROL BASADO EN MODELO Prácticamente todas las estrategias de control modernas están basadas en modelos matemáticos de los sistemas dinámicos que se desean controlar. Se obtienen mediante técnicas de Modelado e Identificación de Sistemas.
14 IV. MODELOS DE SISTEMAS DINÁMICOS IV.1. CONTROL BASADO EN MODELO Los modelos se emplean en dos funciones diferenciadas. I) Emulando al sistema o proceso real durante la fase de diseño. II) Como subsistema del propio controlador (esto se conoce como Control Basado en Modelo).
15 IV. MODELOS DE SISTEMAS DINÁMICOS IV.1. CONTROL BASADO EN MODELO Los modelos se emplean en dos funciones diferenciadas. I) Emulando al sistema o proceso real durante la fase de diseño. II) Como subsistema del propio controlador (esto se conoce como Control Basado en Modelo). Estos modelos no necesariamente deben ser el mismo. La complejidad del modelo para cada tarea es distinta (para el controlador más simple, para emular más complejo).
16 IV. MODELOS DE SISTEMAS DINÁMICOS El universo de los modelos matemáticos de donde elegimos los modelos para nuestras aplicaciones es distinto del universo de los sistemas físicos. Los modelos matemáticos son una caricatura de la realidad. Pero si los modelos son buenos, como las buenas caricaturas, retratan, aunque quizás en forma aproximada, algunas características del mundo real.
17 IV. MODELOS DE SISTEMAS DINÁMICOS IV.2. ESPECTRO DE MODELOS DE KARPLUS
18 IV. MODELOS DE SISTEMAS DINÁMICOS Según el espectro de modelos de Karplus los modelos más precisos son los modelos de sistemas físicos. Los modelos más perfectos son las leyes físicas. Todo modelo tiene un rango de validez. Incluyendo las leyes físicas.
19 IV. MODELOS DE SISTEMAS DINÁMICOS Ejemplo: v>99% c Mecánica Newtoniana Escala de Planck d<10-33 cm Mecánica Relativista Mecánica Cuántica 21/08/2015 INAUT, Facultad de Ingeniería, UNSJ.
20 IV. MODELOS DE SISTEMAS DINÁMICOS Las incertidumbres causan que controlar un sistema aparentemente sencillo puede ser muy complicado y viceversa.
21 DOS EJEMPLOS DE CONTROL CON INCERTIDUMBRE EPISTÉMICA PROCESO DE COLADA CONTINUA (Industria siderúrgica) 21/08/2015 INAUT, Facultad de Ingeniería, UNSJ.
22 COLADA CONTÍNUA 21/08/2015 INAUT, Facultad de Ingeniería, UNSJ.
23 COLADA CONTÍNUA 21/08/2015 INAUT, Facultad de Ingeniería, UNSJ.
24 CONTROL DE NIVEL (1) CONTROL DE NIVEL El modelo se obtiene a partir de las leyes de conservación de la masa y de Bernoulli dh A qi 2gh dt a Donde A es la sección del tanque, a es la sección del orificio de salida, g es la aceleración de la gravedad, qi es el caudal de entrada 21/08/2015 y h es el nivel del tanque (variable a controlar). INAUT, Facultad de Ingeniería, UNSJ.
25 CONTROL DE NIVEL (2) Linealizando el modelo en el punto de operación qi0 y h0 se obtiene la función de transferencia Gs () 2 s 1 2gh El sistema se controla satisfactoriamente con un controlador PI de parámetros K T i 2 A 2 que lleva a un sistema a lazo cerrado de segundo orden con frecuencia 21/08/2015 natural w y amortiguamiento relativo z. INAUT, Facultad de Ingeniería, UNSJ. a Ah A 0 0
26 CONTROL DE NIVEL (3) 21/08/2015 INAUT, Facultad de Ingeniería, UNSJ.
27 CONTROL DE NIVEL (3) 21/08/2015 INAUT, Facultad de Ingeniería, UNSJ.
28 CONTROL DE NIVEL (3) 21/08/2015 INAUT, Facultad de Ingeniería, UNSJ.
29 CONTROL DE NIVEL (3) 21/08/2015 INAUT, Facultad de Ingeniería, UNSJ.
30 CONTROL DE NIVEL (3) 21/08/2015 INAUT, Facultad de Ingeniería, UNSJ.
Unidad I Análisis de Sistemas Realimentados
Prof. Gerardo Torres - [email protected] - Cubículo 003 Departamento de Circuitos y Medidas de la Escuela de Ingeniería Eléctrica de la Universidad de Los Andes Unidad I Análisis de Sistemas Realimentados
Estructuras de control I
Estructuras de control I Características de los sistemas reales Efectos del tiempo muerto Predictor de Smith Efecto de las perturbaciones Control en Cascada Control Feedforward Diseño de redes Feedforward.
Sintonización de Controladores
Sistemas de Control Automáticos Sintonización de Controladores Acciones de control Las acciones de los controladores las podemos clasificar como: Control discontínuo Control ON OFF Control contínuo Controles
Universidad Simón Bolívar Departamento de Procesos y Sistemas
Universidad Simón Bolívar Departamento de Procesos y Sistemas Guía de Ejercicios de Sistemas de Control I PS-3 Prof. Alexander Hoyo Junio 00 http://prof.usb.ve/ahoyo [email protected] ÍNDICE Pág. Modelaje Matemático
Diseño Básico de Controladores
Diseño Básico de Controladores No existen reglas para el diseño de controladores. Para una planta y especificaciones dadas pueden existir dos o mas controladores que entreguen buen desempeño. En las siguientes
UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA BOLIVARIANA SISTEMAS DE CONTROL DE LAZO ABIERTO Y SISTEMA DE CONTROL LAZO CERRADO
UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA BOLIVARIANA SISTEMAS DE CONTROL DE LAZO ABIERTO Y SISTEMA DE CONTROL LAZO CERRADO Prof. Gloria M. Botina B Contenido Sistema Clasificación
GRADO: CURSO: 3 CUATRIMESTRE:
DENOMINACIÓN ASIGNATURA: Ingeniería de Control I GRADO: CURSO: 3 CUATRIMESTRE: La asignatura tiene 29 sesiones que se distribuyen a lo largo de 14 semanas. Los laboratorios pueden situarse en cualquiera
Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control
Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control Elizabeth Villota Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM 1 Modelado Modelo: representación
UNIDAD 1: INTRODUCCIÓN A LOS SISTEMAS DE CONTROL
UNIDAD 1: INTRODUCCIÓN A LOS SISTEMAS DE CONTROL CONCEPTOS FUNDAMENTALES EN SISTEMAS DE CONTROL: La Ingeniería de Control surge por la necesidad del hombre de mejorar su estándar de vida y de que algunas
Control PID. Ing. Esp. John Jairo Piñeros C.
Control PID Ing. Esp. John Jairo Piñeros C. Control PID Ing. Esp. John Jairo Piñeros C. Que es PID? Variable Proporcional Variable Integral Variable Derivativa cuando se puede usar un controlador PI, PID?
FUNDAMENTOS Y MODELOS MATEMÁTICOS DE LOS SISTEMAS DE CONTROL UNIDAD 1
FUNDAMENTOS Y MODELOS MATEMÁTICOS DE LOS SISTEMAS DE CONTROL UNIDAD 1 Contenido El concepto de realimentación. Establecimiento de las ecuaciones diferenciales que rigen a un sistema. Función de transferencia.
MT 221 Introducción a la realimentación y control. Elizabeth Villota
MT 221 Introducción a la realimentación y control Elizabeth Villota Objetivos Proveer información general acerca de MT 221 - describir la estructura del curso, método de evaluación, aspectos administrativos,
7. Limitaciones fundamentales en control SISO
7. Limitaciones fundamentales en control SISO Parte 2 Panorama: Perturbaciones Limitaciones debidas a errores en modelado Limitaciones estructurales retardos de transporte ceros de fase no mínima polos
Desempeño. Respuesta en el tiempo: transiente y estado estacionario. Sistema de control.
. Respuesta en el tiempo: transiente y estado estacionario. Sistema de control. Elizabeth Villota Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM 1 Herramientas del control
UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 5
UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 5 CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA-INGENIERO MECANICO ELECTRICISTA I. CONTENIDO 1.
CONTROLES COMPLEJOS EN LAZO CERRADO CONTROL DE PROCESOS
CONTROLES COMPLEJOS EN LAZO CERRADO CONTROL DE PROCESOS 2 CONTROL REALIMENTADO Ventajas Produce acción correctora en cuanto existe error La acción correctora es independiente de la fuente y tipo de la
Prácticas de Control e Instrumentación de Procesos Químicos 4º Ingenieria Química
Prácticas de Control e Instrumentación de Procesos Químicos 4º Ingenieria Química Práctica 2. Modelos dinámicos e identificación de procesos El objetivo de la práctica es familiarizarse con técnicas de
Trabajo Práctico n 2. Robotización de un Puente Grúa. Presentación. Restricciones. Curso 2011
Trabajo Práctico n 2 Robotización de un Puente Grúa Presentación Este problema consiste en desarrollar un sistema de control automático que permita robotizar la operación de un puente grúa para la carga
Sistemas de control en lazo cerrado
CI_1 Facultad de Informática Control Industrial Sistemas de control en lazo cerrado Curso 2007-08 Conceptos básicos CI_2 Planta: cualquier objeto físico cuya respuesta se desea controlar Las plantas se
Conclusiones. Conclusiones
Conclusiones A lo largo del desarrollo de este trabajo se realizó un análisis matemático de un Rectificador Activo Multinivel Monofásico (RAMM) mediante el cual fue posible determinar sus características
[1] Se tiene la siguiente gráfica: La respuesta corresponde al siguiente sistema:
[1] Se tiene la siguiente gráfica: La respuesta corresponde al siguiente sistema: Si la entrada corresponde a escalón unitario, determinar: En base a la gráfica: a) Tiempo de establecimiento para un error
UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 4
UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 4 CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA-INGENIERO MECANICO ELECTRICISTA I. CONTENIDO 1.
Sistema neumático de control de nivel
ULA. FACULTAD DE INGENIERIA. ESCUELA DE MECANICA. TEORIA DE CONTROL. EJERCICIOS FINAL Ejercicio 1. Primera parte: Modelado y de un tanque de agua, con su sistema de medición de nivel. La figura muestra
Introducción a los Sistemas de Control
Introducción a los Sistemas de Control Ingeniería de Sistemas I Índice TEMA Introducción a los Sistemas de Control 1. Introducción 2. Revisión histórica 3. Definiciones 3.1 Descripción de los sistemas
El comportamiento de un controlador PID corresponde a la superposición de estas tres acciones, expresado en el dominio del tiempo es:
1.4.1 CONTROLADOR PID A continuación se hace una breve presentación del controlador PID clásico en el dominio continuo y a la vez que se mencionan los métodos de sintonización, de oscilaciones amortiguadas
Glosario de Términos de Control
Glosario de Términos de Control Unifiquemos términos a fin de utilizar un lenguaje común en este aspecto de la tecnología. Siempre teniendo en cuenta que nuestro objeto de estudio serán los sistemas de
Identificación de SIStemas
Identificación de SIStemas Dr. Juan Carlos Gómez Laboratorio de Sistemas Dinámicos y Procesamiento de la Información FCEIA, Universidad Nacional de Rosario [email protected] www.fceia.unr.edu.ar/isis
INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Ingeniería Mecánica y Eléctrica
INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Ingeniería Mecánica y Eléctrica Ingeniería en Control y Automatización TEORÍA DE CONTROL 1: GUÍA PARA EL EXAMEN EXTRAORDINARIO (TEORÍA) Nombre: Grupo
Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control
Herramienta para diseño de sistemas de Elizabeth Villota Cerna Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNIFIM Mayo 2012 1 Control por realimentación, dónde? buques (nano) satélites
CONTROL APLICADO MODELADO DE SISTEMAS DINÁMICOS
CONTROL APLICADO MODELADO DE SISTEMAS DINÁMICOS MODELO MATEMÁTICO SISTEMA SE NECESITA CONOCER MODELO MATEMÁTICO CARACTERÍSTICAS DINÁMICAS DEBE REPRESENTAR BIEN NO ES ÚNICO Tenga presente que un modelo
CAPÍTULO 3. Conceptos y esquemas de control
CAPÍTULO 3 Conceptos y esquemas de control 3 Conceptos y esquemas de control En este capítulo se presentan los diferentes esquemas de control aplicados a la planta piloto. Para ello se describe primero
DINÁMICA ESTRUCTURAL. Diagramas de bloques
DINÁMICA ESTRUCTURAL Diagramas de bloques QUÉ ES UN DIAGRAMA DE BLOQUES? Definición de diagrama de bloques: Es una representación gráfica de las funciones que lleva a cabo cada componente y el flujo de
Control Automático I - Ejercicios C3
Control Automático I - Ejercicios C3 21 de Junio 2016 1. Arquitecturas en Control SISO 1.1. 100 Para la planta con modelo nominal G 0 (s) =, se desea lograr: s 2 +14s+100 Inverso perfecto de la planta
Control. Controlar. variable controlada variable manipulada Control realimentado. Sistema. Sistemas de control realimentado.
Clase 1 Definir: Control. Poder o dominio que una persona u objeto ejerce sobre alguien o algo (En ingeniería: Conjunto de mecanismos y dispositivos que regulan el funcionamiento de una máquina, un aparato
Álvaro Andrés Velásquez T. Depto. de Ciencias Básicas Septiembre de 2009
Álvaro Andrés Velásquez T. Depto. de Ciencias Básicas Septiembre de 2009 Estructura de un curso teórico práctico básico de ciencias Estructura de un curso teórico práctico con proyecto de materia Importancia
CONCEPTOS. Concepto de Sistema. Arreglo de elementos conectados o relacionados entre sí de tal manera que forman y/o actúen como una unidad entera.
CONCEPTOS Concepto de Sistema. Arreglo de elementos conectados o relacionados entre sí de tal manera que forman y/o actúen como una unidad entera. Concepto de Sistema de Control. Interacción de componentes
Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes:
Hidrodinámica Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes: Que el fluido es un líquido incompresible, es decir, que su densidad no varía con el cambio
Simulador HTST 1.0 Simulador Dinámico de Tiempo Real
Simulador HTST 1.0 Simulador HTST 1.0 Simulador Dinámico de Tiempo Real La Simulación Dinámica tiene gran aplicación en los estudios realizados para optimizar el diseño o las condiciones de operación
Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo V Controladores PID
Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo V Controladores PID D.U. Campos-Delgado Facultad de Ciencias UASLP Enero-Junio/2014 1 CONTENIDO Motivación Estructura
CAPÍTULO. Control Proporcional Integral Generalizado. II.1 Introducción. II. Control Proporcional Integral Generalizado
CAPÍTULO II Control Proporcional Integral Generalizado II.1 Introducción El uso de observadores en electrónica de potencia no es una práctica común debido al incremento en el costo del circuito; es decir,
CONTROL DE PROCESOS EXAMEN FINAL Agosto de 2008
TEMA 1 Una corriente líquida es calentada en un intercambiador con control automático de temperatura como se muestra en la figura. El flujo líquido en condiciones normales está entre 5 y 15 m 3 /h. Los
Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT
Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil
Determine la cantidad de polos en el semi plano izquierdo, fundamente. Determine el rango de valores de K para que el sistema sea estable.
ESTABILIDAD 1 Un sistema con realimentación unitaria tiene la siguiente función de transferencia de la planta: ( s 1.)( s 0.5s ) Gp ( s) s.5s 1 a) Cuantos polos tiene en el semiplano derecho. b) Cuantos
1. Se tiene la siguiente gráfica: La respuesta corresponde al siguiente sistema:
1. Se tiene la siguiente gráfica: La respuesta corresponde al siguiente sistema: Si la entrada corresponde a escalón unitario, determine: En base a la gráfica: a) Tiempo de establecimiento para un error
Control Automático Introducción
Control Automático Introducción Contenido Qué es control automático? Tareas y objetivos del control automático Estructuras de los circuitos de regulación Tipos de regulación Efecto de las perturbaciones
Control Avanzado con variables auxiliares
Control de Procesos Industriales 7. Control Avanzado con Variables Auxiliares versión 1/06/10 por Pascual Campoy Universidad Politécnica Madrid Control Avanzado con variables auxiliares Control en cascada
1: EL CONCEPTO DE CONTROL INVERSO ADAPTATIVO
Capítulo 1: EL CONCEPTO DE CONTROL INVERSO ADAPTATIVO INTRODUCCIÓN 1.1. INTRODUCCIÓN Las técnicas de filtrado adaptativo han sido aplicadas con éxito a los sistemas de antenas adaptativas, a problemas
MT 227 Introducción a la realimentación y control. Elizabeth Villota
MT 227 Introducción a la realimentación y control Elizabeth Villota Objetivos Proveer información general acerca de MT 227 - describir la estructura del curso, método de evaluación, aspectos administrativos,
CONTROL APLICADO Marcela Vallejo Valencia tableroalparque.weebly.com
CONTROL APLICADO Marcela Vallejo Valencia [email protected] tableroalparque.weebly.com SISTEMA DE CONTROL VARIABLE CONTROLADA VARIABLE MANIPULADA PUNTO DE CONTROL PERTURBACIÓN Fuente : Controla
LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO PRÁCTICA N 3
ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO
Dinámica del Robot. UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides
UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción La dinámica se ocupa de la relación entre las fuerzas que actúan sobre un cuerpo y el movimiento en el que se origina.
Pontificia Universidad Católica del Perú ICA624: Control Robusto. 1.Introducción
Pontificia Universidad Católica del Perú ICA624: 1.Introducción Hanz Richter, PhD Profesor Visitante Cleveland State University Mechanical Engineering Department 1 / 19 Objetivos básicos del control realimentado
Respuesta en la Frecuencia
Respuesta en la Frecuencia Elizabeth Villota Cerna Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM 08 Junio 2012 1 Desempeño en el dominio de la frecuencia SLIT 2do orden (masa-resorte-amortiguador)
CONTROL ON - OFF (TODO O NADA)
UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA DEPARTAMENTO DE INGENIERIA ELECTRONICA NUCLEO DE INSTRUMENTACION CONTROL Y SEÑALES LABORATORIO DE INSTRUMENTACION Y CONTROL CONTROL ON - OFF (TODO O NADA)
LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO PRÁCTICA N 10
ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control 1. TEMA LABORATORIO DE SISTEMAS DE CONTROL
Prefacio. 1 Sistemas de control
INGENIERIA DE CONTROL por BOLTON Editorial Marcombo Prefacio 1 Sistemas de control Sistemas Modelos Sistemas en lazo abierto y cerrado Elementos básicos de un sistema en lazo abierto Elementos básicos
PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI
PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI INTRODUCCIÓN La dinámica de fluidos analiza los gases y líquidos en movimiento. Además, es una de las ramas más complejas de la mecánica. La conservación
Introducción a la Identificación de sistemas
Ingeniería de Control Introducción a la Identificación de sistemas Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos que se adquieren en este tema: Modelos deterministas
Metodología de diseño de Sistemas de Control
Metodología de diseño de Sistemas de Control Tema 2 1 Conocimiento del problema Explotación Definición de las especificaciones Test Metodología de diseño de Sistemas de Control...proceso iterativo Modelado
10. Diseño avanzado de controladores SISO
10. Diseño avanzado de controladores SISO Parte 2 Panorama de la Clase: Repaso: Parametrización Afín (PA) Consideraciones de diseño: grado relativo rechazo de perturbaciones esfuerzo de control robustez
CONTROL EN LAZO ABIERTO VS. CONTROL EN LAZO CERRADO
CONTROL EN LAZO ABIERTO VS. CONTROL EN LAZO CERRADO Mantener el nivel del líquido en el tanque a un valor constante Control o en lazo abierto No realimentación Controlador no observa la salida del sistema
Introducción a los Sistemas de Control
Introducción a los Sistemas de Control Organización de la presentación - Introducción a la teoría de control y su utilidad - Ejemplo simple: modelado de un motor de continua que mueve una cinta transportadora.
Ejercicios III SISTEMAS AUTOMÁTICOS Y DE CONTROL
Ejercicios III SISTEMAS AUTOMÁTICOS Y DE CONTROL 1. Determina el diagrama de bloques del sistema automático de control de líquido de la figura. Determina de nuevo el diagrama de bloques suponiendo que
TEORÍA DE CONTROL CONTROLADOR PID
TEORÍA DE CONTROL CONTROLADOR PID Historia del controlador PID. Nicolás Minorsky 1922 Nicolás Minorsky había analizado las propiedades de los controladores tipo PID en su publicación Estabilidad direccional
2. Principios de Realimentación
2. Principios de Realimentación Panorama Un ejemplo industrial motivador Formulación básica del problema de control La idea de inversión en la solución de problemas de control De lazo abierto a lazo cerrado
Control Automático I - Certamen 2 Pauta de Correción
Control Automático I - Certamen 2 Pauta de Correción 7 de Septiembre 215 1. 1.1. Un sistema electro-mecánico tiene el modelo nominal G (s) = 1 (s+2), cuya salida es la velocidad angular de un eje. Los
Problema de control On-Off
CAUT1 Clase 1 1 Problema de control On-Off 1. El control On-Off es la forma más simple de controlar. 2. Es comúnmente utilizado en la industria 3. Muestra muchos de los compromisos fundamentales inherentes
Víctor M. Alfaro. Sistemas de control. proporcional, integral y derivativo. Algoritmos, análisis y ajuste
Víctor M. Alfaro Sistemas de control proporcional, integral y derivativo Algoritmos, análisis y ajuste Dr. Víctor M. Alfaro Departamento de Automática Escuela de Ingeniería Eléctrica Universidad de Costa
Control Automático Ing. Eléctrica Página 1 de 8 F.R. Tucumán Universidad Tecnológica Nacional Unidad Temática 6: Función de Transferencia
Control Automático Ing. Eléctrica Página 1 de 8 Unidad Temática 6: Función de Transferencia Representación de los sistemas. Función de Transferencia. Definición. Propiedades. Los sistemas de control se
Unidad V Respuesta de los sistemas de control
Unidad V Respuesta de los sistemas de control MC Nicolás Quiroz Hernández Un controlador automático compara el valor real de la salida de una planta con la entrada de referencia (el valor deseado), determina
TALLER DE Nº 2 CONTROL AVANZADO. No se educa cuando se imponen caminos, sino cuando se enseña a caminar
TALLER DE Nº 2 CONTROL AVANZADO No se educa cuando se imponen caminos, sino cuando se enseña a caminar 1. La función de transferencia de cierto proceso es Gp(S) = 1/(5S + 1). El proceso está en serie con
CAPITULO 3 SINTONIZACIÓN DE CONTROLADORES
CAPITULO 3 SINTONIZACIÓN DE CONTROLADORES 3. INTRODUCCIÓN El paso final para la implementación de un lazo de control consiste en ajustar los parámetros del controlador. Si el controlador puede ser ajustado
Control Avanzado con variables auxiliares
Control de Procesos Industriales 7. Control Avanzado: Control en cascada por Pascual Campoy Universidad Politécnica Madrid Control Avanzado con variables auxiliares 7. Control en cascada 8. Control anticipativo
EXAMEN PARCIAL I
UNIVERSIDAD NACIONAL DE INGENIERÍA - FIM MT 7 Control Moderno y Óptimo EXAMEN PARCIAL - 04I Problema : Un tanque vacio con masa m o es posicionado sobre g un resorte lineal con rigidez k. El tanque es
Función de Transferencia
Función de Transferencia Ricardo-Franco Mendoza-Garcia [email protected] Escuela Universitaria de Ingeniería Mecánica Universidad de Tarapacá Arica, Chile September 10, 2014 R. F. Mendoza-Garcia (Mecánica,
PROBLEMAS PROPUESTOS INTRODUCCIÓN AL CONTROL DE PROCESOS
PROBLEMAS PROPUESTOS 1. Un tanque con un serpentín por el que circula vapor se utiliza para calentar un fluido de capacidad calórica Cp. Suponga conocida la masa de líquido contenida en el tanque (M L
MODELACIÓN DE UNA ESTRUCTURA TIPO EDIFICIO MEDIANTE EL FORMALISMO DE EULER-LAGRANGE. Dr. Josué Enríquez-Zárate Investigador RTO Energy
MODELACIÓN DE UNA ESTRUCTURA TIPO EDIFICIO MEDIANTE EL FORMALISMO DE EULER-LAGRANGE Dr. Josué Enríquez-Zárate Investigador RTO Energy CONTENIDO Introducción Modelo dinámico de la estructura tipo edificio
Práctica 4 Simulación del sistema de control de motor de CD
Práctica 4 Simulación del sistema de control de motor de CD Objetivo: Se realiza la simulación detallada de cada bloque del sistema de control de un motor de CD en base al modelado matemático del motor
Modelado y Simulación de Sistema de Control de Llenado de estanques mediante Simulink.
Modelado y Simulación de Sistema de Control de Llenado de estanques mediante Simulink. Por: Felipe Fernández G., Escuela Universitaria de Ingeniería Eléctrica y Electrónica. Universidad de Tarapacá, Sede
PROBLEMAS PAU SISTEMAS DE CONTROL
PROBLEMAS PAU SISTEMAS DE CONTROL 2012 Junio A- 3.- Calcula la función de transferencia y(s)/u(s) del sistema de control cuyo diagrama de bloques se muestra a continuación. 2012 Junio B- 3.- El esquema
