Análisis usando modelo no ideal arbitrario

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis usando modelo no ideal arbitrario"

Transcripción

1 Análisis usando modelo no ideal arbitrario J.I.Huircan Universidad de La Frontera March 23, 20 Abstract Se plantea el análisis de un circuito básico con un diodo semiconductor cuyo modelo es diferente al diodo ideal (DI). El dispositivo posee tres modos de operación, lo cual hace que la salida tenga tres instancias distintas. Se reemplaza el diodo considerando sus tres comportamientos, luego se evalua la salida y nalmente se analiza el efecto de la variable de entrada sobre el comportamiento del diodo. Problema Sea el circuito de la Fig. a, determinar la curvo = considerando como modelo arbitrario del diodo, la curva i e la Fig. b. D r 2 r γ Figure : Circuito. Modelo del diodo no ideal arbitrario. 2 Análisis 2. Modelación del diodo De acuerdo a la curva de la Fig. b, se tiene que el diodo tiene tres comportamientos:

2 Para 0, circuito abierto, = 0. =0 v = 0 o (c) Figure 2: Circuito Equivalente. Comportamiento del diodo. (c) Curva =. Reemplazando el circuito abierto, dado que = 0; se tiene de acuerdo a la Fig. 2a, que Luego, la salida se indica en la Fig. 2c. = 0 () Para 0 ; es comportamiento del diodo es un resistor r ; de acuerdo a la ecuación. = r (2) r r r (c) Figure 3: Circuito equivalente. Comportamiento del diodo. (c) Curva =. 2

3 Reemplazando el resistor r, de acuerdo a la Fig. 3a, determinando la salida en función de la entrada se tiene = (3) r La curva = correspondiente a la ecuación (3) se indica en la Fig.3c. Note que su pendiente es menor a. Para ; el diodo se comporta como un resistor r 2 más una fuente de voltaje en serie. De acuerdo a la curva de la Fig. 4b, se tiene que = r 2 (4) r 2 r 2 R r 2 L γ R r 2 L (c) Figure 4: Circuito equivalente. Modelo del diodo. (c) Curva =. Reemplazando el modelo del diodo de acuerdo a la Fig. 4a, se determina la salida en función de la entrada = ( ) r 2 = (5) r 2 r 2 La curva de entrada-salida correspondiente a la ecuación (5) se muestra en la Fig. 4c. Note que su pendiente será mayor que la curva indicada en la Fig 3c, esto debido a que r 2 < r. Finalmente, intersectando todas las soluciones, se tiene la curva de la Fig. 5. El problema consiste ahora en determinar cual es la solución considerando que el comportamiento del diodo no es igual para todo. 3

4 R r 2 L R r L R r 2 L Figure 5: Intersección de las curvas =. 3 Análisis de las curvas = Se debe determinar cual será la solución nal de acuerdo a como varía la señal de entrada y como ésta afecta el comportamiento del diodo. Para 0; se tiene que el diodo no conduce. Esto ocurrirá hasta que = 0. Cuando es lévemente mayor que cero, será levemente mayor que cero, luego se tiene que el diodo se está comportando como un resistor r. =0 >0 < 0 v = 0 o v >0 i v = 0 o Figure 6: Diodo abierto. Diodo comenzado a conducir. Para 0 el diodo se comporta como un resistor r. Debido a que 0, la salida será proporcional a la entrada, lo cual se mantiene hasta que sea tan grande para hacer que el voltaje del diodo sea : De acuerdo a esto se tiene que = = r 4

5 Como el voltaje en el diodo = ; hace que cambie su comportamiento, se determina cual será el valor de para dicho caso. r = = = > r r r 2 v > 0 i v = i γ r Figure 7: Condición 0. Funcionamiento para r Para r, el diodo se comporta como r 2 más. La curva de la Fig. variable. 8 establece el punto de intersección faltante para la R r 2 L R r L γ R r 2 L R r L Figure 8: Determinación del punto de intersección. Resumiendo se tiene Si 0; entonces = 0 5

6 Si 0 r entonces, = r Si r ; entonces, = r 2 r 2 9. De acuerdo a los caso se tiene que la curva nal será la indicada en la Fig. R r 2 L R r L γ R r 2 L R r L Figure 9: Curva = del circuito. 4 Conclusiones La curva = depende del comportamiento del diodo. Los cambios en el comportamiento del diodo producen tres respuestas del distintas en el circuito. Se determina para que valores de el diodo modi ca su comportamiento, esto - nalmente permite decidir cuales tramos de las curvas dibujadas serán la solución nal. 6

Modelación del diodo y curvas i

Modelación del diodo y curvas i Modelación del diodo y curas i J. I. Huircán Uniersidad de La Frontera August 5, 206 Abstract Las curas i- permiten modelar tanto el diodo semiconductor como el zener. Al hacerlo mediante rectas se obtiene

Más detalles

El diodo Semiconductor - Discusión respecto de que modelo utilizar

El diodo Semiconductor - Discusión respecto de que modelo utilizar El diodo Semiconductor - iscusión respecto de que modelo utilizar J.I. Huircán Universidad de La Frontera September 7, 204 Abstract Se plantea el análisis de un circuito elemental con un diodo para determar

Más detalles

Ejercicios para Cálculo de Excursión

Ejercicios para Cálculo de Excursión Ejercicios para Cálculo de Excursión J.I.Huircan Universidad de La Frontera October 26, 2010 Abstract Se determina la excursión de las señal de salida de dos ampli acdores. El primero con una fuente y

Más detalles

El BJT a pequeña señal

El BJT a pequeña señal El BJT a pequeña señal J.I.Huircan Universidad de La Frontera January 4, 202 Abstract El modelo de BJT basado en parámetros h permite tratar el dispositivo como una red lineal, en la cual la corriente

Más detalles

M odelacióndeldiodoycurvas i=v

M odelacióndeldiodoycurvas i=v M odelacióndeldiodoycurvas i=v J.I.Huircán UniversidaddeLaFrontera April6, 2004 Abstract L as curvas i/v permiten modelartantoeldiodosemiconductorcomo el zener. Al hacerlo mediante rectas se obtiene un

Más detalles

Circuitos MultiEtapa

Circuitos MultiEtapa Circuitos MultiEtapa J.I.Huircan Universidad de La Frontera January 5, 0 Abstract Los ampli cadores multieetapa son circuitos electrónicos formados por varios transistores, que pueden ser acoplados en

Más detalles

El Transistor como Ampli cador

El Transistor como Ampli cador El Transistor como Ampli cador J.I. Huircán Universidad de La Frontera November 21, 2011 Abstract La incorporación de excitaciones de corriente alterna (ca), producen variaciones en i B, v BE, las que

Más detalles

Función de Transferencia en dispositivos eléctricos. Taller de Construcción de Efectos, U2 Sesión 1

Función de Transferencia en dispositivos eléctricos. Taller de Construcción de Efectos, U2 Sesión 1 Función de Transferencia en dispositivos eléctricos Taller de Construcción de Efectos, U2 Sesión 1 Definición La Función de Transferencia de un sistema es una expresión matemática que relaciona la salida

Más detalles

Polarización del FET

Polarización del FET Polarización del FET J.I, Huircán Universidad de La Frontera December 9, 0 Abstract Se muestran las redes de polarización ja y autopolarización para el JFET. En ambas se plantean la malla de entrada y

Más detalles

Polarización de transistores y estabilidad

Polarización de transistores y estabilidad Polarización de transistores y estabilidad. Carrillo, J.I. Huircan Abstract Se tienen tres formas básicas para la polarización de un BJT y un FET: polarización ja, autopolarización y polarizacion universal.

Más detalles

Ejercicios Resueltos de Dispositivos Electrónicos I 1 Examen Final de Junio de Ejercicio 2

Ejercicios Resueltos de Dispositivos Electrónicos I 1 Examen Final de Junio de Ejercicio 2 Ejercicios Resueltos de ispositivos Electrónicos I Examen Final de Junio de 2000 - Ejercicio 2 Enunciado Obtener analíticamente y dibujar la gráfica de la función f el siguiente circuito. Ie z Ve z Para

Más detalles

Polarización del Transistor de Unión Bipolar (BJT)

Polarización del Transistor de Unión Bipolar (BJT) Polarización del Transistor de Unión Bipolar (BJT) J. I. Huircan Universidad de La Frontera November 21, 2011 Abstract Se tienen tres formas básicas para la polarización de un BJT: Polarización ja, autopolarización

Más detalles

1 Rectificador de media onda

1 Rectificador de media onda PRÁCTICA 3 NOMBRE: NOMBRE: NOMBRE: GRUPO: FECHA: 1 Rectificador de media onda 1.1 Objetivos Se pretende que el alumno conozca las características esenciales del diodo como elemento de circuito mediante

Más detalles

CURSO: SEMICONDUCTORES UNIDAD 2: RECTIFICACIÓN - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. RECTIFICACIÓN SIMPLE

CURSO: SEMICONDUCTORES UNIDAD 2: RECTIFICACIÓN - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. RECTIFICACIÓN SIMPLE CURSO: SEMICONDUCTORES UNIDAD 2: RECTIFICACIÓN - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. RECTIFICACIÓN SIMPLE Rectificación, es el proceso de convertir los voltajes o tensiones y corrientes alternas

Más detalles

Proyecto Ecuaciones Diferenciales

Proyecto Ecuaciones Diferenciales Proyecto Ecuaciones Diferenciales Ing. Roigo Alejano Gutiérrez Arenas Semestre 2010-II Instrucciones El proyecto consiste de dos problemas con varios incisos. Se debe de entregar un reporte detallado de

Más detalles

Calculando tiempos en señales sinusoidales

Calculando tiempos en señales sinusoidales Calculando tiempos en señales sinusoidales J.I. Huircán Universidad de la Frontera August 1, 009 Abstract El siguiente documento muestra distintas formas de cálculos de tiempos y angulos sobre señales

Más detalles

Polarización de transistores y estabilidad

Polarización de transistores y estabilidad Polarización de transistores y estabilidad. Carrillo, J.I. Huircan Abstract Se tienen tres formas básicas para la polarización de un BJT y un FET: polarización ja, autopolarización y polarizacion universal.

Más detalles

Circuitos Electrónicos Analógicos EL3004

Circuitos Electrónicos Analógicos EL3004 Circuitos Electrónicos Analógicos EL3004 Guía de Ejercicios Diodos Profesor: Marcos Díaz Auxiliar: Jorge Marín Semestre Primavera 2009 Problema 1 Considere el circuito de la figura: Calcule la corriente

Más detalles

Debido al estrés al que son sometidos los dispositivos semiconductores y en especial los

Debido al estrés al que son sometidos los dispositivos semiconductores y en especial los Conmutación uave Capítulo 5 53 Capítulo 5 Conmutación uave Debido al estrés al que son sometidos los dispositivos semiconductores y en especial los transistores MOFET, se necesitan técnicas que hagan que

Más detalles

Universidad Nacional de Quilmes Electrónica Analógica I. Diodo: Circuitos rectificadores

Universidad Nacional de Quilmes Electrónica Analógica I. Diodo: Circuitos rectificadores 1 Diodo: Circuitos rectificadores Una aplicación típica de los diodos es en circuitos rectificadores los cuales permiten convertir una tensión alterna en una tensión continua. Los circuitos rectificadores

Más detalles

BJT 1. V γ V BE +V CC =12V. R C =0,6kΩ I C. R B =43kΩ V I I B I E. Figura 1 Figura 2

BJT 1. V γ V BE +V CC =12V. R C =0,6kΩ I C. R B =43kΩ V I I B I E. Figura 1 Figura 2 J 1. n este ejercicio se trata de estudiar el funcionamiento del transistor de la figura 1 para distintos valores de la tensión V I. Para simplificar el análisis se supondrá que la característica de entrada

Más detalles

DIODOS CIRCUITOS CON DIODOS SEMICONDUCTORES

DIODOS CIRCUITOS CON DIODOS SEMICONDUCTORES DIODOS CIRCUITOS CON DIODOS SEMICONDUCTORES Modelo Ideal : Usaremos el diodo como un simple indicador on/off. Conduce o no el diodo? 1 Supongamos, inicialmente que el diodo está en contacto, es decir:

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 2: Diodos Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 3 de agosto de 2009 P. Parada (DIE) EL42A - Circuitos

Más detalles

EL3004-Circutios Electrónicos Analógicos

EL3004-Circutios Electrónicos Analógicos EL3004-Circutios Electrónicos Analógicos Clase No. 7: Operación del diodo Marcos Diaz Departamento de Ingeniería Eléctrica (DIE) Universidad de Chile Septiembre, 2011 Marcos Diaz (DIE, U. Chile) EL3004-Circuitos

Más detalles

RECTIFICACIÓN DE MEDIA ONDA

RECTIFICACIÓN DE MEDIA ONDA RECTIFICACIÓN DE MEDIA ONDA I. OBJETIVOS Definir lo que es una fuente de baja tensión. Analizar los componentes a utilizar. Montaje del circuito. Análisis de tensión (AC-DC). Determinar las gráficas a

Más detalles

2 El Ampli cador Operacional Ideal

2 El Ampli cador Operacional Ideal El Ampli cador Operacional Ideal J.I.Huircan Uniersidad de La Frontera January 4, 202 Abstract El Ampli cador Operacional Ideal es un ampli cador de oltaje de alta ganancia, controlado por oltaje, que

Más detalles

II-Convertidor balancín ("push-pull"). Configuración del circuito conversor "balancín" (push-pull).

II-Convertidor balancín (push-pull). Configuración del circuito conversor balancín (push-pull). II-Convertidor balancín ("push-pull"). Configuración del circuito conversor "balancín" (push-pull). Se asume operación en modo estacionario. Los tiempos de conducción de los conmutadores son iguales: t

Más detalles

TEMA 2: ELECTRICIDAD Y ELECTRÓNICA

TEMA 2: ELECTRICIDAD Y ELECTRÓNICA TEMA 2: ELECTRICIDAD Y ELECTRÓNICA INDICE 1. Corriente eléctrica 2. Magnitudes 3. Ley de Ohm 4. Potencia 5. Circuito serie 6. Circuito paralelo 7. Circuito mixto. 8. Componentes de un circuito electrónico.

Más detalles

V cc t. Fuente de Alimentación

V cc t. Fuente de Alimentación Fuente de Alimentación de Tensión Fuente de alimentación: dispositivo que convierte la tensión alterna de la red de suministro (0 ), en una o varias tensiones, prácticamente continuas, que alimentan a

Más detalles

Sintonización de Controladores

Sintonización de Controladores Sistemas de Control Automáticos Sintonización de Controladores Acciones de control Las acciones de los controladores las podemos clasificar como: Control discontínuo Control ON OFF Control contínuo Controles

Más detalles

Electrónica 1. Práctico 3 Diodos 1

Electrónica 1. Práctico 3 Diodos 1 Electrónica 1 Práctico 3 Diodos 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,

Más detalles

Reguladores por conmutación. Configuraciones con transformador de aislamiento. Operación en el régimen de corriente no interrumpida.

Reguladores por conmutación. Configuraciones con transformador de aislamiento. Operación en el régimen de corriente no interrumpida. Reguladores por conmutación. Configuraciones con transformador de aislamiento. Operación en el régimen de corriente no interrumpida. I-Regulador "de retroceso" ( flyback ). a)configuración. b)circuito

Más detalles

TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) Generalidades Clasificación Principio de Funcionamiento y Simbología Característica V-I

TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) Generalidades Clasificación Principio de Funcionamiento y Simbología Característica V-I TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) Generalidades Clasificación Principio de Funcionamiento y Simbología Característica V-I de Salida Característica de Transferencia Circuitos

Más detalles

EJERCICIO 1 EJERCICIO 2

EJERCICIO 1 EJERCICIO 2 EJERCICIO 1 Se miden 0 Volt. en los terminales del diodo de la fig. siguiente, la tensión de la fuente indica +5 Volt. respecto de masa. Qué está mal en el circuito? EJERCICIO 2 En la fig. siguiente la

Más detalles

Figura 1 Figura 2. b) Obtener, ahora, un valor más preciso de V D para la temperatura T a. V AA

Figura 1 Figura 2. b) Obtener, ahora, un valor más preciso de V D para la temperatura T a. V AA DODOS. Se desea diseñar el circuito de polarización de un diodo emisor de luz (LED) de arseniuro de galio (GaAs) conforme a la figura. La característica - del LED se representa en la figura, en la que

Más detalles

HOJAS DE CÁLCULO: EXCEL (ejercicios extras).

HOJAS DE CÁLCULO: EXCEL (ejercicios extras). EJERCICIOS FINALES: EXCEL APLICADO A LAS ASIGNATURAS DE TECNOLOGÍA, MATEMÁTICAS Y FÍSICA. 1.- LEY DE LA PALANCA. HOJAS DE CÁLCULO: EXCEL (ejercicios extras). Se trata de una ecuación que explica el funcionamiento

Más detalles

PRÁCTICA PD4 REGULACIÓN DE VOLTAJE CON DIODOS ZENER

PRÁCTICA PD4 REGULACIÓN DE VOLTAJE CON DIODOS ZENER elab, Laboratorio Remoto de Electrónica ITEM, Depto. de Ingeniería Eléctrica PRÁCTICA PD4 REGULACIÓN DE OLTAJE CON DIODO ENER OBJETIO Analizar teóricamente y de forma experimental la aplicación de diodos

Más detalles

Tema 1. Diodos Semiconductores 1-Introducción 2-Comportamiento en régimen estático. Recta de carga. 3- Tipos especiales de diodos

Tema 1. Diodos Semiconductores 1-Introducción 2-Comportamiento en régimen estático. Recta de carga. 3- Tipos especiales de diodos Tema 1. Diodos Semiconductores 1-Introducción 2-Comportamiento en régimen estático. ecta de carga. 3- Tipos especiales de diodos Zener Schottky Emisor de luz (LED) 4- Circuitos con diodos ecortadores ó

Más detalles

Capítulo I. Convertidores de CA-CD y CD-CA

Capítulo I. Convertidores de CA-CD y CD-CA Capítulo I. Convertidores de CA-CD y CD-CA 1.1 Convertidor CA-CD Un convertidor de corriente alterna a corriente directa parte de un rectificador de onda completa. Su carga puede ser puramente resistiva,

Más detalles

CIRCUITOS RESONANTES, RLC

CIRCUITOS RESONANTES, RLC CIRCUITOS RESONANTES, RLC En este desarrollo analizamos circuitos RLC alimentados con una tensión alternada (AC) y su respuesta a distintas frecuencias. Por convención, y a los fines de simplificar la

Más detalles

El Diodo. Lección Ing. Jorge Castro-Godínez. II Semestre Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica

El Diodo. Lección Ing. Jorge Castro-Godínez. II Semestre Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica El Diodo Lección 03.1 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez El Diodo 1 / 29 Contenido 1 Modelo del Diodo

Más detalles

Ley de Ohm Medición de Resistencias

Ley de Ohm Medición de Resistencias Trabajo Práctico N o 3 Ley de Ohm Medición de Resistencias Fabián Shalóm (fabianshalom@hotmail.com) Tomás Corti (tomascorti@fibertel.com.ar) Ramiro Olivera (ramaolivera@hotmail.com) Mayo de 2004 Cátedra

Más detalles

LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM

LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM LABORATORIO DE ELECTRICIDAD Y MAGNETISMO LEY DE OHM OBJETIVO Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que genera. EQUIPAMIENTO 1. Circuito

Más detalles

ELECTRONICA I. o En primer lugar se plantea la malla:

ELECTRONICA I. o En primer lugar se plantea la malla: ELECTNICA I Problemas esueltos Tema: Diodos Problema 1 Considerando el diodo real y v (t) = 3 cos (2π.0 t) [V], para el circuito de la figura dibuje las siguientes formas de ondas en función del tiempo:

Más detalles

SISTEMA DE RECTIFICACIÓN TIPO PUENTE Y FILTRADO

SISTEMA DE RECTIFICACIÓN TIPO PUENTE Y FILTRADO SISTEMA DE RECTIFICACIÓN TIPO PUENTE Y FILTRADO I. OBJETIVOS Analizar componentes. Montaje del circuito. Análisis de CA y CD. Sistema de rectificación tipo fuente. Filtraje. Uso del osciloscopio. Gráfico

Más detalles

MULTIVIBRADOR MONOESTABLE CON COMPUERTAS LÓGICAS

MULTIVIBRADOR MONOESTABLE CON COMPUERTAS LÓGICAS MULIVIBRADOR MONOESABLE CON COMPUERAS LÓGICAS Un multivibrador monoestable, a veces llamado circuito de un disparo produce un solo pulso de una duración fija después de recibir un pulso de disparo en la

Más detalles

COMENTARIOS SOBRE LA PRÁCTICA Nº 2 CARACTERISTICAS DE LOS DIODOS RECTIFICADORES CIRCUITOS RECTIFICADORES DE MEDIA ONDA

COMENTARIOS SOBRE LA PRÁCTICA Nº 2 CARACTERISTICAS DE LOS DIODOS RECTIFICADORES CIRCUITOS RECTIFICADORES DE MEDIA ONDA COMENTARIOS SOBRE LA PRÁCTICA Nº 2 CARACTERISTICAS DE LOS DIODOS RECTIFICADORES CIRCUITOS RECTIFICADORES DE MEDIA ONDA * Familiarizar al estudiante con el uso de los manuales de los fabricantes de diodos

Más detalles

Generador Solar de Energía Eléctrica a 200W CAPÍTULO III. Convertidores CD-CD

Generador Solar de Energía Eléctrica a 200W CAPÍTULO III. Convertidores CD-CD Generador olar de Energía Eléctrica a 00W CAPÍTU III Convertidores CD-CD 3.1.- Introducción En muchas aplicaciones industriales se requiere convertir un voltaje fijo de una fuente de cd en un voltaje variable

Más detalles

Diseño de un convertidor DC DC reductor tipo BUCK

Diseño de un convertidor DC DC reductor tipo BUCK Diseño de un convertidor DC DC reductor tipo BUCK Ejemplo para la asignatura Electrónica Industrial 24 de abril de 2007 1. Requerimientos V in = 12V V o = 5V I max = 1A I min = 100mA (MC) v o < 50mV f

Más detalles

Resistores en circuitos eléctricos

Resistores en circuitos eléctricos Resistores en circuitos eléctricos Experimento : Resistencias en circuitos eléctricos Estudiar la resistencia equivalente de resistores conectados tanto en serie como en paralelo. Fundamento Teórico. Cuando

Más detalles

EL PREMIO NOBEL DE FÍSICA 1956

EL PREMIO NOBEL DE FÍSICA 1956 EL PREMIO NOBEL DE FÍSICA 1956 EL TRANSISTOR BIPOLAR EL TRANSISTOR BIPOLAR El transistor bipolar (BJT Bipolar Junction Transistor) fue desarrollado en los Laboratorios Bell Thelephone en 1948. El nombre

Más detalles

Práctica 5 Circuito acondicionador de señal

Práctica 5 Circuito acondicionador de señal Práctica 5 Circuito acondicionador de señal Objetivo de la práctica Analizar Al terminar esta práctica, el discente será capaz de: Diseñar una red resistiva que cumpla con acondicionamiento analógico.

Más detalles

Rectificador Controlado de Silicio (SCR) Cuáles son las principales aplicaciones de los SCR?

Rectificador Controlado de Silicio (SCR) Cuáles son las principales aplicaciones de los SCR? GUÍA TÉCNICA INFORMATIVA Nro.3 2017 Rectificador Controlado de Silicio (SCR) Cuáles son las principales aplicaciones de los SCR? Qué es un SCR? El rectificador controlado de silicio SCR Silicon Controlled

Más detalles

Parámetros híbridos. Electrónica Analógica I. Bioingeniería

Parámetros híbridos. Electrónica Analógica I. Bioingeniería Parámetros híbridos Electrónica Analógica I. Bioingeniería Concepto de modelado Un modelo es la combinación de elementos de circuito, adecuadamente seleccionados, que se aproximan mejor al comportamiento

Más detalles

Marzo TRANSFERENCIA DE ENERGÍA GISPUD

Marzo TRANSFERENCIA DE ENERGÍA GISPUD Marzo 2012 http:///wpmu/gispud/ 1.7 TRANSFERENCIA DE ENERGÍA Ejercicio 7. Transferencia de energía. Tomando como referencia el ejercicio 1.2 de la grafica de energía y potencia, calcular la energía transferida

Más detalles

Sesión 7 Fundamentos de dispositivos semiconductores

Sesión 7 Fundamentos de dispositivos semiconductores Sesión 7 Fundamentos de dispositivos semiconductores Componentes y Circuitos Electrónicos Isabel Pérez / José A García Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez

Más detalles

Práctica 1: Características de Diodos Semiconductores

Práctica 1: Características de Diodos Semiconductores Práctica 1: Características de Diodos Semiconductores Objetivo: Identificar y medir características de diodos rectificadores, emisores de luz (leds) y zener. Referencias: 1. Boylestad, Electronic Devices

Más detalles

PROCEDIMIENTOS DE MEDICIONES DC SOBRE DISPOSITIVOS DE DOS TERMINALES

PROCEDIMIENTOS DE MEDICIONES DC SOBRE DISPOSITIVOS DE DOS TERMINALES UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRÓNICA Y CIRCUITOS LABORATORIO DE CIRCUITOS ELÉCTRICOS EC 1081 PRACTICA Nº 4 Objetivos PROCEDIMIENTOS DE MEDICIONES DC SOBRE DISPOSITIVOS DE DOS TERMINALES

Más detalles

DESCRIPCIÓN DEL TIRISTOR

DESCRIPCIÓN DEL TIRISTOR DESCRIPCIÓN DEL TIRISTOR El tiristor (SCR, silicon controlled rectifier) es un dispositivo semiconductor de cuatro capas, PNPN con tres terminales: ánodo (A), cátodo (K) y puerta (G), Puede conmutar de

Más detalles

FUNDAMENTOS DE CLASE 3: DIODOS

FUNDAMENTOS DE CLASE 3: DIODOS FUNDAMENTOS DE ELECTRÓNICA CLASE 3: DIODOS RECORTADORES Permiten eliminar parte de la señal de una onda En serie: RECORTADORES: EJERCICIO Ejercicio: Calcular la característica de trasferencia RECORTADORES:

Más detalles

Fuentes de corriente

Fuentes de corriente Fuentes de corriente 1) Introducción En Electrotecnia se estudian en forma teórica las fuentes de corriente, sus características y el comportamiento en los circuitos. Desde el punto de vista electrónico,

Más detalles

1. Conecte la tarjeta EB-111 introduciéndola por las guías del PU-2000 hasta el conector.

1. Conecte la tarjeta EB-111 introduciéndola por las guías del PU-2000 hasta el conector. 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO ZENER Objetivos específicos Trazar la curva característica

Más detalles

Universidad Diego Portales Facultad de Ingeniería. Instituto de Ciencias Básicas Laboratorio Nº 12 Cálculo I Extremos locales y Anàlisis de curvas

Universidad Diego Portales Facultad de Ingeniería. Instituto de Ciencias Básicas Laboratorio Nº 12 Cálculo I Extremos locales y Anàlisis de curvas Universidad Diego Portales Facultad de Ingeniería. Instituto de Ciencias Básicas Laboratorio Nº 12 Cálculo I Extremos locales y Anàlisis de curvas Contenidos : Puntos crìticos Intervalos de Crecimiento

Más detalles

DIODOS REALES RELACIÓN CORRIENTE-VOLTAJE DE LA JUNTURA PN

DIODOS REALES RELACIÓN CORRIENTE-VOLTAJE DE LA JUNTURA PN DIODOS REALES RELACIÓN CORRIENTE-VOLTAJE DE LA JUNTURA PN V T = KT q V T =25,2 mv a 300ºK I D = Is(e V D nv T 1) Escalas expandidas o comprimidas para ver mas detalles DEPENDENCIA DE LA TEMPERATURA MODELO

Más detalles

INVERSORES RESONANTES

INVERSORES RESONANTES 3 INVERSORES RESONANTES 3.1 INTRODUCCIÓN Los convertidores de CD a CA se conocen como inversores. La función de un inversor es cambiar un voltaje de entrada en CD a un voltaje simétrico de salida en CA,

Más detalles

ECUACIONES DE RECTAS Y PLANOS

ECUACIONES DE RECTAS Y PLANOS ECUACIONES DE RECTAS Y PLANOS Una recta en el plano está determinada cuando se dan dos puntos cualesquiera de la recta, o un punto de la recta y su dirección (su pendiente o ángulo de inclinación). La

Más detalles

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser Ley de Ohm La resistencia eléctrica de un resistor se define como la razón entre la caída de tensión, entre los extremos del resistor, y la corriente que circula por éste, tal que Teniendo en cuenta que

Más detalles

Capítulo 3: Teoría del memristor. llevado a relaciones ampliamente conocidas. Dos de estas relaciones están dadas por,

Capítulo 3: Teoría del memristor. llevado a relaciones ampliamente conocidas. Dos de estas relaciones están dadas por, Capítulo 3: Teoría del memristor Desde el punto de vista de teoría de circuitos, los tres elementos eléctricos ya conocidos se definen en términos de la relación entre dos de las cuatro variables eléctricas

Más detalles

SEMICONDUCTORES PREGUNTAS

SEMICONDUCTORES PREGUNTAS SEMICONDUCTORES PREGUNTAS 1. Por qué los metales conducen mejor que los semiconductores 2. Por qué la conducción de la corriente eléctrica en los metales y los semiconductores tienen distinto comportamiento

Más detalles

Circuitos de RF y las Comunicaciones Analógicas. Capítulo VII: Amplificadores de RF de potencia

Circuitos de RF y las Comunicaciones Analógicas. Capítulo VII: Amplificadores de RF de potencia Capítulo VII: Amplificadores de RF de potencia 109 110 7. Amplificadores RF de potencia 7.1 Introducción El amplificador de potencia (PA) es la última etapa de un trasmisor. Tiene la misión de amplificar

Más detalles

Ejercicios Resueltos de Dispositivos Electrónicos I Examen Final de Junio de Ejercicio 3 1

Ejercicios Resueltos de Dispositivos Electrónicos I Examen Final de Junio de Ejercicio 3 1 Ejercicios Resueltos de ispositivos Electrónicos I Examen Final de Junio de 2000 - Ejercicio 3 1 Enunciado Hallar el punto de trabajo de los dos transistores. Asumir como despreciables las corrientes de

Más detalles

CAPACITANCIA Introducción

CAPACITANCIA Introducción CAPACITANCIA Introducción Además de los resistores, los capacitores y los inductores son otros dos elementos importantes que se encuentran en los circuitos eléctricos y electrónicos. Estos dispositivos,

Más detalles

PRÁCTICA NÚMERO 10 LEY DE OHM

PRÁCTICA NÚMERO 10 LEY DE OHM PRÁCTICA NÚMERO 10 LEY DE OHM I. Objetivos. Investigar si los siguientes elementos eléctricos son óhmicos: a) Una resistencia comercial. b) Un diodo rectificador. II. Material. 1. Dos multímetros. 2. Dos

Más detalles

TEMA 2 RECTIFICACION NO CONTROLADA CON CARGA NO RESISTIVA RECTIFICACION NO CONTROLADA CON CARGA RL. a) CASO MEDIA ONDA MONOFASICA. fig. (2.

TEMA 2 RECTIFICACION NO CONTROLADA CON CARGA NO RESISTIVA RECTIFICACION NO CONTROLADA CON CARGA RL. a) CASO MEDIA ONDA MONOFASICA. fig. (2. RECTIFICACION NO CONTROLADA CON CARGA NO RESISTIVA 2.1.- RECTIFICACION NO CONTROLADA CON CARGA RL. a) CASO MEDIA ONDA MONOFASICA. fig. (2.1) Cuando el diodo se encuentra en conducción (ON) podemos ver

Más detalles

FÍSICA GENERAL II Programación. Contenidos

FÍSICA GENERAL II Programación. Contenidos UNIVERSIDAD TÉCNICA FEDERICO SANTA MARIA 1 er Semestre 2011 FÍSICA GENERAL II Programación 1. Control 1: fecha 01 de abril, contenido: Módulos 1, 2 y 3(parcial: determinar diferencias de potencial a partir

Más detalles

TECNOLOGÍA EN ELECTRÓNICA ASIGNATURA

TECNOLOGÍA EN ELECTRÓNICA ASIGNATURA FACULTAD INGENIERÍA DEPARTAMENTO PROGRAMA TECNOLOGÍA EN ELECTRÓNICA ASIGNATURA ELECTRÓNICA I CÓDIGO 5101 REQUISITOS CIRCUITOS I CREDITOS INTENSIDAD HORARIA / SEMANAL TEÓRICAS PRÁCTICAS INTENSIDAD HORARIA

Más detalles

2. INSTRUMENTACIÓN EN TEORÍA DE CIRCUITOS.

2. INSTRUMENTACIÓN EN TEORÍA DE CIRCUITOS. 2. Instrumentación en teoría de circuitos. 2. INSTRUMENTACIÓN EN TEORÍA DE CIRCUITOS. 1) OBJETIVOS. El objetivo fundamental de esta segunda práctica es la comprobación experimental de la asociación de

Más detalles

MEDIDOR PARA DETERMINAR LA CARACTERISTICA CAPACIDAD-VOLTAJE EN DISPOSITIVOS SEMICONDUCTORES. J. Pérez* Esteban. d~ Ing~nitTía Eléctrica

MEDIDOR PARA DETERMINAR LA CARACTERISTICA CAPACIDAD-VOLTAJE EN DISPOSITIVOS SEMICONDUCTORES. J. Pérez* Esteban. d~ Ing~nitTía Eléctrica Revista Mexicana de Fisica 19 (1970) FAI15 - F AI21 F Al15 MEDIDOR PARA DETERMINAR LA CARACTERISTICA CAPACIDAD-VOLTAJE EN DISPOSITIVOS SEMICONDUCTORES Esteban J. Pérez* Dptol d IngnitTía Eléctrica Ctntro

Más detalles

CIRCUITOS COMPARADORES DE TENSION

CIRCUITOS COMPARADORES DE TENSION CAPITULO IV CICUITOS COMPAADOES DE TENSION Objetivos: Explicar el funcionamiento de los diferentes tipos de comparadores. Calcular los componentes de los diferentes tipos de comparadores. Identificar en

Más detalles

Reguladores de Voltaje

Reguladores de Voltaje Reguladores de Voltaje J.I.Huircan Universidad de La Frontera December 3, 2012 Abstract Los reguladores permiten mantener el voltaje de la salida jo independiente de las variaciones de carga o ondulación

Más detalles

El símbolo y estructura del SCR se muestran en la figura. Este proceso regenerativo se repite hasta saturar Q1 y Q2 causando el encendido del SCR.

El símbolo y estructura del SCR se muestran en la figura. Este proceso regenerativo se repite hasta saturar Q1 y Q2 causando el encendido del SCR. Reguladores (cont.) Para finalizar el tema teórico de los tiristores presentamos un resumen. SCR- Símbolo, estructura y funcionamiento básico. El SCR (Rectificador controlado de silicio) es un dispositivo

Más detalles

Configuraciones "entrelazadas" o "en contrafase".

Configuraciones entrelazadas o en contrafase. Configuraciones "entrelazadas" o "en contrafase". Cuando se opera con corrientes elevadas, y/o se desea minimizar el rizado, es posible llegar a requerir filtros cuyos componentes resultan inaceptables

Más detalles

Examen de álgebra Curso SEP-INAOE 14 al 18 de enero del 2008

Examen de álgebra Curso SEP-INAOE 14 al 18 de enero del 2008 Eamen de álgebra Curso SEP-INAOE 4 al de enero del 00. Reducir a su forma más simple la siguiente epresión: 4 ( 3 + ) 3 + 3 3 ( + ) + 6 + 4 ( 3 + ) 3 + 3 3 ( + ) + 6 + Efectuamos primero las operaciones

Más detalles

Por supuesto, se puede llegar al mismo fin conociendo la ecuación para el manejo del elemento alineal.

Por supuesto, se puede llegar al mismo fin conociendo la ecuación para el manejo del elemento alineal. Diapositiva 1 from Horwitz & Hill p. 1059 Cuál es la corriente que atraviesa el diodo? I V diodo Un método tradicional de hallar el punto de funcionamiento de un es un circuito alineal es mediante líneas

Más detalles

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO FORMA DE PRESENTACIÓN DE LAS ECUACIONES DEL MOSFET DE ENRIQUECIMIENTO Se define Para la región triodo (zona ohmica) VGS

Más detalles

La corriente de difusión depende de los portadores minoritarios que saltan la barrera Corriente de electrones:

La corriente de difusión depende de los portadores minoritarios que saltan la barrera Corriente de electrones: 7.3 El diodo de unión: el dispositivo Dispositivo: unión P-N con contactos Característica I(V): curva corriente-ddp aplicada Corriente positiva: interiormente de P hacia N V = 0 Corriente de huecos: +

Más detalles

Análisis de circuitos. Unidad II

Análisis de circuitos. Unidad II Análisis de circuitos Unidad II Objetivo del análisis de circuitos: Determinar todos los voltajes y corrientes en un circuito. Método de las tensiones (o voltajes) de nodo. 1. Identificar los nodos del

Más detalles

PREPARACIÓN DE LA PRÁCTICA 2: DIODOS Y ZENERS RECTIFICADORES Y REGULADORES. Hoja de datos del diodo rectificador 1N400X. Valores Máximos Absolutos

PREPARACIÓN DE LA PRÁCTICA 2: DIODOS Y ZENERS RECTIFICADORES Y REGULADORES. Hoja de datos del diodo rectificador 1N400X. Valores Máximos Absolutos PREPARACIÓN DE LA PRÁCTICA 2: DIODOS Y ZENERS RECTIFICADORES Y REGULADORES Hoja de datos del diodo rectificador 1N400X Valores Máximos Absolutos Características Térmicas Características Eléctricas Hoja

Más detalles

Protecciones en Amplificadores de Potencia

Protecciones en Amplificadores de Potencia Universidad Nacional de osario Facultad de Ciencias xactas, ngeniería y Agrimensura scuela de ngeniería lectrónica CTÓNCA NOTAS D CAS Protecciones en Amplificadores de Potencia dición 200 lectrónica Índice.

Más detalles

INTEGRANTES (Apellido, nombres) FIRMA SECCION NOTA

INTEGRANTES (Apellido, nombres) FIRMA SECCION NOTA UNIVERSIDAD TECNOLÓGICA DE EL SALVADOR FACULTAD DE INFORMATICA Y CIENCIAS APLICADAS ESCUELA DE CIENCIAS APLICADASDEPARTAMENTO DE MATEMATICA Y CIENCIAS CATEDRA FISICA ASIGNATURA: FUNDAMENTOS DE FISICA APLICADA

Más detalles

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 8

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 8 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica 1. TEMA

Más detalles

UNIDAD TEMATICA 3: TRANSITORES DE UNION BIPOLAR (BJT S)

UNIDAD TEMATICA 3: TRANSITORES DE UNION BIPOLAR (BJT S) UNIDAD TEMATICA 3: TRANSITORES DE UNION BIPOLAR (BJT S) 1.-Operación del transistor bipolar El transistor de unión bipolar (del inglés Bipolar Junction Transistor, o sus siglas BJT) es un dispositivo electrónico

Más detalles

COMPONENTES ELECTRÓNICOS ANALÓGICOS Página 1 de 7

COMPONENTES ELECTRÓNICOS ANALÓGICOS Página 1 de 7 COMPONENTES ELECTRÓNICOS ANALÓGICOS Página 1 de 7 SEMICONDUCTORES Termistores Foto resistores Varistores Diodo Rectificador Puente Rectificador Diodo de Señal Diodo PIN Diodo Zener Diodo Varactor Fotodiodo

Más detalles

Ampli cadores de Potencia

Ampli cadores de Potencia Ampli cadores de Potencia J..Huircan Uniersidad de La Frontera January 6, 16 Abstract Los ampli cadores de potencia son conertidores que transforman la energía de la fuente de polarización en señal de

Más detalles

TBJ DISPOSITIVO ELECTRONICOS 2016

TBJ DISPOSITIVO ELECTRONICOS 2016 TBJ DISPOSITIVO ELECTRONICOS 2016 Transistor Bipolar Tipos de Transistores BIPOLARES DE JUNTURA NPN PNP TRANSISTORES UNIÓN CANAL N (JFET-N) CANAL P (JFET-P) EFECTO DE CAMPO FET METAL-OXIDO- SEMICONDUCTOR

Más detalles

CIRCUITOS ELECTRICOS I

CIRCUITOS ELECTRICOS I 1. JUSTIFICACIÓN. CIRCUITOS ELECTRICOS I PROGRAMA DEL CURSO: Circuitos Eléctricos I AREA: MATERIA: Circuitos Eléctricos I CODIGO: 3001 PRELACIÓN: Electricidad y Magnetismo UBICACIÓN: IV T.P.L.U: 5.0.0.5

Más detalles

Práctica 2.- Medida de la resistencia dinámica del diodo de unión. Cálculo del punto Q. El diodo de unión como rectificador.

Práctica 2.- Medida de la resistencia dinámica del diodo de unión. Cálculo del punto Q. El diodo de unión como rectificador. Práctica 2. Medida de la resistencia dinámica del diodo de unión. Cálculo del punto Q. El diodo de unión como rectificador. A. Objetivos Medir la resistencia dinámica del diodo de unión. Determinación

Más detalles

1.- La tensión v A es a) Triangular recortada b) Triangular c) Cuadrada (por estar saturado el AO).

1.- La tensión v A es a) Triangular recortada b) Triangular c) Cuadrada (por estar saturado el AO). D.. D.1.- En el circuito de la figura el interruptor S está cerrado y se abre en el instante t = 0. Los amplificadores operacionales son ideales y están alimentados entre + 16 V y - 16 V. La tensión v

Más detalles