Máquinas Eléctricas II

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Máquinas Eléctricas II"

Transcripción

1 Máquinas Eléctricas Fundamentos de circuitos eléctricos de corriente alterna mono y trifásica Miguel Ángel Rodríguez Pozueta Departamento de ngeniería Eléctrica y Energé5ca Este tema se publica bajo icencia: rea5ve ommons BY- N- SA 4.0

2 OBSERAONES SOBRE A NOMENATURA En este texto, siguiendo la nomenclatura habitual en Electrotecnia, se ha utilizado la letra j para designar a la unidad imaginaria, 1, en los números complejos. En muchos textos matemáticos el lector puede observar que se emplea la letra i para designar a , Miguel Angel Rodríguez Pozueta Universidad de antabria (España) Departamento de ngeniería Eléctrica y Energética This work is licensed under the reative ommons Attribution-Nonommercial- ShareAlike 4.0 nternational icense. To view a copy of this license, visit or send a letter to reative ommons, PO Box 1866, Mountain iew, A 9404, USA. Está permitida la reproducción total o parcial de este documento bajo la licencia reative ommons Reconocimiento-Noomercial-ompartirgual 4.0 Unported que incluye, entre otras, la condición inexcusable de citar su autoría (Miguel Angel Rodríguez Pozueta - Universidad de antabria) y su carácter gratuito. Puede encontrar más documentación gratuita en la página web del autor:

3 ÍNDE ORRENTE ATERNA MONO Y TRFÁSA. ORRENTE ATERNA MONOFÁSA onceptos básicos Magnitudes básicas Elementos pasivos Generadores o fuentes Topología de redes Acoplamiento de resistencias Magnitudes alternas Representación fasorial omportamiento de los elementos pasivos en c.a. Resistencia. nductancia. ondensador. ircuito serie R--. mpedancia a potencia en corriente alterna os tres significados del ángulo ϕ Mejora del factor de potencia ORRENTE ATERNA TRFÁSA EUBRADA ircuito trifásico independiente Sistema trifásico equilibrado onexión estrella equilibrada onexión triángulo equilibrado Expresión fasorial de las tensiones y corrientes de sistemas trifásicos equilibrados a potencia en sistemas trifásicos equilibrados Mejora del factor de potencia en trifásica Medida de la potencia en trifásica. Método de los dos vatímetros... 6 entajas de la c.a. trifásica frente a la monofásica... 6 ANEXO: RESUMEN DE POTENA EN.A. MONOFÁSA... 7 os números de página de este índice actúan como hiperenlaces a las páginas correspondientes --

4 ONEPTOS BÁSOS onvenios de signos para tensiones y corrientes en generadores y receptores as leyes de los circuitos eléctricos se establecieron mucho antes que la teoría electrónica de la materia. Esto hizo que en estas leyes se partiera del supuesto de que la corriente eléctrica era debida al movimiento de cargas eléctricas 1 positivas. Hoy en día se sabe que, en realidad, las corrientes se deben al movimiento de electrones, es decir, de cargas negativas. No obstante se siguen empleando estas leyes tal como se establecieron en su momento, ya que se obtienen resultados correctos. Fig. 1: ircuito básico de corriente alterna Por lo tanto, se parte de que la corriente eléctrica en un circuito circula tal como se indica en la Fig. 1. Esto es, se utilizan estos convenios de signos para tensiones y corrientes: En los receptores o cargas la corriente es debida a la acción del campo eléctrico y se dirige desde el lado de mayor potencial eléctrico al de menor. Es decir, del lado del signo + al lado del signo - de la tensión. En los generadores o fuentes la corriente debe ser impulsada contra el campo eléctrico para cerrar su recorrido a través del circuito. Esto se realiza a expensas de una energía de otro tipo -mecánica, química, etc.- que es absorbida por el generador para transformarla en energía eléctrica. Esto hace que en el interior de los generadores la corriente vaya desde del lado del signo - al lado del signo + de la tensión. 1 En este texto el término carga tiene dos significados completamente distintos y el lector deberá establecer cuál es el significado correcto según el contexto en el que se utilice: Por un lado, las cargas eléctricas (positivas y negativas) son las creadoras de los campos eléctricos y también sobre las que estos campos ejercen fuerzas. Por otro lado, en una instalación o en un circuito eléctrico se denominan cargas o receptores eléctricos a aquellos elementos que consumen potencia eléctrica. Fuerza electromotriz (f.e.m.) En la Fig. 1 se muestra un circuito eléctrico elemental. En él la diferencia de potencial v AB provoca que por fuera del generador se produzca un movimiento de cargas eléctricas positivas (en teoría de circuitos se supone que la corriente eléctrica es el movimiento de cargas positivas) desde el extremo A, de mayor tensión, al extremo B, de menor tensión. Pero, para poder mantener una corriente i en el circuito es preciso que en el interior del generador las cargas positivas se muevan desde B hacia A. Para ello es necesario que en el generador se Fig. 1: ircuito básico de corriente alterna aporte una energía externa que se va a transformar en energía eléctrica; es decir, la energía que se introduce al generador se aporta a las cargas positivas que son empujadas de B a A. Esto hace que el extremo A se cargue positivamente y el B negativamente, lo que permite mantener la tensión v AB que empujará otra vez las cargas desde A a B por fuera del generador. A la energía por unidad de carga suministrada por el generador se le denomina fuerza electromotriz (f.e.m.) y se mide en voltios. a f.e.m. de un generador tiene el mismo valor que la tensión entre sus bornes (v AB ) cuando no circula corriente (i 0); es decir, cuando el generador se encuentra en circuito abierto. Nótese que la f.e.m., a pesar de su nombre, no es una fuerza sino una energía (por unidad de carga). -1-

5 MAGNTUDES BÁSAS (1) onvenio de signos: - En el interior de una carga (o receptor) la corriente circula desde el punto de mayor tensión al de menor tensión eléctrica. - En el interior de un generador la corriente circula desde el punto de menor tensión al de mayor tensión eléctrica. ntensidad de corriente, i: - ariación de carga con el tiempo en la sección transversal del conductor: d q i d t Se mide en Amperios Tensión o diferencia de potencial entre A y B, v AB - Trabajo realizado por el campo eléctrico para mover la unidad de carga positiva desde A hasta B: d w v AB AB d q Se mide en oltios MAGNTUDES BÁSAS () Potencia eléctrica, p: - Trabajo realizado por unidad de tiempo: p d w d t AB p d w d q v i AB d q d t En una carga o receptor: p > 0 : potencia consumida p < 0 : potencia generada ey de Ohm: En una resistencia la tensión y la corriente están relacionadas por esta ley: v R i En un generador: p > 0 : potencia generada p < 0 : potencia consumida --

6 EEMENTOS PASOS * Un elemento pasivo es un elemento que disipa o almacena energía eléctrica, pero no la genera. * os elementos pasivos son los receptores o cargas de un circuito eléctrico. * Hay tres tipos de elementos pasivos: - Resistencia: Disipa energía eléctrica. Se representan por los símbolos siguientes (se prefiere el primero, que también se usará más adelante para representar impedancias). Se caracteriza por su resistencia R. - Bobina o inductancia: Almacena energía magnética. Se representa mediante los símbolos siguientes ( se prefiere el primer símbolo): Se caracteriza por su coeficiente de autoinducción o inductancia. - ondensador: Almacena energía eléctrica. Su símbolo es: Se caracteriza por su capacidad. GENERADORES O FUENTES * Un generador o fuente es un elemento que suministra energía eléctrica a un circuito. Un generador convierte otro tipo de energía en energía eléctrica. * Un generador de tensión es un generador que proporciona energía eléctrica a una determinada tensión. a corriente dependerá de la carga que alimente. - Generador de tensión ideal: Su tensión en bornes es independiente de la corriente. - Generador de tensión real: Su tensión en bornes depende de la corriente. * Un generador de corriente es un generador que proporciona energía eléctrica con una determinada corriente. a tensión dependerá de la carga que alimente. - Generador de corriente ideal: a corriente que suministra es independiente de la tensión en bornes. - Generador de corriente real: a corriente que suministra depende de la tensión en bornes. -3-

7 GENERADOR DE TENSÓN DEA DE.. GENERADOR DE TENSÓN REA DE.. -4-

8 GENERADOR DE ORRENTE DEA DE.. GENERADOR DE ORRENTE REA DE.. -5-

9 EUAENA DE GENERADORES * Un generador de corriente ideal no se puede sustituir por uno de tensión equivalente. Un generador de tensión ideal no se puede sustituir por uno de corriente equivalente. * Un generador de corriente real se puede sustituir por uno de tensión equivalente sin que el resto del circuito note la diferencia. * Un generador de tensión real se puede sustituir por uno de corriente equivalente sin que el resto del circuito note la diferencia. EUAENA DE GENERADORES REAES EN.. a misma resistencia R en los dos generadores equivalentes. g R g g g R -6-

10 TOPOOGÍA DE REDES Nudo: Punto de unión de 3 o más elementos (A, B,,... ) Rama: Elemento o grupo de elementos entre nudos Red plana: a que se puede dibujar en un plano sin que se cruce ninguna rama. azo: onjunto de ramas que forman una línea cerrada, de forma que si se quita una rama del lazo, el camino queda abierto. Malla: azo que no contiene a otro en su interior (a, b, c,...) -7-

11 AOPAMENTO DE RESSTENAS (1) Serie: R eq R + R + R 1 3 Paralelo: 1 R eq 1 R R + 1 R 3 AOPAMENTO DE RESSTENAS () Estrella-Triángulo. Teorema de Kenelly Si R AB R B R A R, sucede que R A R B R R λ y viceversa: R 3 R λ -8-

12 MAGNTUDES ATERNAS En esta figura: ϕ v > 0 ( π/6 rad) ; ϕ i <0 ( -π/4 rad) v i M M os os ( ωt + ϕv ) M os ( ωt + π / 6) ( ωt + ϕ ) os ( ωt π / 4) i M Desfase o diferencia de fase: ϕ ϕ ϕ π / 6 π / 4 5π / rad v i ( ) 1 Pulsación: ω π T π f rad/s alor eficaz: 1 T T 0 i dt (Por ser funciones senoidales: M ; M ) -9-

13 REPRESENTAÓN FASORA (1) - Sea la magnitud sinusoidal: y( t) Y cos( ω t + ϕ ) - A y(t) se le puede asociar un vector Y r que gira a la velocidad ω, denominado fasor temporal: y - El fasor Y r tiene como módulo el valor eficaz Y de la magnitud sinusoidal y(t) y su argumento en el instante inicial es ϕ y. - El fasor Y r es un vector giratorio a la velocidad ω, igual a la pulsación de y(t). uego su argumento en el instante t vale ω t + ϕ y. - En la figura se observa que la proyección horizontal del fasor Y r es igual al valor instantáneo de y(t) dividido por. - Un fasor temporal es matemáticamente un vector, pero no representa a una magnitud vectorial en un instante dado, sino a una magnitud escalar que varía sinusoidalmente en el tiempo. REPRESENTAÓN FASORA () - Para manipular el fasor Y r se usarán números complejos: r Y Y ωt + ϕ y Y e j ( ωt + ϕ ) jϕ jωt jωt y Y e y e Y e ( j 1 ) - Dado que en los circuitos de corriente alterna que se van a analizar todas las magnitudes tienen la misma pulsación ω, la cual se conoce a priori, para representar el fasor de una magnitud y, por consiguiente, su valor instantáneo, va a bastar con indicar la constante compleja Y del fasor temporal Y r : Y Y ϕ y Y e j ϕ y Y ( cos ϕ + j sen ϕ ) y y - Nótese que Y es un vector fijo cuyo valor es igual al del fasor Y r (vector giratorio) en el instante inicial. - A veces al complejo Y se le denomina impropiamente fasor. -10-

14 on la escala de tiempos t: i v os os os ( ωt + ϕ ) ( ωt + ϕi ) ( ωt + ( ϕ ϕ) ) v v on la escala de tiempos t : i ( ω t + ) v os ϕ os os ( ω t + ϕ i) ( ω t + ( ϕ ϕ) ) v v DAGRAMAS FASORAES on la escala de tiempos t on la escala de tiempos t Usando como referencia -11-

15 PROPEDADES DE OS FASORES * y y 1 + y Y Y 1 + Y * y y 1 y Y Y 1 Y * d x y Y j ω X d t * y x dt Y X / j ω j X / ω * y k x Y k X * y x / k Y X / k -1-

16 RESSTENA (R) v e i están en fase (ϕ 0): ey de Ohm: v R i R NDUTANA () uando circula una corriente i por una bobina se genera un campo magnético que origina los flujos Φ 1, Φ,..., Φ N en sus espiras. os enlaces de flujo ψ de la bobina son ψ Φ (Wb) 1 + Φ + + ΦN a inductancia de la bobina es ψ i (H) a corriente se retrasa 90º con respecto a la tensión: v ey de Faraday: d ψ v d t X j X d i d t X ω : Reactancia inductiva (Ω) -13-

17 ONDENSADOR () a capacidad de un condensador es uego: i q (F) v d q q i dt d t v q 1 i dt a corriente se adelanta 90º con respecto a la tensión: X j X X 1/ω : Reactancia capacitiva (Ω) RUTO SERE R - - v v + v + v + + R R [ R + j ω j ω ] Z (ey de Ohm en c.a.) mpedancia: Z R + X R + j X Z ϕ (Ω) 1 Reactancia: X j X X + X j ω (Ω) ω 1 Admitancia: Y (siemens, mho, Ω -1 ) Z -14-

18 A POTENA EN ORRENTE ATERNA (1) v os ω t ; i os ( ω t ϕ) p ( ω ϕ) v i P + os t P os ϕ Potencia activa (W, kw) A POTENA EN ORRENTE ATERNA () P cos ϕ: Potencia activa (W, kw) ; sen ϕ : Potencia Reactiva (var, kvar) ( > 0 en inductancias; < 0 en capacidades) p [ P ( 1 + cos ω t ) ] + [ sen ω t ] potencia activa instantánea (1) + potencia reactiva instantánea () -15-

19 A POTENA EN ORRENTE ATERNA (3) POTENA ATA: P os ϕ (W) POTENA REATA: Sen ϕ (var) EN MPEDANAS: POTENA APARENTE: S (A) Triángulo de impedancias: POTENA OMPEJA: S P + j (A) FATOR DE POTENA: Triángulo de potencias: fdp P S S P + fdp cos ϕ S Z P R S P + j S ϕ * X OS TRES SGNFADOS DE ÁNGUO ϕ -16-

20 MEJORA DE FATOR DE POTENA (1) MEJORA DE FATOR DE POTENA () ( ) ' tg tg P ' ϕ ϕ 1 / X X X X ω ( ) f π ω (En estas expresiones se utiliza el valor absoluto de ) -17-

21 RUTO TRFÁSO NDEPENDENTE SSTEMA TRFÁSO EUBRADO (1) RN FN 90º ; SN FN 30º ; TN FN 150º ; Z Z Z Z ϕ RN SN TN R S T Ω -18- R, S, T Fases N Neutro

22 SSTEMA TRFÁSO EUBRADO () 10º ; 0º RS RN SN ST SN TN TR 10º ; 3 FN ; RS + ST + TR 0 TN RN SSTEMA TRFÁSO EUBRADO (3) (π/3 rad 10º) v v RS TR cos ( ωt + π / 3) ; v cos ( ωt) cos ST ( ωt π / 3) cos ( ωt + 4π / 3) -19-

23 SSTEMA TRFÁSO EUBRADO (4) Sistema trifásico equilibrado de tensiones o de intensidades * onjunto de tres tensiones o de tres intensidades, respectivamente, de igual valor eficaz y desfasadas entre sí 10º. * ada una de las tres tensiones o intensidades se llama fase. * a suma de las tres fases de un sistema trifásico equilibrado de tensiones o de intensidades vale siempre cero. Sistema trifásico equilibrado de impedancias * onjunto de tres impedancias idénticas. * ada una de las tres impedancias se llama fase. Sistema trifásico a tres hilos: Sistema trifásico en el que el generador y la carga se conectan mediante tres conductores de fase. Sistema trifásico a cuatro hilos: Sistema trifásico en el que el generador y la carga se conectan mediante tres conductores de fase más el conductor neutro. Tensiones simples: Son las tensiones entre fase y neutro ( RN, SN y TN ) cuyo valor eficaz es FN. Tensiones compuestas o de línea: Son las tensiones entre fases ( RS, ST y TR ) cuyo valor eficaz es. ntensidades de línea: Son las intensidades ( R, S e T) que circulan por los conductores de fase que conectan el generador con la carga. Su valor eficaz es. ONEXÓN ESTREA EUBRADA alores de fase en estrella: FN Z / 3 Z RN SN R 90 ϕ A ; S 30 ϕ A Z Z TN T 150 ϕ A ; N R + S + T 0 A Z -0- FN

24 ONEXÓN TRÁNGUO EUBRADO (1) alores de fase en triángulo: ; ( ) 3 ONEXÓN TRÁNGUO EUBRADO () Z 3 RS ST RS 10 ϕ A ; ϕ Z Z ST A TR TR 10 ϕ A ; RS + ST + TR 0 Z -1-

25 ONEXÓN TRÁNGUO EUBRADO (3) R RS TR ; S ST RS ; T TR ST cos 30º 3 En la conexión triángulo 3 y las corrientes de línea se retrasan 30º con respecto a las de fase ONEXÓN TRÁNGUO EUBRADO (4) ϕ desfase entre RS e RS desfase entre RN e R En sistemas trifásicos equilibrados, tanto para estrella como para triángulo, el ángulo ϕ es el ángulo de desfase entre una tensión fase-neutro y la intensidad de línea correspondiente --

26 EXPRESÓN FASORA DE TENSONES Y ORRENTES: Referencia ST RS 10º ST 0º 10º TR RN FN 90º 30º R S T SN TN FN FN 90º ϕ 150º 30º ϕ 150º ϕ EXPRESÓN FASORA DE TENSONES Y ORRENTES: Referencia SN RS 150º ST 30º 90º TR RN FN 10º SN FN 0º 10º R S T TN FN 10º ϕ ϕ 10º ϕ -3-

27 A POTENA EN.A. TRFÁSA (1) (EN SSTEMAS EUBRADOS) En c.a. trifásica la potencia es igual a la suma de la de sus tres fases. En el caso de sistemas equilibrados todas las fases consumen por igual y la potencia es igual a 3 veces la de una fase. POTENA ATA (P) En función de los valores de fase: P 3 cos ϕ En función de los valores de línea: * Estrella ( / 3 ; * Triángulo ( ; / 3 ): P 3 cos ϕ 3 ( / 3) cos ϕ ): P 3 cos ϕ 3 ( / 3) cos ϕ P 3 cos ϕ (Fórmula válida tanto para la conexión estrella como para la conexión triángulo en sistemas equilibrados) A POTENA EN.A. TRFÁSA () (EN SSTEMAS EUBRADOS) POTENA REATA (): 3 sen ϕ 3 sen ϕ POTENA APARENTE (S) Y FATOR DE POTENA (fdp): P P S P fdp cos ϕ S P + -4-

28 A POTENA EN.A. TRFÁSA (3) (EN SSTEMAS EUBRADOS) POTENA OMPEJA (S): Fórmula general: * 3 j P S + (Pero: * 3 S ) Para impedancias: Z 3 S R 3 P X 3 POTENA NSTANTÁNEA (p): a potencia instantánea del conjunto de las tres fases es constante e igual a la potencia activa. MEJORA DE FATOR DE POTENA ( ) ' tg tg P ' ϕ ϕ X X 3 X 3 3 X 1 ω ω * Estrella ( 3 / ): Y 3 ω ω * Triángulo ( ): Y ω ω (En estas expresiones se utiliza el valor absoluto de ) -5-

29 MEDDA DE A POTENA * Un vatímetro monofásico mide la potencia activa de una carga monofásica. onsta de un circuito amperimétrico y de otro voltimétrico. * En circuitos trifásicos de tres hilos se puede medir la potencia activa mediante dos vatímetros monofásicos conectados según la conexión Aron: (P 1 o P pueden tener signo negativo) a potencia activa P consumida por la carga trifásica, sea ésta equilibrada o no, vale: P P 1 + P on cargas equilibradas este método también permite la medida de la potencia reactiva : 3 ( ) P 1 P ENTAJAS DE A.A. TRFÁSA FRENTE A A MONOFÁSA * En trifásica con un 50% más de material conductor (3 hilos frente a ) que la monofásica se transmite un 73% más de potencia. ( Monofásica: P cos ϕ ; Trifásica: P 3 cos ϕ ) * En trifásica la potencia instantánea p es constante, mientras que en la monofásica p varía periódicamente. Esto hace que en trifásica el flujo de potencia sea más regular. * os motores trifásicos son más baratos y eficientes que los monofásicos. -6-

30 A POTENA EN.A. MONOFÁSA RESUMEN a potencia instantánea p que se transmite de un generador a un receptor o carga es igual al producto de la onda de tensión v por la onda de intensidad i. Es una onda de frecuencia doble a la de la tensión y la corriente y cuyo valor medio es la potencia activa P. Es positiva cuando la potencia va desde el generador -que la produce- a la carga -que la consume- y es negativa en el caso contrario. a potencia instantánea p es igual a la suma de la potencia activa instantánea y de la potencia reactiva instantánea. a potencia activa instantánea también es una onda de frecuencia doble a la de la tensión y la corriente. Nunca cambia de signo y su valor medio también es igual a la potencia activa P. Esta es la potencia se corresponde con la energía que realmente es suministrada por el generador y consumida por la carga. En el caso de receptores pasivos, la potencia activa se consume en las resistencias, pero no en los condensadores ni en las bobinas. a potencia reactiva instantánea también es una onda de frecuencia doble a la de la tensión y la corriente y su valor medio es nulo. Esta potencia sólo existe si en el circuito hay elementos capaces de almacenar energía; bien en forma de campo magnético (bobinas, caracterizadas por su coeficiente de autoinducción ), o bien en forma de campo eléctrico (condensadores, caracterizados por su capacidad ). Estos elementos consumen energía del generador durante medio ciclo de la onda de potencia, almacenándola en forma de campo (eléctrico o magnético). En el siguiente medio ciclo devuelven la energía almacenada previamente, suministrándola hacia el generador. Estos flujos de energía del generador a la carga y de la carga al generador, dan lugar a una potencia que cambia de signo en cada semiciclo de la onda de potencia y cuyo valor medio es nulo; pues, al final tanta energía se consume como se devuelve después. Esta es la potencia reactiva instantánea

31 El comportamiento de las bobinas y de los condensadores con respecto a la potencia reactiva es diferente. Durante el medio ciclo en el que una bobina consume energía del generador y la almacena como campo magnético es cuando un condensador está enviando hacia el generador la energía eléctrica que ha almacenado previamente. Y viceversa, en el otro medio ciclo la bobina envía energía hacia el generador y el condensador consume energía que le suministra el generador y la almacena en forma de campo eléctrico. a potencia activa P es el valor medio de la potencia instantánea p (y, también, de la potencia activa instantánea). Es positiva si la potencia va desde el generador (que la produce) hacia la carga (que la consume) y negativa en caso contrario. Se mide en W, kw o MW. a expresión general que permite calcularla es: P cos ϕ En el caso de elementos pasivos, la potencia activa es debida sólo a las resistencias y también se puede calcular así: P a potencia reactiva es el valor máximo de la potencia reactiva instantánea y sólo existe si hay bobinas y/o condensadores. De forma arbitraria a se le da signo positivo cuando la carga es inductiva y negativo cuando es capacitiva. Se mide en var, kvar o Mvar. a expresión general que permite calcularla es: R sen ϕ En el caso de elementos pasivos, la potencia reactiva también se puede calcular así: X

32 a potencia aparente S se define de forma matemática así: Se mide en A, ka o MA. S P + a potencia compleja S se define de forma matemática como un número complejo cuya parte real es P y cuya parte imaginaria es : S P + j S ϕ S * Se mide en A, ka o MA. Su módulo es la potencia aparente. En el caso de elementos pasivos, la potencia compleja también se puede calcular así: S En la expresión anterior aparece el valor eficaz de la corriente i (es decir, el módulo del fasor de corriente ) elevado al cuadrado. No se trata, pues, del cuadrado de. Al igual que la impedancia Z, aunque S es un número complejo, no representa a una función sinusoidal (a diferencia de o de ). Es simplemente una magnitud definida de forma matemática que resulta cómoda para manejar conjuntamente las potencias activa y reactiva. Por consiguiente, tanto Z como S son complejos que no se corresponden con ningún fasor temporal. El factor de potencia (fdp) se define mediante este cociente: Z fdp P P cos S P + ( ϕ) El fdp es numéricamente igual al coseno del ángulo de desfase ϕ (ver la diapositiva: os tres significados del ángulo ϕ ). as potencias activa, reactiva, aparente, compleja y el factor de potencia, así como, las expresiones que los relacionan quedan reflejados de forma visual y compacta en el triángulo de potencias

CORRIENTE ALTERNA MONO Y TRIFÁSICA

CORRIENTE ALTERNA MONO Y TRIFÁSICA UNERSDAD DE ANTABRA DEARTAMENTO DE NGENERÍA EÉTRA Y ENERGÉTA OEÓN: EETROTENA ARA NGENEROS NO ESEASTAS ORRENTE ATERNA MONO Y TRFÁSA Miguel Angel Rodríguez ozueta Doctor ngeniero ndustrial OBSERAONES SOBRE

Más detalles

CORRIENTE ALTERNA CORRIENTE ALTERNA

CORRIENTE ALTERNA CORRIENTE ALTERNA CORRIENTE ALTERNA La corriente alterna es generada por un alternador, las fuerzas mecánicas hacen girar una rueda polar y se obtienen tensiones inducidas en los conductores fijos del estator que la envían

Más detalles

Máquinas Eléctricas I - G862

Máquinas Eléctricas I - G862 Máquinas Eléctricas I - G862 Documentación de la prác2ca de laboratorio «Máquinas Síncronas» Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia:

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A Dos pilas iguales de fuerza electromotriz 1,5 V y resistencia interna 0,1 Ω. a) Si se asocian en serie y se conectan a una resistencia exterior, la intensidad que circula es de 3 A, cuál es el

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA - PROBLEMAS -

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA - PROBLEMAS - SITEMAS DE CORRIENTE TRIFÁSICA 9. Tres bobinas de resistencia 10 Ω y coeficiente de autoinducción 0,01 H cada una se conectan en estrella a una línea trifásica de 80 V, 50 Hz. Calcular: a) Tensión de fase.

Más detalles

TRANSFORMADORES TRIFÁSICOS CON CARGAS DESEQUILIBRADAS

TRANSFORMADORES TRIFÁSICOS CON CARGAS DESEQUILIBRADAS DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA TRANSFORMADORES TRIFÁSICOS CON CARGAS DESEQUILIBRADAS Miguel Angel Rodríguez Pozueta Doctor Ingeniero Industrial 2016, Miguel Angel Rodríguez Pozueta Universidad

Más detalles

Máquinas Eléctricas II

Máquinas Eléctricas II Máquinas Eléctricas II Tema 3. Máquinas síncronas. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve Commons

Más detalles

TEMA VENTAJAS DEL USO DE SISTEMAS TRIFÁSICOS. Se usan 3 ó 4 hilos (3 fases + neutro). 400 Posibilidad de 2 tensiones.

TEMA VENTAJAS DEL USO DE SISTEMAS TRIFÁSICOS. Se usan 3 ó 4 hilos (3 fases + neutro). 400 Posibilidad de 2 tensiones. TEMA 10 SSTEMAS TRFÁSCOS. 10.1.- VENTAJAS DE USO DE SSTEMAS TRFÁSCOS. Se usan ó 4 hilos ( fases + neutro). 400 Posibilidad de 2 tensiones. 20 Tensiones entre fases es veces mayor que entre fase y neutro.

Más detalles

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo PROBLEMAS DE CIRCUITOS EN CORRIENTE ALTERNA 25. Una fuente de voltaje senoidal, de amplitud Vm = 200 V y frecuencia f=500 Hz toma el valor v(t)=100 V para t=0. Determinar la dependencia del voltaje en

Más detalles

Circuitos Trifásicos con receptores equilibrados

Circuitos Trifásicos con receptores equilibrados FACULTAD DE INGENIERIA U.N.M.D.P. DEPARTAMENTO DE INGENIERIA ELECTRICA. ASIGNATURA: Electrotecnia 2 (Plan 2004) CARRERA: Ingeniería Eléctrica y Electromecánica Circuitos Trifásicos con receptores equilibrados

Más detalles

Conversión de Corriente alterna a Corriente continua es sencilla y barata.

Conversión de Corriente alterna a Corriente continua es sencilla y barata. TEMA 7 CORRIENTE ALTERNA. En los inicios del desarrollo de los sistemas eléctricos, la electricidad se producía en forma de corriente continua mediante las dinamos, este tipo de generador es más complejo

Más detalles

Circuitos Trifásicos con receptores equilibrados

Circuitos Trifásicos con receptores equilibrados FACULTAD DE INGENIERIA U.N.M.D.P. DEPARTAMENTO DE INGENIERIA ELECTRICA. ASIGNATURA: Electrotecnia 2 (Plan 2004) CARRERA: Ingeniería Eléctrica y Electromecánica Circuitos Trifásicos con receptores equilibrados

Más detalles

Tema 2. Sistemas Trifásicos. Ingeniería Eléctrica y Electrónica

Tema 2. Sistemas Trifásicos. Ingeniería Eléctrica y Electrónica 1 Tema 2. Sistemas Trifásicos 2 Sistemas trifásicos. Historia. Ventajas. Índice Conexión en estrella y en triángulo Sistemas trifásicos equilibrados Potencia en sistemas trifásicos equilibrados 3 Sistema

Más detalles

SISTEMAS TRIFASICOS.

SISTEMAS TRIFASICOS. SISTEMAS TRIFASICOS. Indice: 1. SISTEMAS TRIFASICOS...2 1.1. Producción de un sistema trifásico de tensiones equilibradas...2 1.2. Secuencia de fases...3 2. CONEXIONES DE FUENTES EN ESTRELLA Y EN TRIÁNGULO...3

Más detalles

Electrotecnia General (Prof. Dr. José Andrés Sancho Llerandi) Tema 14 CORRIENTES ALTERNAS

Electrotecnia General (Prof. Dr. José Andrés Sancho Llerandi) Tema 14 CORRIENTES ALTERNAS TEMA 14 CORRIENTES ALTERNAS 14.1. VALORES ASOCIADOS A LAS ONDAS SENOIDALES. Sea un cuadro rectangular de lados h y l, formado por N espiras devanadas en serie, que gira a velocidad angular constante ω

Más detalles

LA CORRIENTE ALTERNA

LA CORRIENTE ALTERNA LA CORRIENTE ALTERNA Índice INTRODUCCIÓN VENTAJAS DE LA C.A. PRODUCCIÓN DE UNA C.A. VALORES CARACTERÍSTICOS DE C.A. REPRESENTACIÓN DE UNA MAGNITUD ALTERNA SENOIDAL DESFASE ENTRE MAGNITUDES ALTERNAS RECEPTORES

Más detalles

Objetivos. Tema Corriente alterna sinusoidal (c.a.s.) Introducción. Generación de cas. Características de una cas. cos t ϕ i.

Objetivos. Tema Corriente alterna sinusoidal (c.a.s.) Introducción. Generación de cas. Características de una cas. cos t ϕ i. ema 0 orriente alterna sinusoidal Objetivos onocer las característi de la corriente alterna, y su efecto sobre resistencias, condensadores y bobinas. nterpretar el desfase entre diferencia de potencial

Más detalles

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003.

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. PROBLEMA Nº 1: Por un circuito serie formado por un elemento resistivo de resistencia

Más detalles

Facultad de Ingeniería (U.N.M.D.P.) - Dpto. de Ingeniería Eléctrica - Area Electrotecnia Electrotecnia General

Facultad de Ingeniería (U.N.M.D.P.) - Dpto. de Ingeniería Eléctrica - Area Electrotecnia Electrotecnia General GUÍA DE PROBLEMAS Nº 5 Circuitos trifásicos equilibrados PROBLEMA Nº 1: Se dispone de un sistema trifásico equilibrado, de distribución tetrafilar, a la que se conectan tres cargas iguales en la configuración

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A En la asociación de condensadores de la figura, calcular: a) Capacidad equivalente del circuito. b) Carga que adquiere cada condensador al aplicar una tensión de 13 V entre los puntos entre los

Más detalles

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003.

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. PROBLEMA Nº 1: Por un circuito serie formado por un elemento resistivo de resistencia

Más detalles

ALTERNADORES SÍNCRONOS AISLADOS

ALTERNADORES SÍNCRONOS AISLADOS DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA DOCUMENTACIÓN DE LA PRÁCTICA DE LABORATORIO: ALTERNADORES SÍNCRONOS AISLADOS Miguel Angel Rodríguez Pozueta 2015, Miguel Angel Rodríguez Pozueta Universidad

Más detalles

SECUENCIA DE FASES IÑIGO MARTÍN ATXUTEGUI. Siendo: α = el desfase inicial ωt = el ángulo girado en un tiempo t

SECUENCIA DE FASES IÑIGO MARTÍN ATXUTEGUI. Siendo: α = el desfase inicial ωt = el ángulo girado en un tiempo t Flujo: φ = Β S = Β S cosθ = Β S cos (α + ωt) Siendo: α = el desfase inicial ωt = el ángulo girado en un tiempo t e = - N (dφ/dt) = N Β S ω sen (α + ωt) Si suponemos α = 0 e 1 = - N (dφ/dt) = N Β S ω sen

Más detalles

Andrés García Rodríguez. I.E.S. Enrique Nieto. Electrotecnia 1

Andrés García Rodríguez. I.E.S. Enrique Nieto. Electrotecnia 1 Andrés García Rodríguez. I.E.S. Enrique Nieto. Electrotecnia 1 Andrés García Rodríguez. I.E.S. Enrique Nieto. Electrotecnia 2 a) La tensión en vacío coincide con la fem de la pila. Al conectarle una carga

Más detalles

Potencia Eléctrica en C.A.

Potencia Eléctrica en C.A. Potencia Eléctrica en C.A. Potencia Eléctrica en Circuitos Puramente Resistivos (o en Circuitos con C.C.) Si se aplica una diferencia de potencial a un circuito, éste será recorrido por una determinada

Más detalles

Circuitos. Sistemas Trifásicos Mayo 2003

Circuitos. Sistemas Trifásicos Mayo 2003 Mayo 00 PROBLEMA 8. La carga trifásica de la figura está constituida por tres elementos simples ideales cuyas impedancias tienen el mismo I C I módulo, 0 Ω, y se conecta a una red trifásica equilibrada

Más detalles

PRESENTACIÓN Y OBJETIVOS...17 AUTORES...19

PRESENTACIÓN Y OBJETIVOS...17 AUTORES...19 ÍNDICE PRESENTACIÓN Y OBJETIVOS...17 AUTORES...19 CAPÍTULO 1. ELECTROSTÁTICA...21 1.1 ELECTRICIDAD Y ELECTROTECNIA...22 1.2 ELECTRIZACIÓN DE UN CUERPO. CARGA ELÉCTRICA...23 1.3 ESTRUCTURA ATÓMICA DE LA

Más detalles

Máquinas Eléctricas II

Máquinas Eléctricas II Máquinas Eléctricas II Tema 4. Máquinas asíncronas o de inducción. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia:

Más detalles

Módulo 3 INTRODUCCIÓN AL ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA

Módulo 3 INTRODUCCIÓN AL ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA EEST 8 Módulo 3 INTRODUCCIÓN AL ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA Ing. Rodríguez, Diego EEST 8 INTRODUCCIO N En este módulo vamos a analizar la respuesta de circuitos con fuentes sinusoidales.

Más detalles

BLOQUE III CIRCUITOS ELÉCTRICOS EN CA

BLOQUE III CIRCUITOS ELÉCTRICOS EN CA 1.- Una tensión viene dada por la expresión es de: v(t)=240 sen( t+30). Si se aplica la tensión v(t) a un receptor puramente inductivo cuya impedancia es de j2 2 Ω, hallar el valor de la intensidad instantánea

Más detalles

PRÁCTICA 3 DE FÍSICA GENERAL II

PRÁCTICA 3 DE FÍSICA GENERAL II PRÁCTCA 3 DE FÍSCA GENERAL CURSO 2016-17 Departamento de Física Aplicada e ngeniería de Materiales GRADO EN NGENERÍA DE ORGANZACÓN Coordinador: Rafael Muñoz Bueno rafael.munoz@upm.es Práctica 3 Corriente

Más detalles

Corriente alterna monofásica y trifásica TEMA 1. CORRIENTE ALTERNA. GENERALIDADES Valores asociados a una onda alterna senoidal...

Corriente alterna monofásica y trifásica TEMA 1. CORRIENTE ALTERNA. GENERALIDADES Valores asociados a una onda alterna senoidal... TEMA 1. CORRIENTE ALTERNA. GENERALIDADES... 9 1.1 Introducción... 9 1.2 Justificación del empleo de la corriente alterna... 9 1.3 Transporte de energía eléctrica. Red eléctrica... 13 1.3.1 La red eléctrica...

Más detalles

CORRIENTE ALTERNA TRIFÁSICA

CORRIENTE ALTERNA TRIFÁSICA CORRENTE ATERNA TRFÁSCA Es un conjunto de tres corrientes alternas de iguales características (amplitud y recuencia) y desasadas entre sí un tercio de período o 10º ( π/ radianes). ATERNADOR TRFÁSCO Es

Más detalles

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA OBJETIVOS: Determinar la potencia activa, aparente y el factor de potencia en circuitos monofásicos. Observe las normas de seguridad al realizar

Más detalles

CIDEAD. 2º Bachillerato. Electrotecnia Tema 12.- Sistemas trifásicos.

CIDEAD. 2º Bachillerato. Electrotecnia Tema 12.- Sistemas trifásicos. Desarrollo del tema.1. Concepto de sistemas polifásicos. 2. Conexión de las fuentes en estrella y en triángulo. 3. La conexión de los receptores. 4. Conexión en estrella y triángulo en receptores. 5. Resolución

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (III) TERCERA PARTE: corriente

Más detalles

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / 2016 Materia: ELECTROTECNIA 1. COMENTARIOS Y/O ACOTACIONES RESPECTO AL TEMARIO EN RELACIÓN CON LA PAU: Indicaciones

Más detalles

2. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces y la potencia.

2. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces y la potencia. CIDEAD. º BACHILLERATO. ELECTROTECNIA. Desarrollo del tema.. Concepto de elementos. Excitación sinusoidal.. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces

Más detalles

ALTERNA (III) TRIFÁSICA: Problemas de aplicación

ALTERNA (III) TRIFÁSICA: Problemas de aplicación ALTERNA (III) TRIFÁSICA: Problemas de aplicación 1º.- Determinar la tensión compuesta que corresponde a un sistema trifásico que posee una tensión simple de 127 V. Solución: 220 V 2º.- Si la tensión de

Más detalles

CIDEAD. 2º BACHILLERATO. ELECTROTECNIA. Tema 11.- La potencia en los circuitos de corriente alterna

CIDEAD. 2º BACHILLERATO. ELECTROTECNIA. Tema 11.- La potencia en los circuitos de corriente alterna Desarrollo del tema.- 1. Los dipolos. 2. Las relaciones de potencia en los dipolos. 3. Concepto de potencia aparente y reactiva. 4. La notación compleja de la potencia. 5. El teorema de Boucherot. 6. El

Más detalles

24 V. i(t) 100 A. 1 t (sg)

24 V. i(t) 100 A. 1 t (sg) oletín de preguntas COTS de Exámenes de Electrotecnia oletín de preguntas COTS de Exámenes de Electrotecnia TEM 1 1.- Un condensador tiene 100 V entre sus terminales, Que tensión debería tener para que

Más detalles

Circuitos trifásicos equilibrados

Circuitos trifásicos equilibrados GUIA DE PROBLEMAS Nº 5 Circuitos trifásicos equilibrados PROBLEMA Nº 1: Un generador trifásico suministra un total de 1800 W, con una corriente de línea de 10 A, a una carga trifásica equilibrada conectada

Más detalles

COLECCIÓN DE PROBLEMAS IV REPASO

COLECCIÓN DE PROBLEMAS IV REPASO COLECCIÓN DE PROBLEMAS I REPASO 1. Una tensión alterna de 100Hz tiene un valor eficaz de 10. Deducir la expresión de la corriente instantánea que circularía por una bobina de L=3H si se le aplica dicha

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A Hallar el valor que ha de tener la fuerza electromotriz, ε del generador intercalado en el circuito de la figura, para que el potencial del punto A sea 9 voltios. Para conseguir crear una inducción

Más detalles

SISTEMAS TRIFASICOS RESTA DE VECTORES: VAB VCD -1-

SISTEMAS TRIFASICOS RESTA DE VECTORES: VAB VCD -1- CONVENCIONES GENERALES Para la representación vectorial y fasorial utilizaremos un par de ejes cartesianos (eje real a 0 y eje imaginario a 90 ) como se muestra en la Figura 1.1. y en la Figura 1.2: DESIGNACIÓN

Más detalles

PRÁCTICA 3 DE FÍSICA GENERAL II

PRÁCTICA 3 DE FÍSICA GENERAL II PRÁCTCA 3 DE FÍSCA GENERAL CURSO 2017-18 Departamento de Física Aplicada e ngeniería de Materiales Juan Antonio Porro González Francisco Cordovilla Baró Rafael Muñoz Bueno Beatriz Santamaría Práctica 3

Más detalles

ASIGNATURA: ANÁLISIS DE CIRCUITOS (2º Curso Grado Ingeniero Tecnologías Industriales) Test de conocimientos 2013/2014

ASIGNATURA: ANÁLISIS DE CIRCUITOS (2º Curso Grado Ingeniero Tecnologías Industriales) Test de conocimientos 2013/2014 ASIGNATURA: ANÁLISIS DE CIRCUITOS (2º Curso Grado Ingeniero Tecnologías Industriales) Test de conocimientos 2013/2014 SUGERENCIA: Intenta contestar a cada cuestión y analizar el porqué de cada respuesta

Más detalles

Trabajo y potencia. Trabajo mecánico: Energía consumida al desplazar un cuerpo. Se mide en julios (J).

Trabajo y potencia. Trabajo mecánico: Energía consumida al desplazar un cuerpo. Se mide en julios (J). Tema 21.6 Trabajo y potencia Trabajo mecánico: Energía consumida al desplazar un cuerpo. Se mide en julios (J). Trabajo = Fuerza espacio 1 J (1 julio) = 1 N m (newton metro) 1 cal (caloría) = 4,187 J 1

Más detalles

C.A. : Circuito con Resistencia R

C.A. : Circuito con Resistencia R Teoría sobre c.a obtenida de la página web - 1 - C.A. : Circuito con Resistencia R Intensidad Instantánea i(t) e Intensidad Eficaz I v(t) = V sen t) V I = ----- R V = R I i(t) = I sen t) V R = ----- I

Más detalles

A. 4R/5 D. 19R/16 B. 5R/19 E. 5R/4 C. 16R/19 F. Otra (Especifique detrás)

A. 4R/5 D. 19R/16 B. 5R/19 E. 5R/4 C. 16R/19 F. Otra (Especifique detrás) NOMBRE: TEST 1ª PREGUNTA RESPUESTA El circuito de la figura está formado por 10 varillas conductoras de igual material y sección, con resistencia R. La resistencia equivalente entre los terminales A y

Más detalles

18. Potencia y Energía en circuitos trifásicos.

18. Potencia y Energía en circuitos trifásicos. 18. Potencia y Energía en circuitos trifásicos. 18.1. Potencia en los circuitos trifásicos equilibrados. 1) eceptor en estrella: La potencia consumida por un receptor trifásico es la suma de las potencias

Más detalles

Máquinas Eléctricas II

Máquinas Eléctricas II Máquinas Eléctricas II Tema 2. Máquinas de corriente con4nua. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve

Más detalles

Potencia en corriente alterna

Potencia en corriente alterna Potencia en corriente alterna En una corriente eléctrica la potencia se define como el producto entre la tensión y la intensidad de corriente: P(t) = V(t) I(t) En corriente alterna, al ser valores que

Más detalles

Máquinas Eléctricas I - G862

Máquinas Eléctricas I - G862 Máquinas Eléctricas I - G862 Documentación de la prác2ca de laboratorio «Máquinas Asíncronas o de Inducción» Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se

Más detalles

Colección de problemas de Monofásica ( Mayo/2006)

Colección de problemas de Monofásica ( Mayo/2006) olección de problemas de Monofásica ( Mayo/006) Problema M- En el circuito de la figura determinar la lectura de los tres vatímetros que hay conectados. omprobar los resultados. D 3 +j +j 0 V -j B Problema

Más detalles

1. Las funciones periódicas. Ondas sinusoidales. 3. La representación vectorial de una onda.

1. Las funciones periódicas. Ondas sinusoidales. 3. La representación vectorial de una onda. DESARROLLO DEL AMA: 1. Las funciones periódicas. Ondas sinusoidales.. Características de una onda. 3. La representación vectorial de una onda. 4. Ondas sinusoidales simultáneas con la misma frecuencia:

Más detalles

Clase 7 Inductancia o Reactancia Inductiva

Clase 7 Inductancia o Reactancia Inductiva Clase 7 Inductancia o Reactancia Inductiva 1 La Bobina - Autoinducción Autoinducción es un fenómeno electromagnético que se presentan en determinados sistemas físicos como por ejemplo cicuitos eléctricos

Más detalles

Problema Nº 5: Encuentre un circuito equivalente al de la figura con una sola resistencia.

Problema Nº 5: Encuentre un circuito equivalente al de la figura con una sola resistencia. GUIA DE PROBLEMAS Nº 1 CIRCUITOS DE CORRIENTE CONTINUA. Problema Nº 1: En el circuito de la figura calcule: b) La corriente total. c) Las tensiones y corrientes en cada resistencia. Problema Nº 2: En el

Más detalles

Unidad Didáctica 2. Corriente Alterna Monofásica. Instalaciones y Servicios Parte II. Corriente Alterna Monofásica

Unidad Didáctica 2. Corriente Alterna Monofásica. Instalaciones y Servicios Parte II. Corriente Alterna Monofásica Instalaciones y Servicios Parte II Corriente Alterna Monofásica Unidad Didáctica 2 Corriente Alterna Monofásica Instalaciones y Servicios Parte II- UD2 CONTENIDO DE LA UNIDAD Introducción a la corriente

Más detalles

En la figura se muestra un generador alterno sinusoidal conectado a una resistencia.

En la figura se muestra un generador alterno sinusoidal conectado a una resistencia. INACAP ELECTRICIDAD 2 GUIA DE APRENDIZAJE UNIDAD-2 CIRCUITOS BASICOS EN CORRIENTE ALTERNA SINUSOIDAL En esta unidad se estudiará el comportamiento de circuitos puros ( resistivos, inductivos y capacitivos)

Más detalles

Módulo 2 - Electrotecnia ELEMENTOS DE CIRCUITO

Módulo 2 - Electrotecnia ELEMENTOS DE CIRCUITO 2016 Módulo 2 - Electrotecnia ELEMENTOS DE CIRCUITO Ing. Rodríguez, Diego 01/01/2016 ELEMENTOS ACTIVOS IDEALES Módulo 2 - Electrotecnia 2016 Los elementos activos se denominan también fuentes o generadores

Más detalles

RÉGIMEN PERMANENTE DE CORRIENTE ALTERNA SINUSOIDAL

RÉGIMEN PERMANENTE DE CORRIENTE ALTERNA SINUSOIDAL CPÍTULO 3 RÉGIMEN PERMNENTE DE CORRIENTE LTERN SINUSOIDL PR1. TEÓRICO-PRÁCTICO FSORES... 2 PR2. TEÓRICO-PRÁCTICO FSORES... 2 PR3. MÉTODOS SISTEMÁTICOS... 3 PR4. POTENCIS... 3 PR5. POTENCIS... 4 PR6. POTENCIS...

Más detalles

EXAMENES ELECTROTECNIA TEORIA

EXAMENES ELECTROTECNIA TEORIA EXAMENES En este archivo presento el tipo de exámenes propuesto en la asignatura de Electrotecnia en la fecha indicada, con las puntuaciones indicadas sobre un total de diez puntos. Según la guía académica

Más detalles

Corriente Alterna: Potencia en corriente alterna

Corriente Alterna: Potencia en corriente alterna Corriente Alterna: Potencia en corriente alterna Si le preguntaran a Emilio que lámpara lucirá más, una de 100 W o una de 60 W, la respuesta sería inmediata: la de 100, que tiene mas potencia. Luego, está

Más detalles

MEDIDA DE POTENCIA EN TRIFÁSICA MÉTODO DE LOS DOS VATÍMETROS

MEDIDA DE POTENCIA EN TRIFÁSICA MÉTODO DE LOS DOS VATÍMETROS Práctica Nº 6 MEDID DE POTENI EN TRIFÁSI MÉTODO DE OS DOS VTÍMETROS 1. Objetivos a) Medida de la potencia activa, reactiva y el factor de potencia, en una red trifásica a tres hilos (sin neutro), utilizando

Más detalles

SISTEMA TRIFASICO. Mg. Amancio R. Rojas Flores

SISTEMA TRIFASICO. Mg. Amancio R. Rojas Flores SISTEMA TRIFASICO Mg. Amancio R. Rojas Flores GENERACION DE VOLTAJE TRIFASICO (b) Forma de onda de voltaje (a) Generador Básico de CA (c) Fasor Un generador monofásico básico 2 (b) Forma de onda de voltaje

Más detalles

TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 2 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS

TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 2 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 2 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS 1.- TRANSFORMADOR IDEAL Y TRANSFORMADOR REAL El funcionamiento de un transformador se basa en la Ley de Faraday

Más detalles

En un circuito de CA los generadores suministran energía que es absorbida por los elementos pasivos (R, L y C). Esta energía absorbida puede:

En un circuito de CA los generadores suministran energía que es absorbida por los elementos pasivos (R, L y C). Esta energía absorbida puede: www.clasesalacarta.com 1 Elementos Lineales Tema 7.- CA Elementos Lineales Cuando se aplica una tensión alterna con forma de onda senoidal a los bornes de un receptor eléctrico, circula por él una corriente

Más detalles

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424 21/11/2013 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA AGROINDUSTRIAL MODULO SEMANA 8 CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico

Más detalles

TRANSFORMADORES TRIFÁSICOS CON CARGAS MONOFÁSICAS

TRANSFORMADORES TRIFÁSICOS CON CARGAS MONOFÁSICAS UNVESDAD DE CANTABA DEPATAMENTO DE NGENEÍA ELÉCTCA Y ENEGÉTCA TANSFOMADOES TFÁSCOS CON CAGAS MONOFÁSCAS Miguel Angel odríguez Pozueta Doctor ngeniero ndustrial 216, Miguel Angel odríguez Pozueta Universidad

Más detalles

Sistemas Lineales 1 - Práctico 10

Sistemas Lineales 1 - Práctico 10 Sistemas Lineales 1 - Práctico 10 Sistemas Polifásicos 1 er semestre 2018 1.-En los circuitos de la figura 1, las fuentes forman un sistema triásico y perfecto. Figura 1: Carga conectada en estrella y

Más detalles

GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA

GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA 1. Un circuito serie de corriente alterna consta de una resistencia R de 200 una autoinducción de 0,3 H y un condensador de 10 F. Si el generador

Más detalles

1º- CORRIENTE ALTERNA

1º- CORRIENTE ALTERNA º- CORRIENTE ALTERNA Se denomina corriente alterna a toda corriente eléctrica que cambia de polaridad periódicamente, pero en la práctica toma este nombre la corriente alterna de tipo senoidal: e Voltaje

Más detalles

ELECTROTECNIA 2º B.S. PROF. DIEGO C. GIMÉNEZ INST. SAN PABLO - LUJAN -

ELECTROTECNIA 2º B.S. PROF. DIEGO C. GIMÉNEZ INST. SAN PABLO - LUJAN - ELECTROTECNIA º B.S. PROF. DIEGO C. GIMÉNE PAG. MODULO Nº 3 CIRCUITOS R-L EN CORRIENTE ALTERNA Conexión en serie Sean dos bobinas con las resistencias R y R y los coeficiente de autoinducción L y L conectadas

Más detalles

Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA

Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA 2016 Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA Concepto de corriente alterna Generación de c.a. ondas sinusoidales valores característicos magnitudes fasoriales Ing. Rodríguez, Diego 01/01/2016 INTRODUCCIO

Más detalles

CONCEPTOS BÁSICOS GENERADORES

CONCEPTOS BÁSICOS GENERADORES CONCEPTOS BÁSICOS 1. Los dos cables de alimentación de un motor tienen una longitud de 3 m y están separados entre sí por 5 mm. Calcula la fuerza que se ejercen entre sí cuando por los cables circula una

Más detalles

CIRCUITOS TRIFÁSICOS

CIRCUITOS TRIFÁSICOS CRCTOS TRFÁSCOS CRCTOS TRFÁSCOS a generación, transporte, distribución y utilización de energía de cierta potencia se realiza por sistemas polifásicos, en especial el de 3 fases o trifásico. n sistema

Más detalles

TENSIONES Y CORRIENTES SINUSOIDALES: REPRESENTACIÓN GRÁFICA

TENSIONES Y CORRIENTES SINUSOIDALES: REPRESENTACIÓN GRÁFICA TENSIONES Y CORRIENTES SINUSOIDALES: REPRESENTACIÓN GRÁFICA Como ya se dicho, manejaremos, en lo sucesivo, expresiones del tipo: v = V o sen (wt + ϕ) (12.1) i = I o sen (wt + ϕ) (12.2) siendo, v = v(t):valor

Más detalles

Calidad en el Servicio Eléctrico

Calidad en el Servicio Eléctrico magnitud de -Cargas y no David Llanos Rodríguez dllanosr@eia.udg.es Girona, Febrero 18 de 2003 magnitud de -Cargas y no Introducción: Uso racional de la energía eléctrica quiere decir obtener el máximo

Más detalles

Electrotecnia General Tema 15 TEMA 15 CORRIENTES ALTERNAS II 15.1 LEYES DE KIRCHHOFF EN REGÍMENES SENOIDALES. (15.1)

Electrotecnia General Tema 15 TEMA 15 CORRIENTES ALTERNAS II 15.1 LEYES DE KIRCHHOFF EN REGÍMENES SENOIDALES. (15.1) TEMA 5 COIENTES ALTENAS II 5. LEYES DE KICHHOFF EN EGÍMENES SENOIDALES. El primer lema de Kirchhoff, o ley de los nudos 2, establece, que la suma de las corrientes que confluyen en un nudo es nula 3. Supongamos

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PUEBAS DE ACCESO A A UNVESDAD.O.G.S.E. CUSO 008-009 CONVOCATOA DE JUNO EECTOTECNA E AUMNO EEGÁ UNO DE OS DOS MODEOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico y gráfico

Más detalles

1. Las funciones periódicas. Ondas sinusoidales. 3. La representación vectorial de una onda.

1. Las funciones periódicas. Ondas sinusoidales. 3. La representación vectorial de una onda. CIDEAD. º BACHILLERAO. ELECROECNIA. DESARROLLO DEL AMA: 1. Las funciones periódicas. Ondas sinusoidales.. Características de una onda. 3. La representación vectorial de una onda. 4. Ondas sinusoidales

Más detalles

Es decir, cuando se aplica una tensión alterna entre sus bornes, el desfase obtenido no es el teórico.

Es decir, cuando se aplica una tensión alterna entre sus bornes, el desfase obtenido no es el teórico. En la práctica no existen estos receptores lineales puros: esistencia real: componente inductivo Bobina real: posee resistencia Condensador real: corriente de fuga a través del dieléctrico Es decir, cuando

Más detalles

CORRIENTE ALTERNA (RLC EN SERIE)

CORRIENTE ALTERNA (RLC EN SERIE) 3 ORRENTE ATERNA (R EN SERE) OBJETOS Para un circuito de corriente alterna R en serie: Medir la corriente eficaz Medir voltajes eficaces en el condensador y en la bobina Medir la impedancia total Medir

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBS DE CCESO L UNIERSIDD L.O.G.S.E CURSO 2004-2005 - CONOCTORI: ELECTROTECNI EL LUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico

Más detalles

CORRIENTE ALTERNA ÍNDICE

CORRIENTE ALTERNA ÍNDICE CORRIENTE ALTERNA ÍNDICE 1. Introducción 2. Generadores de corriente alterna 3. Circuito de CA con una resistencia 4. Circuito de CA con un inductor 5. Circuito de CA con un condensador 6. Valores eficaces

Más detalles

Tecnología eléctrica. Potencia en régimen permanente senoidal.

Tecnología eléctrica. Potencia en régimen permanente senoidal. 1 Tecnología eléctrica. Potencia en régimen permanente senoidal. 1. Una industria consume 200 MWh al mes. Si su demanda de potencia máxima es de 1600 kw, determinar su factura de electricidad mensual,

Más detalles

Máquinas Eléctricas I - G862

Máquinas Eléctricas I - G862 Máquinas Eléctricas I - G862 Tema 4. Máquinas Síncronas. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN En el circuito de la figura, se sabe que con k abierto, el amperímetro indica una lectura de 5 amperios. Hallar: a) Tensión U B b) Potencia disipada en la resistencia R. C + 20V = = 1Ω 10V + K 6Ω

Más detalles

INSTALACIONES ELECTRICAS ELECTROTECNIA CORRIENTE CONTINUA Y ALTERNA

INSTALACIONES ELECTRICAS ELECTROTECNIA CORRIENTE CONTINUA Y ALTERNA INSTALACIONES ELECTRICAS ELECTROTECNIA CORRIENTE CONTINUA Y ALTERNA 1) BIBLIOGRAFIA 2) LEY DE OHM 3) INTRODUCCION CORRIENTE CONTINUA 4) CIRCUITOS de CORRIENTE CONTINUA 5) INTRODUCCION CORRIENTE ALTERNA

Más detalles

Trifásica: Apuntes de Electrotecnia para Grados de Ingeniería. Autor: Ovidio Rabaza Castillo

Trifásica: Apuntes de Electrotecnia para Grados de Ingeniería. Autor: Ovidio Rabaza Castillo rifásica: puntes de Electrotecnia para Grados de ngeniería utor: Ovidio abaza astillo DE ema: ircuitos trifásicos - istemas polifásicos - Generación de sistemas trifásicos ema : istemas equilibrados -

Más detalles

ELECTROTECNIA Y MÁQUINAS ELÉCTRICAS

ELECTROTECNIA Y MÁQUINAS ELÉCTRICAS ASIGNATURA: CURSO: SEMESTRE: 3 5 NOMBRE Y APELLIDO: ALUMNO DOCENTES FOTO Prof. Tit. J.T.P. J.T.P. Aux. Docente Ayte Ad Honorem TRABAJO PRÁCTICO DE GABINETE N 2 FECHA DE ENTREGA / / Legajo N : ESPECIALIDAD:

Más detalles

BOLETÍN DE PROBLEMAS SISTEMAS MONOFÁSICOS

BOLETÍN DE PROBLEMAS SISTEMAS MONOFÁSICOS Dpto. de Ingeniería Eléctrica E.T.S. de Ingenieros Industriales Universidad de Valladolid TECNOLOGÍA ELÉCTRICA Ingeniero Químico Curso 2004/2005 BOLETÍN DE PROBLEMAS SISTEMAS MONOFÁSICOS Problema 1 Calcular

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 00-003 - CONVOCATORIA: JUNIO ELECTROTECNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A Una batería con una tensión a circuito abierto E=100 V tiene una resistencia interna Rin=25 Ω y se conecta a una resistencia R=590 Ω junto a un voltímetro y un amperímetro como indica la figura.

Más detalles

BOLETÍN DE PROBLEMAS SISTEMAS TRIFÁSICOS EQUILIBRADOS

BOLETÍN DE PROBLEMAS SISTEMAS TRIFÁSICOS EQUILIBRADOS TECNOLOGÍA ELÉCTRICA Ingeniero Químico Curso 2004/2005 BOLETÍN DE PROBLEMAS SISTEMAS TRIFÁSICOS EQUILIBRADOS Problema 1. En el circuito de la figura, calcular: a) Las intensidades de línea. b) Las tensiones

Más detalles

Boletín Tema 6. FFI. Ingeniería Informática (Software). Grupo 2. curso

Boletín Tema 6. FFI. Ingeniería Informática (Software). Grupo 2. curso oletín Tema 6 Generador de corriente alterna 1. Un generador sencillo de corriente alterna consiste en una bobina girando en un campo magnético uniforme. La variación temporal del flujo que atraviesa a

Más detalles

José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo PUNTOS OBJETO DE ESTUDIO Generalidades sobre sistemas trifásicos Conceptos básicos Magnitudes

Más detalles