Problema 1. Problema 2
|
|
|
- María del Carmen Aguilera González
- hace 7 años
- Vistas:
Transcripción
1 Probabilidad 1 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Estadística Probabilidad Problema 1 I.2- Sean A, B y C tres sucesos, tales que P(A) = 0.2, P(B) = 0.8 y P(A B) = 0.5. Entre las siguientes afirmaciones, indica cuáles son corresctas.(puede haber más de una respuesta correcta). Razona tu respuesta. a) P(A B) = 0.4 b) P(A B) = 0.16 c) P(A B) = 0.1 d) P(A B) = 0.6 e) P(A B) = 1 Problema 2 Si dos sucesos A y B son tal que P(A B) = 0, se dice que son sucesos incompatibles, es decir que no pueden ocurrir a la vez. Pueden ser dos sucesos incompatibles, independientes también?
2 2 Probabilidad A partir de aquí todos los enunciados siguientes están extraidos de problemas de examen en la asignatura de Métodos estadísticos de la ingeneriá o de Estadística de primer curso de varias de las titulaciones de la UPCT. NO SE PIDE NINGÚN CÁLCULO DE PROBABILIDADES. ES SUFICIENTE CON TRADUCIR LOS DATOS DEL ENUNCIADO, INTRODUCIENDO EL EXPERIMENTO ALEATORIO, LOS SUCE- SOS CONVENIENTES ASÍ COMO LAS PROBABILIDADES RE- QUERIDAS. Problema 3 La elaboración de un determinado tipo de piezas puede realizarse con dos máquinas, siendo la producción de piezas diaria de ambas máquinas la misma. Las proporciones de piezas defectuosas fabricadas por las dos máquinas M 1 y M 2 son 0.04 y 0.01, respectivamente. Si el experimento es: escoger al azar una pieza de la producción conjunta, traducir los datos del enunciadoa) Si se selecciona al azar una pieza de la producción total y resulta detectuosa Cuál es la probabilidad de que haya sido producida por la máquina M1? Problema 4 II.1 En la construcción de unas determinadas obras pueden aparecer anomalías debidas a dos causas que son independientes: fallos de cimentación y mala calidad de los materiales. La primera ocurre con probabilidad del 4% y la segunda con probabilidad del 3%. (a) Calcular la probabilidad de que en una determinada obra no aparezca ninguna anomalía. (b) Calcular la probabilidad de que aparezcan fallos de cimentación y no mala calidad de los materiales. (c) Si se detecta la presencia de anomalías, la construcción puede verse afectada con un desplome en un plazo de tiempo determinado con las siguientes probabilidades:
3 Probabilidad 3 0.1, cuando no aparece ninguna de las anomalías. 0.8, cuando aparece alguna de las anomalías. Interpretar esta información adicional en términos de sucesos y probabilidades. Calcular la probabilidad de que el edificio se desplome. Si el edificio se ha desplomado, cuál es la probabilidad de que se haya producido alguna de las anomalías?. Problema 5 Una empresa consta de tres factorías dedicadas a la elaboración de ladrillos para la construcción, producción que se reparte de la siguiente manera: la factoría A elabora un 25% y la B un 40%. Además, la factoría A elabora un 5% de ladrillos defectuosos, la B un 2% y la C un 3%. a) Indicar el experimento aleatorio y los sucesos que intervienen, así como las probabilidades asociadas a dichos sucesos. b) Si seleccionamos un ladrillo elaborado en la factoría C, cuál es la probabilidad de que sea defectuoso? c) Si seleccionamos un ladrillo de la producción total, cuál es la probabilidad de que sea defectuoso? d) Si el ladrillo seleccionado de la producción total resulta defectuoso, cuál es la probabilidad de que no se fabricara en C? Problema 6 II.1- Cierto artículo se manufactura en tres fábricas, digamos 1, 2 y 3. Se sabe que la primera produce el doble de artículos que la segunda y que ésta y la tercera producen el mismo número de artículos (durante el periodo de producción especificado). Se sabe también que el 2% de artículos producidos por las dos primeras es defectuosos, mientras que el 4% de los manufacturados por la tercera es defectuoso. Todos los artículos producidos se colocan en una fila y se escoge uno al azar. a) Traducir los datos del enunciado, introduciendo los sucesos convenientes b) Cuál es la probabilidad de que este artículo sea defectuoso?
4 4 Probabilidad II.2- En un laboratorio, se diseña un test para detectar la presencia de una bacteria en el agua. Para probar el test, se considera un grán número de probetas con agua que pueden, o no, contener la bacteria. La probabilidad de que una probeta escogida al azar contenga la bacteria es de 0.2. Por otra parte, si una probeta contiene la bacteria, el test da positivo en el 90% de los casos. En cambio, si una probeta no contiene la bacteria, el test da positivo en el 5% de los casos. (a) Traducir los datos del enunciado, introduciendo los sucesos convenientes. (b) Al escoger al azar una probeta, cuál es la probabilidad de que dé positivo en el test? (c) Si una probeta ha dado positivo en el test, cuál es la probabilidad de que contenga la bacteria? (d) Entre las probetas que han dado negativo en el test, cuál es la proporción de probetas que contienen la bacteria? Problema 7 II.2- Las mujeres de una universidad constituyen el 60% de los estudiantes de primer curso, el 40% de los de segundo y el 40% de los de tercero. Los estudiantes de dicha universidad son en un 40% de primero, en un 30% de segundo y en un 30% de tercero. (a) Introducir los sucesos convenientes y traducir los datos del enunciado. (b) Si se escoge un estudiante de dicha universidad al azar, hallar la probabilidad de que sea mujer. (c) Si el estudiante escogido es mujer Cuál es la probabilidad de que sea de segundo curso? Problema 8 1. Un avión realiza diariamente el mismo servicio. En un año hubo 50 días con niebla y 315 días sin niebla. Consideramos el experimento aleatoria se escoge un día al azar en el año. Se ha comprobado que si el día es con niebla, la probabilidad de que ocurra un accidente ese día es de 0.04 mientras que si el día es sin niebla, la probabilidad de un accidente es de Calcular la probabilidad de que:
5 Probabilidad 5 (a) al escoger al azar un día en el año, haya ocurrido un accidente. (b) Si un día ha ocurrido un accidente, el día haya sido sin niebla. Problema 9 I.2.- Una pieza producida en una empresa puede tener dos tipos de defectos. El 8% de la producción presenta el defecto de tipo A, el 5% de la producción presenta el defecto de tipo B, y se supone que no hay piezas que tengan los dos tipos de defectos. Después de ser producida cada pieza es sometida de manera automática a un test de ruptura, con las siguientes posibilidades: Si la pieza tiene el defecto de tipo A, tiene una probabilidad de 0.9 de romperse. Si la pieza tiene el defecto de tipo B, tiene una probabilidad de 0.95 de romperse. Finalmente, si la pieza no tiene ningún tipo de defecto, tiene una probabilidad de 0.01 de romperse. (a) Si el experimento aleatorio consiste en escoger al azar un pieza de la producción, traducir los datos del enunciado, después de haber introducido los sucesos convenientes. (b) Cuál es la probabilidad de que una pieza escogida al azar en la producción se vaya a romper durante el test? (c) Si una pieza escogida al azar se ha roto durante el test, cuál es la probabilidad de que no fuese defectuosa? Problema Un determinado prefabricado de hormigón puede presentar dos tipos de defectos de manera independiente, que lo hacen inutilizable. El primero de ellos es no cumplir con la norma en lo referente a las dimensiones del objeto y otro no cumplir la norma en relación a la resistencia del mismo, pudiendo presentarse ambos defectos en una misma pieza. Se sabe que el 10% de los prefabricados tienen unas dimensiones incorrectas, mientras que sólo el 5% no cumple las exigencias en cuanto a resistencia. A partir de esta información, determinar: (a) El porcentaje de prefabricados que son correctos, es decir, no presentan defecto alguno.
6 6 Probabilidad (b) El porcentaje de prefabricados que tendrán que ser eliminados por presentar algún tipo de defecto. (c) Determinar, dentro del conjunto de las piezas defectuosas, el porcentaje de piezas que cumplen la norma de resistencia. Problema 11 I.2 Una multinacional realiza operaciones comerciales en tres mercados A, B y C. El 20% de las operaciones de la multinacional corresponden al mercado A y en los mercados B y C realiza exactamente el mismo número de operaciones. El porcentaje de operaciones en los que se producen retrasos en el pago es del 10%, 15% y 5% en los mercados A, B y C, respectivamente. Se pide: (a) Describir los sucesos correspondientes y sus probabilidades asociadas. (b) En qué porcentaje de operaciones de la multinacional no se producen retrasos en el pago?. (c) Qué porcentaje de las operaciones en las que se ha retrasado el pago han sido realizadas en el mercado B?. (d) Elegida una operación al azar, qué probabilidad hay de que no tenga retraso en el pago y corresponda al mercado A o C? (e) Entre las operaciones que no han sufrido retraso en el pago, cuál es el porcentaje de las que corresponden a los mercados A o C? Problema Un método empleado para distinguir entre rocas graníticas y basálticas consiste en examinar desde el aire una porción del espectro infrarrojo de la energía solar reflejada por la roca. Los resultados de estas observaciones los podemos catalogar en tres clases que denotaremos por C 1, C 2 C 3. El grado de detección del procedimiento viene reflejado en la siguiente tabla: Observación C 1 C 2 C 3 Granito 60% 25% 15% Basalto 20% 50% 45%
7 Probabilidad 7 es decir, la probabilidad de que la superficie sea granítica cuando se recibe la señal C 1 es de 0.6, etc. Entonces, sabiendo que en una determinada región se han detectado señales C 1 en el 45% de las pruebas, C 2 en el 20% y C 3 en el resto: (a) Definir de manera adecuada los sucesos que intervienen así como las probabilidades asociadas a cada uno de ellos. (b) Determinar la proporción de granito y basalto de la zona. (c) Si la piedra observada no es basáltica ni granítica, determinar la probabilidad de que la señal recibida sea C 1. Problema Un proceso de fabricación puede estar ajustado o desajustado. Cuando está ajustado produce un 1% de piezas defectuosas y cuando está desajustado un 10%. La probabilidad de desajuste es 0.3. (a) Traducir los datos del enunciado indicando claramente el experimento aleatorio, los sucesos que intervienen y sus probabilidades asociadas. (b) Se toma una pieza de la producción total y resulta ser aceptable. Calcular la probabilidad de que el proceso esté desajustado. Problema 14 IV Sabeis que hay dos ascensores (A y B) en cada ala del hospital de Marina, supongamos que, al llamar un usuario en la planta baja a los dos ascensores de manera simultánea, la probabilidad de que llegue primero el ascensor A es de Además la probabilidad de que el ascensor se quede bloqueado, con el usuario dentro, es de para el ascensor A, y de 0.01 para el ascensor B, 1. Cuál es la probabilidad de que el usuario que ha llamado a los dos ascensores desde la planta baja se quede bloqueado? 2. Si un usuario se ha quedado bloqueado, cuál es la probabilidad de que sea en el ascensor A? Problema 15
8 8 Probabilidad II.1 Dos cazadores A y B disparan a la misma pieza. La precisión de ambos no es la misma, pues la probabilidad de que A acierte es 9/10 y la de B es 7/10. Sabiendo que ambos disparan a la pieza una única vez, hallar la probabilidad de que: 1. el cazador A no acierte. 2. ambos alcancen la pieza. 3. exactamente uno de ellos alcance la pieza. 4. ninguno de ellos alcance la pieza.
Problema 1. Problema 2
Probabilidad 1 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Estadística Probabilidad Problema 1 I.2- Sean A, B y C tres sucesos, tales que P(A) = 0.2, P(B) = 0.8 y P(A B)
PROBABILIDAD. 1.- Justifica gráficamente las siguientes igualdades:
PROBABILIDAD 1.- Justifica gráficamente las siguientes igualdades: 2.- Tenemos dos urnas la urna I con 1 bola negra, 2 rojas y 3 verdes, y la urna II con 2 bolas negras, 1 roja y 1 verde. La experiencia
PROBABILIDAD. 3.-Determina si son compatibles o incompatibles los sucesos A y B:
Ejercicios y problemas 2º Bachillerato C.C.S.S. PROBABILIDAD 1.- Justifica gráficamente las siguientes igualdades: 2.- Tenemos dos urnas la urna I con 1 bola negra, 2 rojas y 3 verdes, y la urna II con
UNIVERSIDAD DE ATACAMA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSITICA Y PROBABILIDAD PAUTA PRIMERA PRUEBA PARCIAL Profesor: Hugo S. Salinas. Primer Semestre 2009 1. La siguiente tabla
6
6 PROBLEMAS DE M1BP201 EJERCICIOS DE 1 DE 5 1. En el experimento que consiste en lanzar un dado cúbico y anotar el resultado de la cara superior, calcular la probabilidad de: a) Salir par. b) Salir impar.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción
I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROBABILIDAD
I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROBABILIDAD Sean A y B dos sucesos con P(A0,, P(0, y P(A 0,. Calcular las probabilidades: a P(A/ b P(A/A c P(A B/A d P(A/A. Tenemos: ( ( ( ( P A
Ejercicios. Jorge Cerezo Martínez & Colaboradores
Ejercicios Jorge Cerezo Martínez & Colaboradores Siendo los sucesos A y B 1 Unión Axiomas Suceso imposible Tautología 1 1 Intersección + + Conmutativa Leyes de Morgan 1 1 Propiedades básicas Combinados
Probabilidad, Variables Aleatorias y Distribuciones
GRUPO A Prueba de Evaluación Continua 5-XII-.- Tres plantas de una fábrica de automóviles producen diariamente 00, 00 y 000 unidades respectivamente. El porcentaje de unidades del modelo A es 60%, 0% y
2.11. Problemas de probabilidad condicional, regla. de la multiplicación, probabilidad total, regla. de Bayes e independencia
74 Capítulo 2. Probabilidades 2.11. Problemas de probabilidad condicional, regla de la multiplicación, probabilidad total, regla de Bayes e independencia 1. La caja 1 contiene x esferas blancas y y rojas.
Probabilidad del suceso imposible
2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 4.- PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------
2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 10.- PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ NOGALES
1.- EXPERIMENTOS ALEATORIOS. SUCESOS 1 Se consideran los sucesos A y B. Exprese, utilizando las operaciones con sucesos, los siguientes sucesos: a) Que no ocurra ninguno de los dos. b) Que ocurra al menos
Ejercicio 2. Sean A, B dos sucesos tales que P (A) = 0 4, P (B) = 0 65 y P ( (A B) (A B) ) = Hallar P (A B).
Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Hoja 2, curso 2006 2007. Ejercicio 1. Dados cuatro sucesos A, B, C y D, la probabilidad de que ocurra al menos uno
Espacio muestral. Operaciones con sucesos
Matemáticas CCSS. 1º Bachiller Tema 12. Probabilidad Espacio muestral. Operaciones con sucesos 1. Determina el espacio muestral de los siguientes experimentos a) Lanzar una moneda y anotar el resultado
MATEMÁTICAS CCSS 2º DE BACHILLERATO
MATEMÁTICAS CCSS 2º DE BACHILLERATO Probabilidad 1) En un centro educativo el 40 % de los alumnos practica voleibol, el 30 % bádminton y el 20 % ambos deportes. a) Si un alumno, elegido al azar, juega
Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace.
Álgebra lineal. Curso 2007-2008. Tema 5. Hoja 1 Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. 1. Un dado se lanza dos veces. Se pide: (a) Construir el espacio muestral.
NOMBRE: a) Sacar par al tirar un dado a) Sacar impar al tirar un dado b) Al lanzar el dado dos veces, se obtenga una suma de puntos igual a 7.
(espacios muestrales, sucesos compatibles e incompatibles) 1 1. Consideremos el experimento que consiste en la extracción de tres bombillas de una caja que contiene bombillas buenas y defectuosas. Se pide
1. EXPERIMENTOS ALEATORIOS.SUCESOS Se llama experimento aleatorio a aquel en el que no se puede predecir el resultado.
UNIDAD 8: PROBABILIDAD 1. EXPERIMENTOS ALEATORIOS.SUCESOS 2. CONCEPTO DE PROBABILIDAD. REGLA DE LAPLACE 3. PROBABILIDAD CONDICIONADA. INDEPENDENCIA DE SUCESOS 4. PROBABILIDAD COMPUESTA 5. PROBABILIDAD
Elisa María Molanes López Departamento de Estadística Universidad Carlos III de Madrid
Elisa María Molanes López Departamento de Estadística Universidad Carlos III de Madrid Métodos Estadísticos. Curso 2007 2008 Boletín de ejercicios n o 2 Ejercicio 1. Una compañía constructora trabaja en
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción
TEMA 1: PROBABILIDAD
TEMA 1: PROBABILIDAD Ejercicios 1- alcular el espacio muestral asociado a los siguientes experimentos: a) Lanzar una moneda b) Tirar un dado c) Lanzar un dado de quinielas d) Extraer una bola de una caja
( ) = ( i) ( i) 1 Probabilidad P A P A B P B. Teorema de la probabilidad total y Teorema de Bayes
1 Probabilidad Teorema de la probabilidad total y Teorema de Bayes S: Espacio muestral A,B,..: Cualquier subconjunto de S, eventos que pueden ocurrir. AXIOMAS 1. P(A) 0 2. P(S)=1 3. {A 1,A 2, } A i A J
PROBABILIDADES Trabajo Práctico 3
PROBABILIDADES Trabajo Práctico 3 1. Se arroja un dado dos veces. Calcular la probabilidad de que la suma de los puntos sea 7 dado que: i. la suma es impar. ii. la suma es mayor que 6. iii. el resultado
R E S O L U C I Ó N. Otra forma de hacer el problema:
Un turista que realice un crucero tiene un 50% de probabilidad de visitar ádiz, un 40% de visitar Sevilla y un 30% de visitar ambas. alcule la probabilidad de que: a) Visite al menos una de las dos ciudades.
PROBABILIDAD Y DISTRIBUCIÓN BINOMIAL
Matemáticas 1º CCSS 1 RESUMEN PROBABILIDAD Y DISTRIBUCIÓN BINOMIAL Algunas definiciones La probabilidad es una medida de la posibilidad de que acontezca un suceso aleatorio determinado, asignándosele un
PROBLEMAS DE LA ASIGNATURA MA2139 ESTADISTICA APLICADA CORRESPONDIENTES AL CAPITULO 1 : MODELOS DE DISTRIBUCION DE PROBABILIDAD
PROBLEMAS DE LA ASIGNATURA MA139 ESTADISTICA APLICADA CORRESPONDIENTES AL CAPITULO 1 : MODELOS DE DISTRIBUCION DE PROBABILIDAD Distribuciones de probabilidad 1/4 PROBLEMAS DE DISTRIBUCIONES DE PROBABILIDAD
IES VICENT ANDRÉS ESTELLÉS DEPARTAMENTO DE MATEMÁTICAS. Curso EJERCICIOS DE SELECTIVIDAD. MATEMÁTICAS APLICADAS II
IES VICENT ANDRÉS ESTELLÉS DEPARTAMENTO DE MATEMÁTICAS. Curso 2011-2012 EJERCICIOS DE SELECTIVIDAD. MATEMÁTICAS APLICADAS II PROBABILIDAD (normalmente preguntas A.3 y B.3) 1. En una cierta empresa de exportación,
ETSI de Topografía, Geodesia y Cartografía. Probabilidad, variables aleatorias y distribuciones EVALUACIÓN CONTINUA
robabilidad, variables aleatorias y distribuciones EVALUACIÓN CONTINUA -XII- Grupo B.- Tres máquinas de una planta de montaje producen el %, 5% y 5% de productos, respectivamente. Se sabe que el %, %,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,
Estadística. Convocatoria ordinaria. 23 de mayo de Nombre Grupo.. Titulación.Número de Examen..
Estadística Convocatoria ordinaria. 23 de mayo de 2017 Nombre Grupo.. Titulación.Número de Examen.. Ejercicio 1 Se dispone de un test para detectar la presencia de contaminantes en una materia prima. Hay
Introducción a la Probabilidad
Capítulo 3 Introducción a la Probabilidad Para extender los resultados del estudio descriptivo de las variables estadísticas a poblaciones que no se observan completamente, es necesario utilizar la idea
Variables aleatorias 1. Problema 1
Variables aleatorias 1 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Estadística Variables aleatorias Problema 1 La dimensión de ciertas piezas sigue una distribución normal
Tema 3: Cálculo de Probabilidades Unidad 1: Introducción y Concepto
Estadística Tema 3: Cálculo de Probabilidades Unidad 1: Introducción y Concepto Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Octubre 2010 Contenidos...............................................................
Nombre y Apellidos:...
BLOQUE 2: ESTADÍSTICA Y PROBABILIDAD Tema 5: Distribuciones de Probabilidad EJERCICIOS Nombre y Apellidos:... 1. PROBABILIDAD SIMPLE 1.- Una urna tiene ocho bolas rojas, 5 amarilla y siete verdes. Si se
MATEMÁTICAS APLICADAS CCSS II. EJERCICIOS: ESTADISTICA: Probabilidad (SELECTIVIDAD) Profesora: Domitila de la Cal Vázquez Página 1
Profesora: Domitila de la Cal Vázquez Página 1 Profesora: Domitila de la Cal Vázquez Página 2 3A-El 35% de los créditos de un banco son para vivienda, el 50% para industrias y el 15% para consumo diverso.
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2000
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2000 Dos compañeros de estudios comparten piso. El primero prepara la comida el 40% de los días y el resto lo hace el segundo. El porcentaje de veces
JUN Tres hombres A, B y C disparan a un objetivo. Las probabilidades de que cada uno de ellos alcance el objetivo son 1 6, 1 4 y 1 3
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. 1 SEP 2008. El 70% de los estudiantes aprueba una asignatura A y un 60% aprueba otra asignatura B. Sabemos, además, que un 35% del total aprueba ambas.
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA PROBABILIDAD Y ESTADÍSTICA GUÍA 2: PROBABILIDADES Profesores: Jaime Arrué A. - Hugo S. Salinas. Primer Semestre 2008 1. Un sistema
C. EXPERIMENTOS ALEATORIOS- SUCESOS- PROBABILDADES:
C. EXPERIMENTOS ALEATORIOS- SUCESOS- PROBABILDADES: 1. Los pacientes que llegan a una clínica pueden seleccionar una de tres secciones para ser atendidos. Supongamos que los médicos se asignan al azar
9.- Sean A y B dos sucesos y A y B sus complementarios. Hallar P(A), P(B), P( A B) y P(A/B)
1.-Una empresa de conservas puede obtener beneficios de 3, 4, ó 5 millones de u.m. al año, con probabilidades respectivas 0,4 0,5, 0,1. Se le ofrecen los servicios de dos empresas de publicidad A, y B,
Cálculo de probabilidades. Probabilidad condicionada. Independencia.
MTEMÁTICS PLICDS LS CIENCIS SOCILES II 2 o Bachillerato. Grupos D y E. Curso 2009/2010. Hoja de ejercicios III Cálculo de probabilidades. Probabilidad condicionada. Independencia. 1 Se lanzan dos dados
4. Tienes 5 libros, de cuántas maneras diferentes puedes escoger uno o más de dichos libros?
Universidad Autónoma Latinoamericana Taller de Repaso para Parcial 1 Estadística Análisis Combinatorio: 1. Una clase consta de 7 niños y 3 niñas. De cuántas maneras diferentes el profesor puede escoger
14. En una tienda de electrodomésticos se venden dos marcas, A y B. Se ha comprobado que un tercio de los clientes elige un electrodoméstico de la
PROBABILIDAD 1. El año pasado el 60% de los veraneantes de una cierta localidad eran menores de 30 años y el resto mayores. Un 25% de los menores de 30 años y un 35% de los mayores eran nativos de esa
PROBABILIDAD. 8. En una bolsa hay 7 bolas blancas y 3 negras. Cuál es la probabilidad de que al extraer
PROBABILIDAD 1. Lanzamos dos monedas al aire (primero una y luego la otra). Calcular la probabilidad de obtener: a) Una sola cara b) Al menos una cara c) Dos caras Sol: a) 1/2; b) 3/4; c) 1/4 2. Un lote
Tema 8. Muestreo. Indice
Tema 8. Muestreo Indice 1. Población y muestra.... 2 2. Tipos de muestreos.... 3 3. Distribución muestral de las medias.... 4 4. Distribución muestral de las proporciones.... 6 Apuntes realizados por José
José Jaime Mas Bonmatí IES LA ASUNCIÓN MATEMÁTICAS CCSS II
1 1 PAU Jun-00 Para responder a los dos apartados siguientes supondremos que los sucesos "nacer niño" y "nacer niña" son equiprobables a) Una madre tiene dos hijos Sabiendo que al menos uno de sus dos
Probabilidad Colección C.1. MasMates.com Colecciones de ejercicios
1. Un monedero contiene 2 monedas de plata y 3 de cobre y otro contiene 4 de plata y 3 de cobre. Si se elige un monedero al azar y se extrae una moneda, cuál es la probabilidad de que sea de plata? 2.
PROBABILIDAD. Propiedades de la probabilidad
PROBABILIDAD Definición axiomática: Sea E el espacio muestral de cierto experimento aleatorio. La Probabilidad de cada suceso es un número que verifica: ) Cualquiera que sea el suceso A, 0 A). 2) Si dos
EJERCICIOS DE PROBABILIDADES
Ejercicios : 1. Se lanza un dado y se observa que número de aparece en la cara superior. 2. Se lanza una moneda cuatro veces y se cuenta el número total de caras obtenidas 3. El ala de un aeroplano se
Departamento de Matemática Aplicada Estadística Aplicada y Cálculo Numérico Grado en Química (Curso ) Combinatoria y Probabilidad.
Departamento de Matemática Aplicada Estadística Aplicada y Cálculo Numérico Grado en Química (Curso 2016-17) Combinatoria y Probabilidad. Hoja 3 Notación Ejercicios P k = k! número de permutaciones. Vr
Probabilidad. 1. Conceptos previos. Teoría de conjuntos. Conceptos básicos
. Conceptos previos Teoría de conjuntos. Conceptos básicos Dado un conjunto M, se llama conjunto de partes de M, y se denota por P(M), al conjunto de todos los subconjuntos de M (incluido el conjunto vacio,,
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
OPCIÓN A a) (1 punto) Dada la matriz a 1 A =, calcule el valor de a para que A a 0 sea la matriz nula 1 1 t b) ( puntos) Dada la matriz M =, calcule la matriz ( M M ) 1 1 x + 1 Sea la función f definida
b) Si decides elegir el trabajo que con más probabilidad te permita ganar más de 900 euros al mes, qué trabajo debes elegir?
Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Hoja 4, curso 2006 2007. Ejercicio 1. Suponer que los cuatro motores de una aeronave comercial se disponen para que
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELETIVIDAD ANDALUÍA 2009 MATEMÁTIAS APLIADAS A LAS IENIAS SOIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1, Ejercicio
Juan José Hernández Ocaña
En la mayoría de los casos el muestreo se realiza sin reemplazo, por lo tanto si el tamaño de la población es reducido, la probabilidad de cada observación cambiará Como la probabilidad de éxito no es
EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD
ANEXO A EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD Curso 2016/2017 Asignatura: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Tiempo máximo de la prueba: 90 minutos Estructura de la prueba:
[ ] [ 0,5( )] [ ] 0,5
85.-Si el 0,5 % de las piezas que fabrica una máquina son defectuosas. Cuál es la probabilidad de obtener alguna pieza defectuosa de 0? X número de piezas defectuosas de 0 x B(0,0,05) Px ( > 0) Px ( 1)
ETSI de Topografía, Geodesia y Cartografía
Distribuciones (discretas y continuas) EVALUACIÓN CONTINUA (Tipo I) 14-XII-11 1. Una prueba del examen de Estadística consiste en un cuestionario de 10 preguntas con tres posibles respuestas, solamente
ESTADÍSTICA ÁREA CIENCIAS BÁSICAS
ÁREA IENIAS BÁSIAS ESTADÍSTIA GUÍA N º 3 PROBABILIDADES 1) Durante el transcurso de un día, una máquina produce tres artículos, cuya calidad individual, definida como defectuosa o no defectuosa, se determina
1- Sean A y B dos sucesos de un experimento aleatorio tales que P(A) =0,6; P(B) = 0,2
1- Sean A y B dos sucesos de un experimento aleatorio tales que P(A) =0,6; P(B) = 0,2 y P( A B 0, 7 a) Calcúlese P(A B) y razónese si los sucesos A y B son independientes o dependientes. b) Calcúlese P(A
Variable aleatoria continua: Distribución normal
Variable aleatoria continua: Distribución normal 1º) Usando las tablas de la normal, calcula las siguientes áreas: a) Área entre 0 y 0,2 b) Área desde hasta 1,32 c) Área entre 2,23 y 1, 2º) Sea Z una variable
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
Matemáticas Aplicadas a las Ciencias Sociales II Hoja 5: Cálculo de Probabilidades
Profesor: Miguel Ángel Baeza Alba (º Bachillerato) Matemáticas Aplicadas a las Ciencias Sociales II Hoja 5: Cálculo de Probabilidades Ejercicio : Tres máquinas A, B y C fabrican tornillos del mismo tipo.
PROBLEMAS DE PROBABILIDAD. BOLETIN II..1 Hallar la probabilidad de sacar una suma de 8 puntos al lanzar dos dado.
PROBLEMAS DE PROBABILIDAD. BOLETIN II.1 Hallar la probabilidad de sacar una suma de 8 puntos al lanzar dos dado. 2. Hallar la probabilidad de sacar por suma o bien 4, o bien 11 al lanzar dos dados. 3.
AXIOMAS DE PROBABILIDAD: REGLA DE LA ADICIÓN
AXIOMAS DE PROBABILIDAD: REGLA DE LA ADICIÓN Conocida ahora la probabilidad de un evento, se pueden reunir ciertas características conocidas como axiomas de probabilidad que satisfacen la probabilidad
1) Una caja contiene 3 bolitas rojas y 4 amarillas se extraen dos, una después de la otra y sin reposición. X= No de bolitas rojas extraídas
ENCUENTRO # 47 TEMA: Distribución binomial CONTENIDOS: 1. Definición. Distribución binomial 2. Ejercicios propuestos 3. Ejercicios de Entrenamiento PAES Ejercicios Reto 1) Una caja contiene 3 bolitas rojas
PREGUNTAS APARECIDAS EN EXÁMENES
PREGUNTAS APARECIDAS EN EXÁMENES 1. a) Utilidad y significado de las medidas de posición central. Defina las que conozca b) Utilidad y significado de las medidas de dispersión. Defina las que conozca 2.
MAE275 Probabilidad y Estadística
1.- Para cada uno de los experimentos a seguir, describa el espacio muestral e indique el número de sus elementos. (a) En una linea de produción se cuenta el número de piezas defectuosas en un intervalo
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
Probabilidad, Variables Aleatorias y Distribuciones
rueba de Evaluación Continua Grupo A -XI-6.- El despertador de un trabajador no funciona bien, pues el % de las veces no suena. Cuando suena, el trabajador llega tarde con probabilidad., pero si no suena,
RELACIÓN DE PROBLEMAS. Distribuciones de probabilidad
RELACIÓN DE PROBLEMAS Distribuciones de probabilidad 1. Se lanzan al aire dos monedas tres veces consecutivas. Sea X la v.a. que representa el número de veces que se obtiene cara en ambas monedas en los
HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD
pág.45 HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD 1.- De una baraja española de 40 cartas se extrae una al azar, cuál es la probabilidad de que sea bastos o menor que 5? 2.- Dos jugadores (A y B) inician
PROBLEMAS DE SELECTIVIDAD. BLOQUE PROBABILIDAD
PROBLEMAS DE SELECTIVIDAD. BLOQUE PROBABILIDAD 1. El 35% de los alumnos de un instituto viste vaqueros y el 50% lleva calzado deportivo. El 30% de ellos no usa ni vaqueros ni calzado deportivo. Calcula:
PROBABILIDAD Relación de problemas 1: Fundamentos de Probabilidad
PROBABILIDAD Relación de problemas 1: Fundamentos de Probabilidad 1. Una urna contiene 5 bolas numeradas del 1 al 5. Calcular la probabilidad de que al sacar dos bolas la suma de los números sea impar
Probabilidad. Tercero A1
Probabilidad. Realizar los siguientes ejercicios en una presentación de PowerPoint, como los presentados en la clase. Se calificara la calidad, originalidad y creatividad. Los ejercicios se realizarán
IINTRODUCCIÓN AL ANÁLISIS DE DATOS TEMA 5: Nociones básicas de Probabilidad
IINTRODUCCIÓN AL ANÁLISIS DE DATOS TEMA 5: Nociones básicas de Probabilidad 1.- Si tiramos dos dados no trucados (seis caras) y contabilizamos la suma de los resultados obtenidos en cada dado, el espacio
EJERCICIOS I APLICACIÓN DE LA REGLA DE LAPLACE
EJERCICIOS I APLICACIÓN DE LA REGLA DE LAPLACE 1) Se considera el experimento aleatorio de lanzar un dado. Se pide la probabilidad de obtener a) Número par b) Número par c) Múltiplo de 3 d) Múltiplo de
I.T.Industrial Métodos Estadísticos ProblemasdeRepaso
I.T.Industrial Métodos Estadísticos ProblemasdeRepaso 1. Para analizar la degradación de la señal emitida por una antena, se tomaron los siguientes datos: la frecuencia de la señal en el momento de ser
Calcúlense: a) b) c) b)
Probabilidad 1º) Lanzamos dos dados y sumamos las puntuaciones obtenidas. Describe el espacio muestral. 2º) Lanzamos dos dados, sumamos las puntuaciones obtenidas y hallamos el resto de dividir por cinco
a) no esté contaminado por nitratos, si se sabe que está contaminado por sulfatos b) Sea del modelo A, si se sabe que ha salido defectuoso
1._ (Modelo 2018) Se consideran los sucesos A y B de un experimento aleatorio tales que p A = 0,3 ; p B = 0,8 ; p A B = 0,9 Calcúlese: a) p A B b) p A B 2._ (Modelo 2008) Se considera los sucesos A y B
PROBABILIDAD. Experiencia aleatoria es aquella cuyo resultado depende del azar.
PROBABILIDAD. 1 EXPERIENCIAS ALEATORIAS. SUCESOS. Experiencia aleatoria es aquella cuyo resultado depende del azar. Suceso aleatorio es un acontecimiento que ocurrirá o no dependiendo del azar. Espacio
Teoría elemental de la probabilidad
La es el medio por el cual a partir de la información muestral tomamos decisiones o hacemos afirmaciones que se refieren a toda una población, mediante el proceso llamado inferencia estadística La nos
PROBABILIDAD Y ESTADÍSTICA MAT-041 GUIA Nº4 MODELOS PARA VARIABLES ALEATORIAS
UNIVERSIDAD TÉCNICA FEDERICO SANTA MARIA DEPARTAMENTO DE MATEMÁTICA PROBABILIDAD Y ESTADÍSTICA MAT-041 Profesor: Sr. Patricio Videla Jiménez. GUIA Nº4 MODELOS PARA VARIABLES ALEATORIAS 1. En una población
INGENIERÍA INFORMÁTICA DE GESTIÓN Junio 2005
INGENIERÍA INFORMÁTICA DE GESTIÓN Junio 2005 1. En una pequeña empresa con 60 empleados, 25 son personal de fábrica y están cobrando unos sueldos semanales (en euros) en función a su antigüedad de: 300
Práctica 2: Probabilidades A (a) Suponiendo que todos los resultados son igualmente probables. Encuentre P (A), P (B), P (A
1 Mediante diagramas de Venn probar que: (a) A = (b) A = A (c) A A = (d) A A = S (e) S = (f) = S (g) ( A ) = A (h) (A B) = A B (i) (A B) = A B : Probabilidades 2 El siguiente diagrama de Venn describe
DISTRIBUCIÓN BINOMIAL
DISTRIBUCIÓN BINOMIAL 1.- El 10 % de los artículos producidos en un cierto proceso de fabricación resulta ser defectuoso. Calcular: (1) La probabilidad de que en una muestra de 10 artículos elegidos al
