E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación

Tamaño: px
Comenzar la demostración a partir de la página:

Download "E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación"

Transcripción

1 E.T.S.I. Industriales Telecomunicación Curso Grados E.T.S.I. Industriales Telecomunicación Ejercicios resueltos 1 f x, x e Representar el dominio de la función x x El dominio es el conjunto de los puntos Domf x, / x. x 0, x es decir, los puntos del plano comprendidos entre las rectas x=, x=- salvo los de la recta x=, gráficamente Dada las superficies Se pide: (1) (a) Obtener las trazas (b) Obtener las curvas de nivel z x () (c) Realizar un bosquejo de su gráfica x z 4 9 (a) Se trata de un paraboloide

2 E.T.S.I. Industriales Telecomunicación Curso Al cortar por planos x=cte: arábolas z cte Al cortar por planos =cte: arábolas z x cte ág.

3 E.T.S.I. Industriales Telecomunicación Curso Al cortar por planos z=cte (curvas de nivel): Circunferencias Cte x Cte 0 ág.3

4 E.T.S.I. Industriales Telecomunicación Curso () Se trata de un hiperboloide Curvas x=cte: arábolas z Cte 9 x z Curvas =cte: Hipérbolas Cte 4 9 ág.4

5 E.T.S.I. Industriales Telecomunicación Curso Curvas: z=cte: arábolas x Cte 4 3 El precio de un piso en función de la superficie S de la calidad de los materiales C viene dado por una función S, C. Es razonable que 0? C Es razonable que 0? S Si 0 significa que a maor calidad de los materiales aumenta el precio de la C vivienda. arece razonable. ág.5

6 E.T.S.I. Industriales Telecomunicación Curso Si 0 significaría que al aumentar la superficie del piso el precio disminuiría. S Esto no parece lógico. 4 El conjunto de los puntos (x, ) con 0 x 5, 0 5 es un cuadrado colocado en el primer cuadrante del plano XY. Supongamos que se caliente ese cuadrado de tal manera que T x, x es la temperatura en el punto (x, ). En qué sentido se establecerá el flujo de calor en el punto,5? o Indicación: El flujo de calor en la región está dado por una función vectorial C x, porque su valor en cada punto depende de las coordenadas de éste. Sabemos por física que C x, será perpendicular a las curvas isotermas T x, c donde c es constante. El gradiente todos sus múltiplos verifican esta condición. En esta situación nos dice la física que C K T donde K es una constante positiva (llamada conductividad térmica). Nótese que la razón del signo negativo es que el calor flue desde puntos de maor temperatura a puntos de menor temperatura. Como T 3, 4 5 el punto está en la isoterma T x, 5 de la circunferencia x 5. Sabemos que el flujo de calor en,5 C K T. o o, que es un cuadrante es o ág.6

7 E.T.S.I. Industriales Telecomunicación Curso Como T xi j se tiene que To 6 i8 j. Así el flujo de calor en o es: C K 6 i8 j. Como la conductividad térmica es positiva se puede afirmar que el o calor flue en o en el sentido del vector unitario: 6i8j 3 4 u i j Hallar a b para que la derivada direccional máxima de la función en el punto axb e cos x z 0 del primer cuadrante 0,0 sea 3 en la dirección de la bisectriz axb La función z e cos x es continua por ser composición de funciones continuas es diferenciable por ser las derivadas parciales continuas en todo : ' f axb zx ae cos x e sen x x axb ' f axb z be cos x e sen x axb Esto significa que la derivada direccional en un punto siguiendo una dirección se puede obtener como el producto escalar de la dirección por el gradiente en el punto considerado. D f 0,0 f 0,0, u 3 u or otro lado el gradiente nos marca la dirección donde la derivada direccional es máxima que en este caso es además la bisectriz del primer cuadrante luego en este caso: f 0,0 3 1 u f 0,0, f 0,0 Calculando el gradiente en el origen: se tiene que cumplir que: f 0,0 ai b j ág.7

8 E.T.S.I. Industriales Telecomunicación Curso a b 3 a b u,, ab 3 3 or lo tanto, resolviendo el sistema formado por estas dos ecuaciones: ab 3 6 De una función z f x, tangente a, diferenciable en todo se sabe que el plano f x en el punto (1, ) es: x 34z 1. Se puede calcular con estos datos la derivada direccional de f en la dirección que une el punto (1, ) con el punto (3,4)? Justificar la respuesta. La dirección en la que nos piden calcular la derivada direccional es: v 1 1 v31,4, u, v Como el plano tangente en el punto (1, ) es x34z 1 x z (I) 4 4 que corresponde a la ecuación f x f 1, x1 1, z f 1, se tiene que cumplir que f 1 f 3 1, 1, x 4 (II) sin más que igualar los coeficientes en las dos expresiones (I) (II). Luego la derivada direccional pedida es: f f Du f, 1, 1,, 1,, u,,, x Sea 4 3 x u x z donde ág.8

9 E.T.S.I. Industriales Telecomunicación Curso Calcular u s t x 1rse t rs e z r s sent 3 cuando r, s1, t 0 sabiendo que ' 1 Solución.- u u x u u z s x s s z s 3 x1 t 4 3 xx t 4 x ' re x z ' rse 3 z r sent ara r=, s=1, t=0 se tiene que x=3, =, z=0. Sustituendo estos valores en la 3 expresión anterior, así como ' u 1, resulta que 758. s 8 Calcular la expresión de las derivadas parciales respecto a x a de la función:, f g x h g x h Considerando que g h son funciones derivables que f es una función diferenciable. Se trata de calcular las derivadas parciales de f uv, siendo u g x h v g x h Aplicando la regla de la cadena: u v g ' x x g' x h x u x v x u v u v h' g x h u v u v ' ág.9

10 E.T.S.I. Industriales Telecomunicación Curso Determine los puntos críticos de la siguiente función clasifíquelos: 3 3 f x, x 3x1 0 ara determinar los puntos críticos se plantea la condición necesaria de extremo local. Los puntos que cumplan estas condiciones necesarias son los puntos críticos de la función. Condición necesaria f(x, ) = (0, 0). f( x, ) 3x 303x 3 x 1 x 11. x f( x, ) Los puntos que anulan las derivadas son los que resultan de combinar los dos posibles de x que anulan la derivada parcial respecto a x con los dos valores de que anulan la derivada parcial respecto a : (1, ), (1, -), (-1, ), (-1, -) ara clasificar estos puntos críticos como máximos locales, mínimos locales o puntos de silla se pasa a estudiar las condiciones suficientes de máximo o mínimo local, condiciones de segundo orden, pues sólo son suficientes para aquellos puntos que previamente hubiesen anulado el gradiente de la función (condición de primer orden). Condición suficiente ara estudiar estas condiciones se debe estudiar el signo de la forma cuadrática representada por la matriz hessiana de la función en cada uno de los puntos críticos. En general, para cualquier punto (x,) D f (dominio de f(x,)) se tiene que 6x 0 Hf ( x, ). 0 6 En el (1, ) se tiene Hf (1,), H , H La función alcanza un mínimo local estricto en el punto (1, ). En el (1, -) se tiene ág.10

11 E.T.S.I. Industriales Telecomunicación Curso Hf (1, ), H1 6 60, H El punto (1,-) es un punto de silla. En el (-1, ) se tiene 6 0 Hf ( 1, ), H1 6 60, H El punto (-1, ) es un punto de silla. En el (-1, -) se tiene 6 0 Hf ( 1, ), H1 6 60, H La función alcanza un máximo local estricto en el punto (-1, -). 10 Hallar los valores extremos de, x 1. Ha que calcular los extremos de, gx, x 1 0. z f x x, sobre la circunferencia z f x x, con la condición Vemos que f g son diferenciables en R². La función auxiliar de Lagrange,, 1 F x x x Calculamos las derivadas de primer orden de F resolvemos el sistema Fx x,, x0 (I) F x,, x 0 F x,, x 10 ág.11

12 E.T.S.I. Industriales Telecomunicación Curso Despejando en las dos primeras ecuaciones anteriores tenemos (II) λ x x se sigue que: x (III) or la tercera ecuación de (I), por (III) debe ser por (III) x. 1 Así obtenemos los puntos críticos de f sometidos a la restricción x 1: 1,,,, 3,, 4,, Analizamos la diferencial segunda: d f (= signo f ) teniendo en cuenta que dx, d están ligadas por dg 0, es decir, xdx d 0 Entonces, según lo visto antes es signo d²f = signo d²f. Ahora, como F F F xx x 1 d f d F F dx F dxd F d dx dxd d xx x or otra parte, tenemos que 1, : x 1 1 1, :, x 3 3 1, :, x, 1 4, : λ4 x luego, en 1 tendremos: ág.1

13 E.T.S.I. Industriales Telecomunicación Curso d²f = - dx² + dx d - d² = - (dx² - dx d + d²) = - (dx - d)².(iv) (aquí a vemos que d f tiene signo negativo, por lo tanto f tendrá signo negativo, lo cual implicará que f tiene máximo local en 1. No obstante, continuaremos adelante con el fin de ilustrar totalmente el procedimiento en estudio). Ahora bien, dx d están ligadas por dg(x,) = x dx + d = 0, lo que implica x que, d dx (V) ( 0 en 1, ). De (IV) de (V) resulta d²f = - (dx + x / dx)² Ahora, como en 1,,, x es 1 tenemos que d²f = - (dx + dx)² = - 4 dx or lo tanto, signo f = signo d²f = - 1. Luego, f tiene en 1, máximo relativo. Además, vale 1 z f x, 1, Análogamente, como en 3, en 4, x es 1, tendremos: d²f = dx² + dx d + d² = (dx + d)² = x dx dx = (dx + dx) = 4dx² or lo tanto signo f = signo d²f = + 1. Esto significa que f tiene en 3, 4 valor mínimo local. Además es 1 z f x, 3, 4 ág.13

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación Conocimientos previos Para poder seguir adecuadamente este tema, se requiere que el alumno repase ponga al día sus conocimientos en los siguientes contenidos: Cálculo de derivadas Propiedades de las funciones

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Marzo 5 de 2016

Primer Examen Parcial Tema A Cálculo Vectorial Marzo 5 de 2016 rimer Examen arcial Tema A Cálculo Vectorial Marzo 5 de 016 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. Recuerde apagar y guardar

Más detalles

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15.

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 2012/2013 21 de junio de 2013 4 p.) 1) Se considera la función fx) = x 4 e 1 x 2. a) Calcular los intervalos de

Más detalles

MATEMÁTICA AGRONOMÍA RESPUESTAS AL SEGUNDO PARCIAL Primer Cuatrimestre Tema 1

MATEMÁTICA AGRONOMÍA RESPUESTAS AL SEGUNDO PARCIAL Primer Cuatrimestre Tema 1 Ejercicio Considerando la recta R que pasa por los puntos A = (; 0; ) y B = (2; ; 5) y el punto P = (2; ; ), hallar la ecuación implícita del plano π que es perpendicular a la recta R y contiene al punto

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena 1 Universidad Simón Bolívar. Preparaduría nº 3. christianlaya@hotmail.com ; @ChristianLaya Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena Derivada

Más detalles

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES 9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,

Más detalles

Soluciones de los ejercicios del primer examen parcial

Soluciones de los ejercicios del primer examen parcial Matemáticas III (GIC, curso 2015 2016) Soluciones de los ejercicios del primer examen parcial EJERCICIO 1. Determina en qué ecuación se transforma la ecuación en derivadas parciales z yy + 3z xy + 2z xx

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES . DIFERENCIABILIDAD EN VARIAS VARIABLES. Calcular las derivadas direccionales de las siguientes funciones en el punto ā y la dirección definida por v... f(x, y = x + 2xy 3y 2, ā = (, 2, v = ( 3 5, 4 5.

Más detalles

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009 Cálculo 2. Cálculo diferencial de funciones de varias variables Mayo, 2009 Definición IR 2 = {(x 1,x 2 )/x 1 IR,x 2 IR} Sean dos puntos a y b, de coordenadas respectivas (a 1,a 2 ) y (b 1,b 2 ). Definición

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Problemas de Cálculo Matemático E.U.A.T. CURSO Segundo cuatrimestre. Problemas del Tema 9. Funciones de dos variables.

Problemas de Cálculo Matemático E.U.A.T. CURSO Segundo cuatrimestre. Problemas del Tema 9. Funciones de dos variables. 1 Problemas de Cálculo Matemático E.U.A.T. CURSO 2003-2004 Segundo cuatrimestre Problemas del Tema 9. Funciones de dos variables. 1. Determinar el dominio de cada una de las siguientes funciones: f(x,

Más detalles

Ejercicio 1 de la Opción A del modelo 2 de Solución

Ejercicio 1 de la Opción A del modelo 2 de Solución Ejercicio 1 de la Opción A del modelo 2 de 2003 En la figura adjunta puedes ver representada parte de la gráfica de una función f que está definida en el intervalo (-3, 3) y que es simétrica respecto al

Más detalles

Derivación de funciones de varias variables.

Derivación de funciones de varias variables. Derivación de funciones de varias variables. En este apartado se presentan los conceptos básicos que aparecen en la derivación de funciones de varias variables. La idea es establecer un método para estudiar

Más detalles

Soluciones a los ejercicios del examen final

Soluciones a los ejercicios del examen final Cálculo I Curso 2016/17 19 de junio de 2017 Soluciones a los ejercicios del examen final 1) Se considera la función f : [0, ) R definida por { 1 + x(ln(x) 1) si x > 0, f(x) = 1 si x = 0. (a) Probar que

Más detalles

Soluciones Matemáticas II Examen Final 2º Parcial 3-Julio-07. 1) La temperatura en un punto (x, y) de una lámina metálica es T(x, y) =.

Soluciones Matemáticas II Examen Final 2º Parcial 3-Julio-07. 1) La temperatura en un punto (x, y) de una lámina metálica es T(x, y) =. Soluciones Matemáticas II Examen Final º Parcial 3-Julio-07 3x 1) La temperatura en un punto (x, y) de una lámina metálica es T(x, y) =. x + y a) Hallar la curva de nivel (isoterma) que pasa por el punto

Más detalles

Ejercicio 1 del modelo 2 de la opción A de sobrantes de Solución

Ejercicio 1 del modelo 2 de la opción A de sobrantes de Solución Ejercicio 1 del modelo 2 de la opción A de sobrantes de 2001 Sea f: R R la función dada por f(x) = 8 x 2. (a) [1 punto] Esboza la gráfica y halla los extremos relativos de f (dónde se alcanzan y cuáles

Más detalles

Examen extraordinario Ejercicio 4 (55 minutos) 4 de septiembre de 2006

Examen extraordinario Ejercicio 4 (55 minutos) 4 de septiembre de 2006 ÁLGEBRA Examen extraordinario Ejercicio 4 (55 minutos) 4 de septiembre de 006 1. Calcular la ecuación de una hipérbola que tiene por asíntota a la recta x = y, por eje la recta x+y = 1 y que pasa por el

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso PRUEBAS DE EVALUACIÓN

E.T.S.I. Industriales y Telecomunicación Curso PRUEBAS DE EVALUACIÓN E.T.S.I. Industriales y Telecomunicación Curso 00-0 A continuación se presentan 5 preguntas con 4 respuestas posibles. En cada pregunta hay una única respuesta correcta. Cada pregunta acertada y bien justificada

Más detalles

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares. FIUBA 07-05-11 Análisis Matemático II Parcial - Tema 1 1. Sea f(x, y) = { x y si x 3y si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.. Sea G(x, y) = (u(x, y),

Más detalles

Matemáticas III Andalucía-Tech

Matemáticas III Andalucía-Tech Matemáticas III Andalucía-Tech Tema Optimización en campos escalares Índice 1. Formas cuadráticas y matrices simétricas reales 1. Extremos relativos de un campo escalar 3.1. Polinomio de Taylor de un campo

Más detalles

Soluciones a los ejercicios del examen final

Soluciones a los ejercicios del examen final Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 201/14 20 de diciembre de 201 Soluciones a los ejercicios del examen final 1) Se considera la función f : R R

Más detalles

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52 TALLER : Regla de la cadena, derivadas direccionales y vector gradiente Cálculo en varias variables Universidad Nacional de Colombia - Sede Medellín Escuela de matemáticas 1. Use la regla de la cadena

Más detalles

IES Francico Ayala Examen modelo 1 del Libro 1996_97 con soluciones Germán Jesús Rubio luna. Opción A

IES Francico Ayala Examen modelo 1 del Libro 1996_97 con soluciones Germán Jesús Rubio luna. Opción A Opción A Ejercicio n 1 de la opción A del modelo 1 del libro 96_97 De una función continua f : R R se sabe que si F : R R es una primitiva suya, entonces también lo es la función G dada por G(x) 3 - F(x).

Más detalles

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema UCM Matemáticas II Examen Final, 8/05/014 Soluciones 1 Dado el parámetro a R, se considera el sistema lineal x +y t = 1 x +y +z +t = x y +z t = 7 x +6y +z +t = a (a (6 puntos Discutir el sistema según

Más detalles

Hoja 2: Derivadas direccionales y diferenciabilidad.

Hoja 2: Derivadas direccionales y diferenciabilidad. Sonia L. Rueda ETS Arquitectura. UPM Curso 2011-2012. 1 CÁLCULO Hoja 2: Derivadas direccionales y diferenciabilidad. 1. Sea f : R 2 R la función definida por x 4 (x 2 +y 2 ) 2, (x, y) (0, 0) 0, (x, y)

Más detalles

Funciones Diferenciables. Superficies.

Funciones Diferenciables. Superficies. CAPÍTULO 3 Funciones Diferenciables. Superficies. En este importante capítulo presentamos el concepto de diferenciabilidad. Este concepto difiere del de Análisis Matemático I, porque allí diferenciable

Más detalles

Solución. 1/[(1 -x)(1+x)] = A/(1- x) + B/(1+x) = [A(1 +x) + B(1-x)] /[(1-x)(1+x)], de donde igualando los numeradores tenemos

Solución. 1/[(1 -x)(1+x)] = A/(1- x) + B/(1+x) = [A(1 +x) + B(1-x)] /[(1-x)(1+x)], de donde igualando los numeradores tenemos Ejercicio n º 1 de la opción A de junio de 2003 Sea Ln(1 -x 2 ) el logaritmo neperiano de 1 - x 2 y sea f : (-1,1) R la función definida por f(x) = Ln(1 -x 2 ). Calcula la primitiva de f cuya gráfica pasa

Más detalles

FUNCIONES DE DOS VARIABLES

FUNCIONES DE DOS VARIABLES FUNCIONES DE DOS VARIABLES - Funciones de dos variables reales - Límites 3- Continuidad de funciones de dos variables 4- Derivabilidad de funciones de dos variables 5- Diferenciabilidad de funciones de

Más detalles

TEORIA MATEMATICAS 5 PRIMER PARCIAL

TEORIA MATEMATICAS 5 PRIMER PARCIAL Def: Grafica de una función TEORIA MATEMATICAS 5 PRIMER PARCIAL Sea:. Definimos la grafica de f como el subconjunto de formado por los puntos, de en los que es un punto de U. Simbólicamente grafica es:

Más detalles

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 05 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A m + 0 0 Dada la matriz A = ( 3 m + ), se pide: 0 m a) Hallar los valores de m para que la matriz A 0 tenga inversa. ( 5 puntos) La condición

Más detalles

Curso 2010/ de julio de (2.75 p.) 1) Se considera la función f : (0, ) (0, ) definida por

Curso 2010/ de julio de (2.75 p.) 1) Se considera la función f : (0, ) (0, ) definida por Cálculo I Curso 2010/2011 Universidade de Vigo Departamento de Matemática Aplicada II ETSI Minas 5 de julio de 2011 (275 p) 1) Se considera la función f : (0, ) (0, ) definida por f(x) = 1 + ex x e x a)

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

Funciones Diferenciables. Superficies.

Funciones Diferenciables. Superficies. CAPÍTULO 3 Funciones Diferenciables. Superficies. En este importante capítulo presentamos el concepto de diferenciabilidad. Este concepto difiere sustancialmente del de Análisis Matemático I. Estudiamos

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02 Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 0/02 x 2 + y 4. (a) Comprueba que el siguiente límite no existe lim (x,y) (0,0) x 2 + y. 2 (b) Busca una trayectoria a través de la

Más detalles

EXAMEN TEMA 2:Funciones de varias variables

EXAMEN TEMA 2:Funciones de varias variables GRUPO 4Mb (16-17) CÁLCULO ETSI Informática (UPM) 8 de Junio - 217 Tiempo: 2 horas Nombre y Apellidos: Nº de Matrícula: Pr 1 Pr 2 Pr3 Pr4 Nota EXAMEN TEMA 2:Funciones de varias variables 2x 3 y 3 +yx 2

Más detalles

Extremos de funciones de varias variables

Extremos de funciones de varias variables Capítulo 6 Extremos de funciones de varias variables En este capítulo vamos a considerar la teoría clásica de extremos para funciones diferenciables de varias variables, cuyos dos tópicos habituales son

Más detalles

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) TEMA Ejercicio ( puntos) Dada la función f(x) = a sen(x + π). Hallar el valor de la constante a R sabiendo que f ( π ) = a + Se sabe que

Más detalles

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) TEMA Ejercicio ( puntos) Hallar él o los puntos del gráfico de la función para los cuales la recta tangente sea horizontal f(x) = e x 3x

Más detalles

SEPTIEMBRE 2003 PRUEBA A

SEPTIEMBRE 2003 PRUEBA A PROBLEMAS SEPTIEMBRE 003 PRUEBA A 1.- a) Discutir en función de los valores de m: x 3y 0 x y+ z 0 x + y + mz m b) Resolver en los casos de compatibilidad el sistema anterior..- Calcular el área de la región

Más detalles

[ ] 2, 2, 3 [ ( )] 2, 2, 3 CAMPOS: SUPERFICIES ( ) Hallar un vector unitario normal a la superficie x 2 y + 2xz = 4 en el punto (2, 2,3).

[ ] 2, 2, 3 [ ( )] 2, 2, 3 CAMPOS: SUPERFICIES ( ) Hallar un vector unitario normal a la superficie x 2 y + 2xz = 4 en el punto (2, 2,3). CAMPOS SUPERFICIES Hallar un vector unitario normal a la superficie x 2 y + 2xz 4 en el punto (2, 2,3). Solución I.T.I. 98, I.T.T. 99, 02 En primer lugar deberíamos verificar que el punto (2, 2,3) pertenece

Más detalles

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL (Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL En numerosas aplicaciones de la ingeniería se presentan problemas de optimización,

Más detalles

IES Francisco Ayala Examen Junio de 2009 (modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Francisco Ayala Examen Junio de 2009 (modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio 1 opción A, junio de 009 modelo 3 ['5 puntos] Calcula el siguiente límite (In denota logaritmo neperiano), lim x 1 [ 1/Ln(x) /(x 1) ] Calcula el siguiente límite (In denota logaritmo

Más detalles

OPCIÓN A. Ejercicio 1: Determina dos números reales positivos sabiendo que su suma es 10 y que el producto de sus cuadrados es máximo.

OPCIÓN A. Ejercicio 1: Determina dos números reales positivos sabiendo que su suma es 10 y que el producto de sus cuadrados es máximo. MATEMÁTICAS II 2007 OPCIÓN A Ejercicio 1: Determina dos números reales positivos sabiendo que su suma es 10 y que el producto de sus cuadrados es máximo. Solución: Es un problema de optimización, sean

Más detalles

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim IES Fco Ayala de Granada Septiembre de 014 Reserva 1 (Modelo 5) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_1 014 tan(x) - sen(x) [ 5 puntos] Calcula lim

Más detalles

Ejercicio 1 de la Opción A del modelo 3 de Solución

Ejercicio 1 de la Opción A del modelo 3 de Solución Ejercicio 1 de la Opción A del modelo 3 de 2004 [2 5 puntos] Calcula Para calcular determinamos primero las raíces del denominador, para descomponerlo en producto de factores y aplicarle la técnica de

Más detalles

Práctica 3: Diferenciación I

Práctica 3: Diferenciación I Análisis I Matemática I Análisis II (C) Cuat II - 009 Práctica 3: Diferenciación I Derivadas parciales y direccionales. Sea f una función continua en x = a. Probar que f es derivable en x = a si y solo

Más detalles

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto.

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto. 1 Sea f : R R una función C 3 que satisface f(1, ) = (0, 0), y cuya matriz ( Hessiana ) en (1, ) es: 1 0 H = 0 Hallar todos los b ɛ R de manera que la función: g( = f( + 1 b b (y ) ) tenga extremo en (1,

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO Opción A

PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO Opción A IES Fco Ayala de Granada Modelo 1 del 1999. Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 1998999. Opción A Ejercicio 1, Opción A, Modelo 1 de 1999. x si x

Más detalles

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f 1 228 Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) z u = f x x u + f y y u z v = f x x v + f y y v z w = f x

Más detalles

CÁLCULO II Funciones de varias variables

CÁLCULO II Funciones de varias variables CÁLCULO II Funciones de varias variables Facultad de Informática (UPM) Facultad de Informática (UPM) () CÁLCULO II Funciones de varias variables 1 / 36 Funciones de varias variables Función vectorial de

Más detalles

(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4.

(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Examen final 0 de enero de 0.75 p. Se considera la función escalar de una variable real fx = lnlnx. lnx a Calcular el

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables 7 de febrero de 008 1. Definiciones básicas Sean a, b puntos de R n (donde n N) con coordenadas: a = (a 1, a,, a n ); b = (b 1, b,, b n ) Se define la distancia euclídea entre

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

x = u + v 2 y = u v. Finalmente, volviendo a las variables típicas, es decir, cambiando u por x y v por y, se tiene: f(x, y) = x2 xy U de Talca

x = u + v 2 y = u v. Finalmente, volviendo a las variables típicas, es decir, cambiando u por x y v por y, se tiene: f(x, y) = x2 xy U de Talca 1. Hallar f(x, y) si f(x + y, x y) = xy + y. Sean u = x + y y v = x y. Resolviendo este sistema se obtiene Luego, x = u + v f(u, v) = u + v u v e y = u v. ( ) u v + = u uv. Finalmente, volviendo a las

Más detalles

Tema 5 Aplicaciones del cálculo diferencial

Tema 5 Aplicaciones del cálculo diferencial Tema 5 Aplicaciones del cálculo diferencial 1. APLICACIONES EN UNA VARIABLE 1.1. Extremos relativos. Proposición 1.1: Monotonía Sea f : [a, b] R continua en [a, b] y derivable en (a, b), entonces: (1)

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía ETSI de Topografía, Geodesia Cartografía LÍMITES, CONTINUIDAD Y DIFERENCIABILIDAD DE FUNCIONES DE VARIAS VARIABLES REALES Prueba de Evaluación Continua Grupo ºA 3-Octubre-04.- Sea la función 5 si (,) 4

Más detalles

CÁLCULO II Grados en Ingeniería

CÁLCULO II Grados en Ingeniería CÁLCULO II Grados en Ingeniería Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez Capítulo 1. Cálculo diferencial 1.1 Funciones. Límites y continuidad

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 203 Capítulo 7 Año 2006 7.. Modelo 2006 - Opción A Problema 7.. 2 puntos Un punto de luz situado

Más detalles

c) Calcular las asíntotas horizontales y verticales de f y representar de forma aproximada

c) Calcular las asíntotas horizontales y verticales de f y representar de forma aproximada Universidade de Vigo Departamento de Matemática Aplicada II ETSI Minas Cálculo I Curso 2011/2012 2 de julio de 2012 (75 p) 1) Se considera la función f : R R definida por f(x) = ex 2 e x + 1 a) Determinar

Más detalles

Solución. Como f(2) = 0, tenemos 0 = -3/(2+1) + K = -3/3 + K = -1 + K, de donde K = 1, y la función es

Solución. Como f(2) = 0, tenemos 0 = -3/(2+1) + K = -3/3 + K = -1 + K, de donde K = 1, y la función es Ejercicio n º 1 de la opción A de junio de 2004 (Modelo 6) De la función f : (-1,+ ) R se sabe que f '(x) = 3/(x +1) 2 y que f(2) = 0. (a) [1'25 puntos] Determina f. [1'25 puntos] Halla la primitiva de

Más detalles

Ejercicio nº 1 de la opción A del modelo 1 de Solución

Ejercicio nº 1 de la opción A del modelo 1 de Solución Ejercicio nº 1 de la opción A del modelo 1 de 2001 Se quiere dividir la región encerrada entre la parábola y = x 2 y la recta y = 1 en dos regiones de igual área mediante la recta y = a. Halla el valor

Más detalles

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 8 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

Examen final. 8 de enero de 2013

Examen final. 8 de enero de 2013 Cálculo I Examen final Universidade de Vigo Departamento de Matemática Aplicada II ETSI Minas 8 de enero de 2013 3 p 1 Se considera la función escalar de una variable real fx = lnx a Calcular el dominio

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES.

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES. 9 DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES 91 Derivadas parciales y direccionales de un campo escalar La noción de derivada intenta describir cómo resulta afectada una función y = f(x) por un cambio

Más detalles

IES Fco Ayala de Granada ( Modelo 6) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada ( Modelo 6) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 011-01 Opción A Ejercicio 1, Opción A, Modelo 6 de 01 a 1+ si x 1 x- ['5 puntos] Se considera la función derivable f : R R definida por

Más detalles

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas.

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas. CÁLCULO Práctica 4.2 Cálculo diferencial en varias variables (Curso 2017-2018) 1. Sean f, h: IR 2 IR funciones definidas del siguiente modo: x 3 f(x, y) = x 2, (x, y) (0, 0) + y2 a) Estudiar la continuidad

Más detalles

OCW-Universidad de Málaga, (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3.

OCW-Universidad de Málaga,  (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3. OCW-Universidad de Málaga, http://ocw.uma.es (014). Bajo licencia Creative Commons Attribution- NonComercial-ShareAlike 3.0 Spain Matemáticas III Relación de ejercicios Tema 1 Ejercicios Ej. 1 Encuentra

Más detalles

1. El sistema: F(x,y,z) = =

1. El sistema: F(x,y,z) = = > 1. El sistema: F(x,y,z) = = Define implícitamente a la función (y, z) =f(x) en un entorno del punto x0=1. Encuentre la ecuación EXPLICITA de la recta tangente a la curva definida por f en el punto x0.

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

Ejercicio 1 del modelo 5 de la opción A de sobrantes de Solución

Ejercicio 1 del modelo 5 de la opción A de sobrantes de Solución Ejercicio 1 del modelo 5 de la opción A de sobrantes de 2002 2'5 puntos Calcula una primitiva de la función f definida por f(x) = (2x 2 +10x)/(x 2 +2x - 3) para x 1 y x -3. Como f(x) = (2x 2 +10x)/(x 2

Más detalles

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2007 [2 5 puntos] Determina la función f : R R sabiendo que f (x) = x 2 1 y que la recta tangente a la gráfica de f en el punto de abscisa x = 0 es la recta y

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 14 de Junio de 2000

Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 14 de Junio de 2000 ÁLULO Primer curso de ngeniero de elecomunicación egundo Examen Parcial. de Junio de Ejercicio. Hallar los extremos absolutos de la función f (x, y, z) =x + y + z, en el conjunto A = (x, y, z) R 3 : x

Más detalles

x y z x y z x y z z z z z z z

x y z x y z x y z z z z z z z . Un vector v tiene módulo 5 y es tal que cos ; siendo α el ángulo que forma el vector con el eje x. 5 Escribir la expresión cartesiana del o los vectores v sabiendo que su segunda y tercera componentes

Más detalles

Tema 6: Funciones de varias variables

Tema 6: Funciones de varias variables Tema 6: Funciones de varias variables de febrero de 6 Preliminares: derivadas parciales. Sea F una función de dos variables, como por ejemplo la función definida por F(x; y) = x y 3 Podemos derivarla con

Más detalles

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos. Opción A. Ejercicio. Valor: 2 puntos. Se considera la función real de variable real definida por: f(x) = a) ( punto) Determinar sus máximos y mínimos relativos x x 2 + b) ( punto) Calcular el valor de

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Curso: 2º Bachillerato Examen II

Curso: 2º Bachillerato Examen II Nombre: Nota Curso: º Bachillerato Examen II Fecha: de Octubre de 015 La mala o nula explicación de cada ejercicio implica una penalización de hasta el 5% de la nota. 1.- Se sabe que la función f :[0,5]

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Circunferencias. d) A( 1, 5) y d = X = (x, y) punto genérico del lugar geométrico. b) dist (X, A) = d

Circunferencias. d) A( 1, 5) y d = X = (x, y) punto genérico del lugar geométrico. b) dist (X, A) = d Circunferencias 6 Halla, en cada caso, el lugar geométrico de los puntos del plano cuya distancia al punto A es d. a) A(, ) y d = b) A(, ) y d = 1 c) A(, ) y d = 1 d) A( 1, ) y d = X = (x, y) punto genérico

Más detalles

f, y el Funciones de varias variables Función de dos variables Definición. Es una función f que asigna a cada pareja ordenada ( xy, ) de D un

f, y el Funciones de varias variables Función de dos variables Definición. Es una función f que asigna a cada pareja ordenada ( xy, ) de D un Funciones de varias variables Función de dos variables Definición. Es una función f que asigna a cada pareja ordenada (, ) de D un único número real f (, ). El conjunto D es el dominio de f, el correspondiente

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 5 2.1. Reglas de derivación............................

Más detalles

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0).

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0). O bien z z 0 = x 0 z 0 (x x 0 ) y 0 z 0 (y y 0 ). Para obtener la ecuación cartesiana de este plano hacemos x 0 (x x 0 )+y 0 (y y 0 )+z 0 (z z 0 ) = 0, como x 0 + y0 + z0 = x 0 + y0 + r (x 0 + y0) = r

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

IES Fco Ayala de Granada Modelos del 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Modelos del 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio opción A, modelo de año 200 [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función a maximizar A (/2)(x)(y)

Más detalles

1. Funciones diferenciables

1. Funciones diferenciables 1. diferenciables Volvamos sobre el significado de la derivada de una función real de una variable real, Como vimos en el capítulo anterior, f : (a, b) R derivable en x 0, equivale a que f(x) f(x 0 ) =

Más detalles