PRUEBA MATEMÁTICA 4º Medio

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRUEBA MATEMÁTICA 4º Medio"

Transcripción

1 PRUEBA MATEMÁTICA 4º Medio Profesor: Miguel Caro NOMBRE: FECHA: Puntaje Ideal: 41 NOTA: Puntaje obtenido: ÍTEM I : ELECCION MULTIPLE 1. En el paralelepípedo de la figura indica cuál de las igualdades es cierta: a) a b c = d b) a e + i = h c) a i + f = d d) a + d + c = i e) Ninguna es cierta (1 pto. c/u) 2.- Cuál es la imagen de (3, 2) bajo la traslación (2, -2)? a) (0, -5) b) (2, 0) c) (3, -2) d) (5, 0) e) (5, 2) 3.- Para que los tres puntos (6,10), (26,5) y (m,18) sean colineales, m debe ser igual a: a) -26 b) -1/26 c) 1/4 d) 4 e) En las siguientes afirmaciones la unica falsa es: a) En el espacio puede haber tres planos que se intersectan en un punto. b) Dos rectas paralelas paralelas definen un plano. c) Una recta que es perpendicular a un plano, es paralela a alguna recta de ese plano. d) Si una recta corta a un plano corta a todos los planos paralelos a él. e) Con tres puntos que no pertenecen a una misma recta se genera un plano. 5.- Un cuadrilátero ABCD de vértices A(4,0), B(0,6), C(-3,0) y D(0,-2) por aplicación de homotecia H(0,2/5) se transforma en: a) Un cuadrilátero mayor, al centro. b) Un cuadrilátero menor, al centro c) Un cuadrilátero mayor, a la izquierda. d) Un cuadrilátero menor, a la izquierda. e) Un cuadrilátero mayor, a la derecha. 6.- Dados los vectores u= 2,1 y v= 3,5 al calcular 2 5 v 3 2 u se obtiene: a) 1/2(0, 1) b) (21/5, 7/2) c) 1/10(-53, -71) d) (21/5, 1/2) e) (1/5, 1/2) 7.- De los siguientes vectores: w= 1, 3, x= 5,6, y= 11,2, z= 9,4, el que tiene menor módulo es: a) z b) w c) x d) y e) Todos tienen igual módulo.

2 8.- Cuál es el vector dirección de la recta y= 3 5 x 1? a) (1,5) b) (-5,3) c) (-3,1) d) (-3/5,1) e) (5,3) 9.- La ecuación vectorial de la recta que pasa por por A(1,-2) y tiene por vector dirección s= 3, 1 es: a) (x,y) = (1,-2) + λ(-1,3) b) (x,y) = (-2,1) + λ(3,-1) c) (x,y) = (5,-3) + λ(0,-1) d) (x,y) = (1,-2) + λ(3,-1) 10.- Dados u= 2,p y v= q,p 1, los valores de p y q para que u v= 3,7 son: a) p = 4 ; q = -5 b) p = 1 ; q = -3 c) p = 4 ; q = 1 d) p = 3 ; q = -1 e) p = 3 ; q = Sean T 1(-4,9) y T 2(3,-5) dos traslaciones, entonces al trasladar el polígono PQR respecto a T 1 y luego T 2 : a) b) la gráfica del polígono trasladado es: c) d)

3 12.- Es cierto que el módulo de la suma de dos vectores es igual a la suma de los módulos de los vectores? a) Sí, siempre. b) Sí, si tienen la misma dirección. c) Sí, si tienen los mismos módulos. d) Sí, si tienen la misma dirección y sentido. e) No, en ningún caso Dados los vectores u= 1, 2 y v= 2,2, referidos a una base ortonormal, calcula u v v a) (2, 2) b) (2, 0) c) 2 d) 2 e) Los vectores de la figura tienen la misma magnitud. Si r=2 a b c, entonces el vector que mejor representa la dirección de r es: 15.- Dados los vectores u 2,4 y v 3,1, referidos a una base ortonormal, halla el módulo del vector u v. a) 2 b) 2 c) 10 d) 10 e) Los módulos de tres vectores a, b y c son 3, 4 y 7, respectivamente. Cómo han de ser los vectores para que se cumpla a + b + c = 0? a) El vector c perpendicular a a y b b) El vector c paralelo a a b c) De igual dirección y c sentido contrario a a y b d) a, b y c perpendiculares entre ellos. e) No pueden sumar 0 en ningún caso El punto de coordenadas (4, 1), al reflejarlo en el eje X, tiene nuevas coordenadas en: a) (-4, 1) b) (0, -1) c) (0, 1) d) (4, -1) e) (4, 0) 18.- En el prisma triangular de la figura expresa, en función de x, y, z, el vector AF

4 a) x y + z b) x + y z c) x + y + z d) x y z e) x + y + z 18.- Dados los vectores u 3,2 y v 1, 1, referidos a una base ortonormal, calcula u v v a) ( 3, 2) b) ( 6, 4) c) 10 d) 1 e) En la figura el vector de traslación usado es: A) (-8, -1) B) (-8, 1) C) (8, -1) D) (8, 8) E) (8, 1) 20.- Es posible que la suma de dos vectores no nulos sea el vector nulo? a) Sí, siempre b) Sí, si son perpendiculares. c) Sí, si tienen la misma dirección y sentido. d) Sí, si tienen la misma dirección y sentido opuesto. e) No, en ningún caso El módulo de u(-3, 4) es: a) 5 b) 25 c) 7 d) 7 e) En la figura, el polígono A se desplaza hasta A. Cuál es el vector de desplazamiento aplicado? a) (1,-5) b) (-5,-1) c) (5,1) d) (-1,-5) e) (5,-1) 23.- La ponderación entre λ = 5 y a = (1,5) es: A) 5 B) 25 C) (1,5) D) (5,25) E) Ninguna 24.- En la pirámide de la figura expresa, en función de a, b, c, el vector AD a) a b. b) c b. c) a + c. d) a + b c. e) a b c

5 25.- Si a = (2,1) y b = (0,1) entonces a b = a) 1 b) 2 c) 3 d) (2,1) e) (0,1) 26.- Cuáles son las coordenadas del centro de la estrella de la primera figura, si al realizar una traslación de vector (-2,3), el centro de la estrella queda en el punto (3,2)? a) (1,-5) b) (-1,5) c) (1,5)? (-2,3) (3,2) d) (5,5) e) (5,-1) 27.- Si a = (2,3) y b = (-3,1) entonces a b = a) (1,4) b) (-1,2) c) (5,2) d) (-1,4) e) Ninguno de los anteriores 28.- Al ΔABC de la figura se le ha aplicado una traslación quedando en la posición del ΔEDF. Si a un punto (x, y) del plano se le aplica la misma traslación anterior quedaría en el punto: a) (x + 2, y + 1) b) (x + 1, y + 2) c) (x 1, y 2) d) (x 2, y 1) e) (2 x, 1 y) 29.- Si a = (1,2) y b = (3,-1) entonces a b = a) (-2,1) b) (-2,3) c) (4,1) d) (4,3) e) (2,-3) 26.- El volumen del paralelepípedo recto de la figura es 8u 3 Cuál de los siguientes puntos podría corresponder al vértice A? a) (2,4,1) b) (2,4,2) c) (1,8,3) d) (1,2,3) e) (1,2,2) 31.- Si al polígono cuyos vértices son los puntos A(5,4), B(6,1) y C(9,8) se le realiza un desplazamiento de vector (-4,-3),entonces sus vértices quedarán en los puntos: a) A(-1,-1); B(-2,2) y C(-5,5) b) A(1,-1); B(2,2) y C(-5,-5) c) A(-1,1); B(-2,2) y C(5,5) d) A(-1,1); B(-2,-2) y C(-5,5) e) A(1,1); B(2,-2) y C(5,5) 32.- Los vértices de un hexágono regular definen los vectores de la figura. Cuál de las siguientes relaciones es incorrecta? a) a b c= 0 b) e d = b a c) e c= a

6 d) d a= 2 c e) e d =3 c 33.- El volumen del siguiente cubo es: a) 4 b) 8 c) 16 d) 32 e) ninguna 34.- Si al punto A(3,-3) se le aplica una transformación homotética, respecto de H(0, -2) a) (-6,6) b) (6,-6) c) (-6,-6) d) (-3,3) e) 3 2, Al punto de coordenadas (2x, y) se le aplica la transformación isométrica T(4,3), obteniéndose el punto de coordenadas (3 y, 2x). Entonces cuál es el valor de x+y=? a) 1 b) 0 c) 3/2 d) ½ 36.- La ecuación vectorial de la recta (x,y) = (1,1) + λ(-1,1) equivale a: a) y = x b) x y = 1 c) x + y = 0 d) x + y = Una circunferencia tiene como centro el punto (3,5). Si el vector de traslación de este punto es (-5, 1), Cuál es el centro de la circunferencia trasladada? a) (-2,6) b) (8,6) c) (-2,4) d) (-15,5) e) (8,4) 38.- La ecuación vectorial (x, y) = (2, 1) + λ(1, 1) transformada a ecuación cartesiana, resulta: a) y = x 1 b) y = x + 1 c) y = 2x + 1 d) y = 2x + 3 e) No se puede determinar 39.- El módulo del vector a= 5,12 es: a) 13 b) 15 c) 17 d) 20 e) A la circunferencia de radio OQ se le aplica una homotecia H(P, 2), si el radio OQ = 4 m entonces el radio O`Q` es: a) 2 m

7 b) 4 m c) 8 m d) 16 m e) 64 m

GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS

GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS Definición: Se llaman transformaciones

Más detalles

MOVIMIENTOS EN EL PLANO

MOVIMIENTOS EN EL PLANO Ejercicio nº 1.- MOVIMIENTOS EN EL PLANO a) Aplica una traslación de vector t 3, 2 a las figuras y F. F1 2 b Qué habríamos obtenido en cada caso si, en lugar de aplicar la traslación, hubiéramos aplicado

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2015 2016) 1. En el espacio afín IR 3 se considera la referencia canónica R y la referencia R = (1, 0, 1); (1, 1, 0), (1, 1, 1), (1, 0, 0)}. Denotamos

Más detalles

Guía Nº 2 Transformaciones Isométricas

Guía Nº 2 Transformaciones Isométricas Colegio Raimapu Departamento de Matemática Nombre Alumno o Alumna: Guía Nº 2 Transformaciones Isométricas Curso: Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo indicando la respuesta

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2012 2013) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2013 2014) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2016 2017) 1. En el espacio afín IR 3 se considera la referencia canónica R y la referencia R = {(1, 0, 1); (1, 1, 0), (1, 1, 1), (1, 0, 0)}. Denotamos

Más detalles

Reconocer y determinar una transformación isometrica. 1) Cuál de las siguientes alternativas no corresponde a una transformación isométrica?

Reconocer y determinar una transformación isometrica. 1) Cuál de las siguientes alternativas no corresponde a una transformación isométrica? Guía N 21.2 Nombre: Fecha: Contenido: Transformaciones isométricas. Objetivos: Reconocer y determinar una transformación isometrica 1) Cuál de las siguientes alternativas no corresponde a una transformación

Más detalles

Transformaciones Isométricas

Transformaciones Isométricas Transformaciones Isométricas I o Medio Profesor: Alberto Alvaradejo Ojeda Índice 1. Transformación Isométrica 3 1.1. Traslación..................................... 3 1.2. Ejercicios.....................................

Más detalles

Translaciones, giros, simetrías.

Translaciones, giros, simetrías. Translaciones, giros, simetrías. Transformaciones geométricas Transformación geométrica es una aplicación del plano en el plano tal que a cada punto de un plano le hace corresponder otro punto del mismo

Más detalles

Cuáles son las imágenes de los puntos M,N,O,P respecto eje x?

Cuáles son las imágenes de los puntos M,N,O,P respecto eje x? Guía N 3 Nombre: Curso: 1 Medio A-B-C-D Unidad Geometría Fecha: Profesora: Odette Castro M. Contenidos: Transformaciones isométricas en el plano cartesiano Simetría Axial 1. Dibuja la figura simétrica,

Más detalles

EJERCICIOS PARA RESOLVER

EJERCICIOS PARA RESOLVER EJERIIOS PR RESOLVER NLISIS VETORIL 1. Hallar el módulo del vector resultante. a) 1u b) u c) u d) 5u e) u. Dado el conjunto de vectores mostrados en la siguiente figura. a) b) 9 c) d) 5 e). Dado el siguiente

Más detalles

SERIE ÁLGEBRA VECTORIAL

SERIE ÁLGEBRA VECTORIAL SERIE ÁLGEBRA VECTORIAL 1.-Sea C(2, -3, 5) el punto medio del segmento dirigido AB. Empleando álgebra vectorial, determinar las coordenadas de los puntos A y B, si las componentes escalares de AB sobre

Más detalles

E SAYO º 1 Geometría

E SAYO º 1 Geometría ᒬ 01) En el triángulo ABC de la figura AD = BD;

Más detalles

Matemáticas II. d) Perpendicular al plano π: 2x y + 3z 1 = 0, paralelo a la recta r : x 1 2 = y 3 = z 8

Matemáticas II. d) Perpendicular al plano π: 2x y + 3z 1 = 0, paralelo a la recta r : x 1 2 = y 3 = z 8 I.E.S. Juan Carlos I Ciempozuelos (Madrid) Matemáticas II * Geometría analítica en R 3 * 1. Determina cuáles de las siguientes ternas de puntos son puntos alineados. Encuentra la ecuación de la recta que

Más detalles

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 20-2 Profesor: Jaime Andres Jaramillo González Parte del material ha sido tomado de documentos de los profesores

Más detalles

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 20-2 Profesor: Jaime Andrés Jaramillo González ([email protected]) Parte del material ha sido tomado

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA 1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando

Más detalles

Objetivos: Trasladar figuras en el plano cartesiano. Reconocer o identificar una traslación.

Objetivos: Trasladar figuras en el plano cartesiano. Reconocer o identificar una traslación. Guía N 19 Nombre: Fecha: Contenido: Transformaciones isométricas. Objetivos: Trasladar figuras en el plano cartesiano Reconocer o identificar una traslación. Las transformaciones geométricas están presentes

Más detalles

TRABAJO PRÁCTICO N 1: ALGUNOS ELEMENTOS DE LA GEOMETRÍA ANALÍTICA. 1.2 a. Marcar en un sistema de coordenadas cartesianas los siguientes puntos: 3 2

TRABAJO PRÁCTICO N 1: ALGUNOS ELEMENTOS DE LA GEOMETRÍA ANALÍTICA. 1.2 a. Marcar en un sistema de coordenadas cartesianas los siguientes puntos: 3 2 FACULTAD DE CIENCIAS EXACTAS, INGENIERIA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE MATEMATICA CATEDRA DE ALGEBRA Y GEOMETRÍA ANALITICA I CARRERA: Licenciatura en Física TRABAJO

Más detalles

TEMA 9.- TRANSFORMACIONES EN EL PLANO.

TEMA 9.- TRANSFORMACIONES EN EL PLANO. GEOMETRÍ: 5.- TRNSFORMIONES EN EL PLNO TEM 9.- TRNSFORMIONES EN EL PLNO. Definición 9.1.- Llamaremos transformación geométrica en el plano a una operación u operaciones geométricas que permiten deducir

Más detalles

TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad

TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad TORNEOS GEOMÉTRICOS 2017. Primera Ronda Primer Nivel - 5º Año de Escolaridad Problema 1. El hexágono regular de la figura tiene área 6cm 2. Halla el área de la región sombreada. Solución: El triángulo

Más detalles

1. El cubo de la figura tiene vértices A, B, C, D, E, F, G y H. Si AE = 5 cm, cuál de las siguientes afirmaciones es FALSA? H

1. El cubo de la figura tiene vértices A, B, C, D, E, F, G y H. Si AE = 5 cm, cuál de las siguientes afirmaciones es FALSA? H onvenio Nº Guía práctica Planos en el espacio Ejercicios PSU 1. El cubo de la figura tiene vértices,,, D, E, F, G y H. Si E = 5 cm, cuál de las siguientes afirmaciones es FLS? H G ) G = 5 2 cm F E ) EH

Más detalles

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática. Álgebra Geometría Analítica Prof. Gisela Saslavsk Vectores en R en R 3. Rectas planos en el espacio Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..

Más detalles

4 Vectores en el espacio

4 Vectores en el espacio 4 Vectores en el espacio ACTIVIDADES INICIALES 4.I. Efectúa las siguientes operaciones en R³ a) 1 + 1 5,, 4, 7, 2 2 3 b) 3 3 2, 1, c) 6(2, 3, 1) + 4(1, 5, 2) 4 4.II. Calcula los valores de a, b y c para

Más detalles

MATEMÁTICAS I Unidad 5. GEOMETRÍA ANALÍTICA. Ed. Santillana. SOLUCIONES

MATEMÁTICAS I Unidad 5. GEOMETRÍA ANALÍTICA. Ed. Santillana. SOLUCIONES MATEMÁTICAS I Unidad. GEOMETRÍA ANALÍTICA. Ed. Santillana. SOLUCIONES.. a. a 4. a. a 6. a 7. a 8. a 9. a. a. a. a. a 4. a. a 6. a 7. a 8. Ecuación vectorial: ( x, y ) ( 7, ) + λ (, ) Ecuaciones paramétricas:

Más detalles

EGRESADOS. Matemática PROGRAMA. Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano. Ejercicios PSU

EGRESADOS. Matemática PROGRAMA. Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano. Ejercicios PSU PROGRAMA EGRESADOS Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano Ejercicios PSU 1. Si P(3, 4) y Q(8, 2), entonces el punto medio de PQ es A) (11, 2) D) (5, 2) B) ( 5 2, 3 ) E)

Más detalles

Transformaciones geométricas.

Transformaciones geométricas. Transformaciones geométricas. Transformación es una correspondencia del plano en sí mismo tal que a cada punto P del plano, le corresponde un solo punto P'. Cuando los ángulos y segmentos transformados

Más detalles

Se pide: (b) Ecuaciones que permiten obtener las coordenadas cartesianas en R en función de las de R.

Se pide: (b) Ecuaciones que permiten obtener las coordenadas cartesianas en R en función de las de R. ÁLGEBRA Práctica 13 Espacios afines E 2 y E 3 (Curso 2004 2005) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = {O, ē 1, ē 2, ē 3 } y R = {P, ū 1, ū 2, ū 3 }, donde

Más detalles

Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99)

Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99) Capítulo 1 Vectores 26 Problemas de selección - página 13 (soluciones en la página 99) 21 Problemas de desarrollo - página 22 (soluciones en la página 100) 11 1.A PROBLEMAS DE SELECCIÓN Sección 1.A Problemas

Más detalles

LA JUVENTUD A JESUCRISTO QUEREMOS DEVOLVER. Nombre estudiante: Fecha: Educador: SERGIO ANDRES RINCON M.

LA JUVENTUD A JESUCRISTO QUEREMOS DEVOLVER. Nombre estudiante: Fecha: Educador: SERGIO ANDRES RINCON M. EVALUACIÓN ACADÉMICA GEOMETRIA TERCER PERIODO Gestión Académica Versión 2 / 24-10-2013 Nombre estudiante: Fecha: Educador: SERGIO ANDRES RINCON M. Grado: 7º Logro a valorar: - Predecir y comparar los resultados

Más detalles

x-z = 0 x+y+2 = [2012] [SEP-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por

x-z = 0 x+y+2 = [2012] [SEP-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por 1. [01] [SEP-B] Halla el punto simétrico del P(,1,-5) respecto de la recta r definida por x-z = 0 x+y+ = 0.. [01] [SEP-A] Sean los puntos A(0,0,1), B(1,0,-1), C(0,1,-) y D(1,,0). a) Halla la ecuación del

Más detalles

ROTACIONES. R P,. Si la rotación es negativa se representa por EJEMPLOS

ROTACIONES. R P,. Si la rotación es negativa se representa por EJEMPLOS 1. TRASLACIONES CAPÍTULO XII TRANSFORMACIONES ISOMETRICAS ISOMETRIAS I Las traslaciones, son aquellas isometrías que permiten desplazar en línea recta todos los puntos del plano. Este desplazamiento se

Más detalles

DESARROLLO DE HABILIDADES ISOMETRIAS 8

DESARROLLO DE HABILIDADES ISOMETRIAS 8 DESARROLLO DE HABILIDADES ISOMETRIAS 8 NOMBRE:.. CURSO: Resolver los siguientes ejercicios y problemas relacionados con Transformaciones isométricas, realizando los procedimientos necesarios para marcar

Más detalles

MATEMÁTICA N O 4. Santillana FASCÍCULO PSU N O 4 MATEMÁTICA. Santillana

MATEMÁTICA N O 4. Santillana FASCÍCULO PSU N O 4 MATEMÁTICA. Santillana FASCÍCULO PSU N O 4 MATEMÁTICA 1 1. En la figura, AD BC ; AB = 8cm y la medida del ángulo DCB es ε entonces BC mide: D A) 8 cos ε B) 8 sen ε C C) 8 tg ε D) 4 sen ε E) 4 tg ε ε 2. El término que sigue en

Más detalles

Consideraciones previas: *DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x. ). Q(x. d= ( ) ( ) 2. *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio.

Consideraciones previas: *DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x. ). Q(x. d= ( ) ( ) 2. *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. Consideraciones previas: *DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x a, y b ). Q(x a, y b ) x 2 b + ya yb d= ( ) ( ) 2 a x *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *ALTURA: perpendicular

Más detalles

7. [2013] [JUN-A] a) Pueden existir vectores u y v tales que u = 2, v = 3 y u v = 8? Justifique la respuesta.

7. [2013] [JUN-A] a) Pueden existir vectores u y v tales que u = 2, v = 3 y u v = 8? Justifique la respuesta. 1. [014] [EXT-A] a) Determine el valor o valores de m, si existen, para que la recta r: mx+y = x+ mz = : x-y-z+6 = 0. b) Determine la distancia del punto P= (,1,1) a la recta r cuando m =. sea paralela

Más detalles

TEMA 4. Vectores en el espacio Problemas Resueltos

TEMA 4. Vectores en el espacio Problemas Resueltos Matemáticas II (Bachillerato de Ciencias) Soluciones de los problemas propuestos Tema 4 5 Vectores TEMA 4 Vectores en el espacio Problemas Resueltos Para a = (,, ) y b = (,, 4), halla: a) a + b b) a b

Más detalles

MATEMÁTICAS II TEMA 4 Vectores en el espacio Problemas resueltos

MATEMÁTICAS II TEMA 4 Vectores en el espacio Problemas resueltos Geometría del espacio: Vectores; producto escalar, vectorial y mixto Aplicaciones MATEMÁTICAS II TEMA 4 Vectores en el espacio Problemas resueltos Vectores Para a = (,, ) y b = (,, 4), halla: a) a + b

Más detalles

Traslación: ABCDEF se ha transformado a la figura A B C D E F, en la dirección y longitud del vector d

Traslación: ABCDEF se ha transformado a la figura A B C D E F, en la dirección y longitud del vector d PROFESOR SANDRO JAVIER VELASQUEZ LUNA 1 TRANSFORMACIONES ISOMETRICAS Si a una figura geométrica se le aplica una transformación, y esta no produce un cambio en la medida de los lados y ángulos se llama

Más detalles

3. VECTOR UNITARIO DIRECCIONAL. Cada vector tiene su respectivo vector unitario. El vector unitario es paralelo a su respetivo vector de origen.

3. VECTOR UNITARIO DIRECCIONAL. Cada vector tiene su respectivo vector unitario. El vector unitario es paralelo a su respetivo vector de origen. ANÁLISIS VECTORIAL Semana 01 1. VECTOR. Se representa mediante un segmento de recta orientado. En física sirve para representar a las magnitudes físicas vectoriales. Se representa por cualquier letra del

Más detalles

b) Halle el punto de corte del plano π con la recta que pasa por P y P.

b) Halle el punto de corte del plano π con la recta que pasa por P y P. GEOMETRÍA 1- Considere los puntos A(1,2,3) y O(0,0,0). a) Dé la ecuación de un plano π 1 que pase por A y O, y sea perpendicular a π 2 : 3x-5y+2z=11. b) Encuentre la distancia del punto medio de A y O

Más detalles

TALLER 4 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 4 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER 4 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA 013- UNIVERSIDAD DE ANTIOQUIA Profesor: Jaime Andrés Jaramillo G jaimeaj@conceptocomputadorescom 1 Coloque para cada una de las siguientes

Más detalles

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por x = 1+t 1. [014] [EXT-A] Considera los puntos A(1,1,) y B(1,-1,-) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por A y

Más detalles

TALLER TRANSFORMACIONES ISOMÉTRICAS. Transformaciones Isométricas

TALLER TRANSFORMACIONES ISOMÉTRICAS. Transformaciones Isométricas TALLER TRANSFORMACIONES ISOMÉTRICAS Introducción étricas Actividad: En los siguientes pares de transformaciones, reconoce aquellas en las que se mantiene la forma y el tamaño. Una transformación de una

Más detalles

1 1 1 u = u u = + = un vector unitario con la dirección de u será u puesto que u = u = : 1 ( ) ( ) ( ) ( ) ( )

1 1 1 u = u u = + = un vector unitario con la dirección de u será u puesto que u = u = : 1 ( ) ( ) ( ) ( ) ( ) Examen de Geometría analítica del plano Curso 05/6 Ejercicio. a) Halla los dos vectores unitarios que son ortogonales al vector w = ( 3, ) w = 3, ; un vector perpendicular a w será u =,3, puesto que u

Más detalles

Transformaciones isométricas

Transformaciones isométricas Tema 4: Geometría Contenido: Criterios de congruencia de triángulos Nivel: 1 Medio Transformaciones isométricas 1. Transformaciones isométricas Una transformación isométrica es un movimiento en que se

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 2,

Más detalles

TEMA 5. VECTORES. Dados dos puntos del plano y.

TEMA 5. VECTORES. Dados dos puntos del plano y. TEMA 5. VECTORES. Dados dos puntos del plano y. Se define el vector de origen A y extremo B como el segmento orientado caracterizado por su módulo (su longitud), dirección (la de la recta que lo contiene)

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos] Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo

Más detalles

Problemas de exámenes de Geometría

Problemas de exámenes de Geometría 1 Problemas de exámenes de Geometría 1. Consideramos los planos π 1 : X = P+λ 1 u 1 +λ 2 u 2 y π 2 : X = Q+µ 1 v 1 +µ 2 v 2. Cuál de las siguientes afirmaciones es incorrecta? a) Si π 1 π 2 Ø, entonces

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía de vectores. Vectores En matemática, un vector es una herramienta geométrica utilizada para representar una magnitud física definida en un sistema de referencia que se caracteriza por tener módulo

Más detalles

PSU Matemática NM-4 Guía 24: Isometrías. Transformaciones isométricas en el plano

PSU Matemática NM-4 Guía 24: Isometrías. Transformaciones isométricas en el plano Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM-4 Guía 4: Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza diferentes

Más detalles

TEMA 4. Vectores en el espacio Problemas Resueltos

TEMA 4. Vectores en el espacio Problemas Resueltos Matemáticas II (Bachillerato de Ciencias) Soluciones de los problemas propuestos Tema 4 5 Vectores TEMA 4 Vectores en el espacio Problemas Resueltos Para a = (,, ) y b = (,, 4), halla: a) a b b) a b c)

Más detalles

1.18 Convertir de coordenadas cilíndricas a esféricas el campo vectorial H = (A/r), donde A es constante.

1.18 Convertir de coordenadas cilíndricas a esféricas el campo vectorial H = (A/r), donde A es constante. Problemas 1.5 Un campo vectorial está dado por G = 24xy + 12(x 2 + 2) + 18z 2. Dados dos puntos, P(1, 2, - 1) y Q(-2, 1, 3), encontrar: a) G en P; b) un vector unitario en la dirección de G en Q; c) un

Más detalles

EL ESPACIO VECTORIAL EUCLIDEO

EL ESPACIO VECTORIAL EUCLIDEO EL ESPACIO VECTORIAL EUCLIDEO PRODUCTO ESCALAR Sean dos vectores del espacio V 3. Llamamos producto escalar de dichos vectores, y se denota, al número real que se obtiene al multiplicar sus módulos por

Más detalles

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº 1

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº 1 TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los

Más detalles

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática. Álgebra Geometría Analítica Vectores en R en R 3. Rectas planos en el espacio Prof. Gisela Saslavs Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..

Más detalles

Geometría Prof. L. Solorza Curso: 1 medio. Guía de isometrías

Geometría Prof. L. Solorza Curso: 1 medio. Guía de isometrías Guía de isometrías A) Simetrías a) Reflexiones o Simetrías axiales Concepto: Una reflexión o simetría axial, con eje la recta L, es un movimiento del plano tal que a cada punto P del plano le hace corresponder

Más detalles

TRANSFORMACIONES ISOMÉTRICAS EN EL PLANO CARTESIANO

TRANSFORMACIONES ISOMÉTRICAS EN EL PLANO CARTESIANO Matemáticas Aplicadas Tema: Movimiento de los cuerpos geométricos. TRANSFORMACIONES ISOMÉTRICAS EN EL PLANO CARTESIANO Transformación isométrica Isometría proviene del griego iso, prefijo que significa

Más detalles

3. ÁLGEBRA LINEAL // 3.2. GEOMETRÍA

3. ÁLGEBRA LINEAL // 3.2. GEOMETRÍA 3. ÁLGEBRA LINEAL // 3.2. GEOMETRÍA ANALÍTICA EN EL PLANO Y EN EL ESPACIO. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS 3.2.1. Rectas en el plano y en el espacio La recta que pasa por el punto

Más detalles

3. Calcula la longitud del lado desconocido de cada triángulo rectángulo:

3. Calcula la longitud del lado desconocido de cada triángulo rectángulo: 4ª Parte: Geometría Propiedades de las figuras planas y cuerpos geométricos Poliedros regulares La esfera. El globo terráqueo 1. Dibuja un triángulo equilátero e indica en él sus puntos notables: baricentro,

Más detalles

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica 1. a) Marcar en un eje los puntos a(1);b( 2) y c(4). b) Hallar los puntos simétricos respecto al origen

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles

2 Busca en la figura del ejercicio 1 tres vectores equivalentes a NC y otros tres equivalentes a MQ

2 Busca en la figura del ejercicio 1 tres vectores equivalentes a NC y otros tres equivalentes a MQ OPERCIONES CON VECTORES 1 La figura CD es un rombo. Compara el módulo, la dirección y el sentido de los siguientes pares de vectores: a) y C b) Q y C c)m y PD d) OC y OD a) y C tienen igual módulo y distinta

Más detalles

2 Traslaciones. Unidad 13. Movimientos en el plano. Frisos y mosaicos ESO. Página 172. que transforma H 3 en H 1? a) Son traslaciones H 1, H 2 y H 3.

2 Traslaciones. Unidad 13. Movimientos en el plano. Frisos y mosaicos ESO. Página 172. que transforma H 3 en H 1? a) Son traslaciones H 1, H 2 y H 3. Unidad 13. Movimientos en el plano. Frisos y mosaicos a las Enseñanzas plicadas 3 Traslaciones Página 17 1. El mosaico de la derecha se llama multihueso. H 1, H, H 3 y H 4 son huesos. Se pueden estudiar

Más detalles

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los

Más detalles

a 2 = = 1600 ; a = 40 A = = 80. Iguales A = 361 1:150

a 2 = = 1600 ; a = 40 A = = 80. Iguales A = 361 1:150 uno es agudo y el otro es obtuso. Á = (48. 5 ) / 2 = 120 D 2 = 20 2 + 10 2 + 6 2 = 536 ; D = 23 15 V = V S + V c = 2 / 3. π 125 + 1 / 3. π 25. 3 = 325/3. π Área = lado x lado = l 2 Los paralelepípedos

Más detalles

Espacios vectoriales. Vectores del espacio.

Espacios vectoriales. Vectores del espacio. Espacios vectoriales. Vectores del espacio. Consideremos un paralelepípedo de bases ABCD y EFGH, siendo A(1,1,1), B(2,1,1), C(2,4,1) y E(1,2,7). Halla: a) el área de una de las bases; b) el volumen del

Más detalles

A) (2, 2) B) (6, 1) C) (6, 3) D) (-1, 4) E) (5, -4) ROTACIONES. R ( P, α ). Si la rotación es negativa se representa por ( )

A) (2, 2) B) (6, 1) C) (6, 3) D) (-1, 4) E) (5, -4) ROTACIONES. R ( P, α ). Si la rotación es negativa se representa por ( ) CAPÍTULO IX TRANSFORMACIONES ISOMETRICAS 1. TRASLACIONES ISOMETRIAS I Las traslaciones, son aquellas isometrías que permiten desplazar en línea recta todos los puntos del plano. Este desplazamiento se

Más detalles

Tema 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1

Tema 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 Tema 7 Rectas y planos en el espacio Matemáticas II - º Bachillerato 1 ÁNGULOS EJERCICIO 33 : Halla el ángulo que forma la recta y el plano π: x y + 4z 0. 3x y z + 1 0 r : x + y 3z 0 EJERCICIO 34 : En

Más detalles

MATEMÁTICA N O 3. Santillana FASCÍCULO PSU N O 3 MATEMÁTICA. Santillana

MATEMÁTICA N O 3. Santillana FASCÍCULO PSU N O 3 MATEMÁTICA. Santillana MATEMÁTICA N O FASCÍCULO PSU N O MATEMÁTICA 1 MATEMÁTICA N O 1. 2 ( 4 ) 2 =? A) 8 B) 10 C) 12 D) 16 E) 24 2. Al escribir la expresión (0,0006) 2 en notación científica se obtiene: A),6 10 - B),6 10 9 C),6

Más detalles

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los pares de ángulos alternos

Más detalles

PÁGINA 113. a) De H 1 a H 2, y de H 1 a H 3 son traslaciones. b) El vector que caracteriza la traslación que transforma AB.

PÁGINA 113. a) De H 1 a H 2, y de H 1 a H 3 son traslaciones. b) El vector que caracteriza la traslación que transforma AB. PÁGINA 113 H 4 H 3 H 1 H 2 1 Observa el mosaico de arriba, al que se le llama multihueso. De las transformaciones que llevan H 1 a H 2, H 3 y H 4 : a) Cuál o cuáles de ellas son traslaciones? b) Cuál es

Más detalles

ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia.

ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia. ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de 2012. Circunferencia. Elementos de la circunferencia. El segmento de recta es una cuerda. El segmento de recta es una cuerda que pasa por el centro, por lo tanto

Más detalles

AYUDAS SOBRE LA LINEA RECTA

AYUDAS SOBRE LA LINEA RECTA AYUDAS SOBRE LA LINEA RECTA AYUDA : Grafiquemos la función Solución: Se debe escoger algunos números que representan a la variable x, para obtener el valor de la variable y respectivamente así: El proceso:

Más detalles

GEOMETRÍA ANALÍTICA. VECTORES Y ECUACIONES DE LA RECTA

GEOMETRÍA ANALÍTICA. VECTORES Y ECUACIONES DE LA RECTA GEOMETRÍA ANALÍTICA. VECTORES Y ECUACIONES DE LA RECTA r r 1 Dados los ectores u ( 8, 4) y (1, ), calcula: a) Dos ectores unitarios con la misma dirección que u r. b) Dos ectores ortogonales a y de módulo.

Más detalles

EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I CUESTIONES DE EVALUACIÓN CONTINUA Y PROBLEMAS DE EXAMEN Fernando Jiménez Lorenzo 1.- VECTORES 1 Vectores CUESTIÓN C 1.1. Dados

Más detalles

El cubo o hexaedro regular

El cubo o hexaedro regular El cubo o hexaedro regular Como los ángulos de un cuadrado miden 90, solo podemos formar un poliedro de caras cuadradas, tres por cada vértice. La suma de las caras que están unidas en cada vértice será:

Más detalles

TEMA 6. ECUACIONES DE LA RECTA

TEMA 6. ECUACIONES DE LA RECTA TEMA 6. ECUACIONES DE LA RECTA Dados un punto y un vector, vamos a hallar las ecuaciones de la recta r que pasa por el punto A y es paralela al vector. Sea consideramos los vectores un punto cualquiera

Más detalles

3º - Matemática B La Blanqueada Nocturno Práctico Nº 6 - Repaso

3º - Matemática B La Blanqueada Nocturno Práctico Nº 6 - Repaso 3º - Matemática B La Blanqueada Nocturno Práctico Nº 6 - Repaso 1) Hallar los puntos de corte de la recta x+ y= 3 y la cfa: x 2 + y 2 = 5 2) Sea v= ( 1,2) tal que OB v. Halle el área del triángulo OBC

Más detalles

*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio.

*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x a, y b ). Q(x a, y b ) 2 b + ya yb d= ( ) ( ) 2 x a x *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *ALTURA: perpendicular bajada del vértice al

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un paralelogramo y razona qué pares de vectores determinados por los vértices son equipolentes. Son equipolentes los que son paralelos y del

Más detalles

VECTORES. BIDIMENSIONAL

VECTORES. BIDIMENSIONAL VETORES. IDIMENSIONL 1. Dado los vectores,,, D, E, F y G que se muestran en la figura, determinar el modulo del vector resultante si = 5N y F = 4N. Rpta. R = 17,35N. 2. En el primer cuadrante de un sistema

Más detalles

MATEMÁTICA N O 1. Santillana FASCÍCULO PSU N O 1 MATEMÁTICA. Santillana

MATEMÁTICA N O 1. Santillana FASCÍCULO PSU N O 1 MATEMÁTICA. Santillana FASCÍCULO PSU N O 1 MATEMÁTICA 1 1. Por qué número se debe multiplicar el racional -b para que el producto sea 1? a A) B) C) D) E) b a a b -a b -1 a -1 b 2. Si x = 8/24 cuál(es) de la(s) siguiente(s) expresiones

Más detalles

MATEMÁTICA 5 BÁSICO GUÍAS DEL ESTUDIANTE LOCALIZACIONES, CARACTERIZACIONES Y TRANSFORMACIONES GEOMÉTRICAS

MATEMÁTICA 5 BÁSICO GUÍAS DEL ESTUDIANTE LOCALIZACIONES, CARACTERIZACIONES Y TRANSFORMACIONES GEOMÉTRICAS MATEMÁTICA 5 BÁSICO LOCALIZACIONES, CARACTERIZACIONES Y TRANSFORMACIONES GEOMÉTRICAS Material elaborado por: Héctor Muñoz Adaptación: Equipo de Matemática Fundación Chile GUÍA : ADIVINA EL PUNTO REGLAS

Más detalles