Números de Bernoulli



Documentos relacionados
Números de Bernoulli: Algunas aplicaciones a la. David J. Fernández Bretón. Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional,

UNIDAD 2: ANILLOS. ISFD N o 127 Ciudad del Acuerdo. MSL (2010) 3 o Profesorado en Matemática-Álgebra 1

Fundamentos algebraicos

Ejercicios Resueltos del Tema 4

POLINOMIOS. División. Regla de Ruffini.

1. Suma y producto de polinomios. Propiedades

La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx

VII. Estructuras Algebraicas

UNIDAD 3: ANILLOS DE POLINOMIOS

Teorema de estructura de los módulos finitamente generados sobre un D.I.P.. Aplicaciones

Ecuaciones diferenciales de orden superior

Funciones polinomiales de grados 3 y 4

Tema 3. Polinomios y fracciones algebraicas

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Dominios de factorización única

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace

RELACIONES DE RECURRENCIA

Polinomios y Fracciones Algebraicas

Nombre/Código: Febrero Examen I. 5 /10pts. Total: /50pts

342 SOBRE FORMAS TERNARIAS DE SEGUNDO GRADO.

Álgebra. Curso

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Semana 08 [1/15] Axioma del Supremo. April 18, Axioma del Supremo

Módulo 9 Sistema matemático y operaciones binarias

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ):

Ejercicios de álgebra 1 Cuarto curso (2003/04)

ESTRUCTURAS ALGEBRAICAS. Parte 1

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS

Ejemplos y problemas resueltos de análisis complejo ( )

INDICE Capitulo. 0. Algunas Palabras Preliminares Parte I. Grupos Capitulo 1. Operaciones Binarias Capitulo 2. Grupos Capitulo 3.

REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS

Divisibilidad y números primos

Notas del curso de Algebra Moderna II

Una generalización algebraica del teorema de Cantor-Bernstein a módulos inyectivos puros sobre dominios enteros

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Tema 2 Límites de Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Estructuras algebraicas

Ecuaciones de primer grado con dos incógnitas

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Espacios generados, dependencia lineal y bases

Profr. Efraín Soto Apolinar. Números reales

Grupos. Subgrupos. Teorema de Lagrange. Operaciones.

ESTRUCTURAS ALGEBRAICAS

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

Ejercicios de álgebra 1 Cuarto curso (2003/04)

Números algebraicos. Cuerpos de números. Grado.

Carlos Ivorra Castillo TEORÍA DE CUERPOS DE CLASES

ESTRUCTURAS ALGEBRAICAS

CALCULO CAPITULO ASINTOTAS VERTICALES Y HORIZONTALES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Apuntes de Matemática Discreta 9. Funciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

ECUACIÓN QUE OBTIENE CON BUENA APROXIMACIÓN LA SUMA DE LOS PRIMEROS ENTEROS A CUALQUIER POTENCIA ENTERA POSITIVA

EJERCICIOS RESUELTOS DE NÚMEROS COMPLEJOS

f(x)=a n x n +a n-1 x n-1 +a n-2 x n a 2 x 2 +a 1 x 1 +a 0

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b

POLINOMIOS Y FRACCIONES ALGEBRAICAS

FACTORIZACIÓN DE LA SUMA DE DOS CUADRADOS 1. FACTORIZACIÓN DE LA SUMA DE DOS CUADRADOS EN Q.

Propiedades de los límites

Tema 3: Aplicaciones de la diagonalización

NÚMEROS NATURALES Y NÚMEROS ENTEROS

Métodos Numéricos Grado en Ingeniería Informática Univ. Tema de Las 7 Interpolación Palmas de G.C. de funciones 1 / 42II

AMPLIACIÓN DE MATEMÁTICAS. REPASO DE MATEMÁTICAS DISCRETA. CONGRUENCIAS. En el conjunto de los números enteros

ÁLGEBRA III. Práctica 1 2d. Cuatrimestre

Un problema sobre repetidas apuestas al azar

Tema 2 Límites de Funciones

Álgebra II. Tijani Pakhrou

LÍMITES DE FUNCIONES Y DE SUCESIONES

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { }

El anillo de los enteros algebraicos y dominios de Dedekind

Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria.

Notaciones y Pre-requisitos

Biblioteca Virtual Ejercicios Resueltos

Números Reales. MathCon c

GUÍA DE EJERCICIOS UNIDAD II

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo:

Capítulo 7 Teoría de los Números

Álgebra y Matemática Discreta Sesión de Prácticas 1

CAPÍTULO III. FUNCIONES

Oleksandr Karelin Carlos Rondero Guerrero Anna Tarasenko DESIGUALDADES Métodos de cálculo no tradicionales

Operaciones con polinomios

JOSE VICENTE CONTRERAS JULIO CALCULO INTEGRAL LA ANTIDERIVADA

José de Jesús Ángel Ángel, c Factorización

MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS

Qué son los monomios?

Matrices equivalentes. El método de Gauss

1. División de polinomios por monomios

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

1. Ecuaciones no lineales

APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES

9.1 Primeras definiciones

Diagonalización de matrices

Tema 2. Espacios Vectoriales Introducción

LÍMITES Y CONTINUIDAD DE FUNCIONES

Números y desigualdades

Plan de mejora de las competencias lectoras en la ESO. PERFECTOS, AMIGOS Y GEMELOS

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

Transcripción:

Números de Bernoulli Un estudio sobre su importancia, consecuencias y algunas aplicaciones en la Teoría de Números David José Fernández Bretón Escuela Superior de Física y Matemáticas Instituto Politécnico Nacional Defensa de Tesis para obtener el título de Licenciado en Física y Matemáticas David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 1 / 28

Índice 1 Números de Bernoulli Introducción histórica Números de Bernoulli Polinomios de Bernoulli Los números ζ(2m) y ζ(1 m) 2 Propiedades algebraicas de los números de Bernoulli La función orden y los p-enteros Congruencias importantes en Z y en Z p Números primos regulares e irregulares 3 El último teorema de Fermat El campo Q(ζ p ) y el anillo Z(ζ p ) Dominios Dedekind y campos numéricos Caracteres de Dirichlet y L-series Fórmula para el número de clases Un caso particular del último teorema de Fermat David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 2 / 28

Índice 1 Números de Bernoulli Introducción histórica Números de Bernoulli Polinomios de Bernoulli Los números ζ(2m) y ζ(1 m) 2 Propiedades algebraicas de los números de Bernoulli La función orden y los p-enteros Congruencias importantes en Z y en Z p Números primos regulares e irregulares 3 El último teorema de Fermat El campo Q(ζ p ) y el anillo Z(ζ p ) Dominios Dedekind y campos numéricos Caracteres de Dirichlet y L-series Fórmula para el número de clases Un caso particular del último teorema de Fermat David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 2 / 28

Índice 1 Números de Bernoulli Introducción histórica Números de Bernoulli Polinomios de Bernoulli Los números ζ(2m) y ζ(1 m) 2 Propiedades algebraicas de los números de Bernoulli La función orden y los p-enteros Congruencias importantes en Z y en Z p Números primos regulares e irregulares 3 El último teorema de Fermat El campo Q(ζ p ) y el anillo Z(ζ p ) Dominios Dedekind y campos numéricos Caracteres de Dirichlet y L-series Fórmula para el número de clases Un caso particular del último teorema de Fermat David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 2 / 28

Números de Bernoulli Introducción histórica Importancia histórica de los números de Bernoulli Tres son los principales problemas, históricamente relevantes, en los cuales los números de Bernoulli juegan un papel importante. Jacob Bernoulli quería determinar una fórmula general para calcular la suma 1 k + 2 k + + n k con k, n N arbitrarios. Esto lo impulsó a definir y utilizar por primera vez los números que llevan su nombre. Finalmente, Bernoulli encontró con éxito dicha fórmula. Otro problema importante era encontrar el valor de la suma infinita 1 + 1 4 + 1 9 + 1 16 + 1 25 + Después de un prolongado esfuerzo, Leonhard Euler logró demostrar que el valor de esta suma es exactamente π 2 /6, y posteriormente determinó el 1 valor, más general, de la suma, para m N arbitrario. n2m n=1 David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 3 / 28

Números de Bernoulli Introducción histórica Importancia histórica de los números de Bernoulli Tres son los principales problemas, históricamente relevantes, en los cuales los números de Bernoulli juegan un papel importante. Jacob Bernoulli quería determinar una fórmula general para calcular la suma 1 k + 2 k + + n k con k, n N arbitrarios. Esto lo impulsó a definir y utilizar por primera vez los números que llevan su nombre. Finalmente, Bernoulli encontró con éxito dicha fórmula. Otro problema importante era encontrar el valor de la suma infinita 1 + 1 4 + 1 9 + 1 16 + 1 25 + Después de un prolongado esfuerzo, Leonhard Euler logró demostrar que el valor de esta suma es exactamente π 2 /6, y posteriormente determinó el 1 valor, más general, de la suma, para m N arbitrario. n2m n=1 David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 3 / 28

Números de Bernoulli Introducción histórica Importancia histórica de los números de Bernoulli Tres son los principales problemas, históricamente relevantes, en los cuales los números de Bernoulli juegan un papel importante. Jacob Bernoulli quería determinar una fórmula general para calcular la suma 1 k + 2 k + + n k con k, n N arbitrarios. Esto lo impulsó a definir y utilizar por primera vez los números que llevan su nombre. Finalmente, Bernoulli encontró con éxito dicha fórmula. Otro problema importante era encontrar el valor de la suma infinita 1 + 1 4 + 1 9 + 1 16 + 1 25 + Después de un prolongado esfuerzo, Leonhard Euler logró demostrar que el valor de esta suma es exactamente π 2 /6, y posteriormente determinó el 1 valor, más general, de la suma, para m N arbitrario. n2m n=1 David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 3 / 28

Números de Bernoulli Introducción histórica Importancia histórica de los números de Bernoulli Tres son los principales problemas, históricamente relevantes, en los cuales los números de Bernoulli juegan un papel importante. Jacob Bernoulli quería determinar una fórmula general para calcular la suma 1 k + 2 k + + n k con k, n N arbitrarios. Esto lo impulsó a definir y utilizar por primera vez los números que llevan su nombre. Finalmente, Bernoulli encontró con éxito dicha fórmula. Otro problema importante era encontrar el valor de la suma infinita 1 + 1 4 + 1 9 + 1 16 + 1 25 + Después de un prolongado esfuerzo, Leonhard Euler logró demostrar que el valor de esta suma es exactamente π 2 /6, y posteriormente determinó el 1 valor, más general, de la suma, para m N arbitrario. n2m n=1 David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 3 / 28

Números de Bernoulli Introducción histórica Importancia histórica de los números de Bernoulli Tres son los principales problemas, históricamente relevantes, en los cuales los números de Bernoulli juegan un papel importante. Jacob Bernoulli quería determinar una fórmula general para calcular la suma 1 k + 2 k + + n k con k, n N arbitrarios. Esto lo impulsó a definir y utilizar por primera vez los números que llevan su nombre. Finalmente, Bernoulli encontró con éxito dicha fórmula. Otro problema importante era encontrar el valor de la suma infinita 1 + 1 4 + 1 9 + 1 16 + 1 25 + Después de un prolongado esfuerzo, Leonhard Euler logró demostrar que el valor de esta suma es exactamente π 2 /6, y posteriormente determinó el 1 valor, más general, de la suma, para m N arbitrario. n2m n=1 David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 3 / 28

Números de Bernoulli Introducción histórica Importancia histórica de los números de Bernoulli Pierre de Fermat conjeturó que la ecuación x n + y n = z n no tiene solución con x, y, z Z\{0} cuando n 3. Ernst Eduard Kummer demostró un caso particular de este teorema, cuando n pertenece a cierto subconjunto de los números primos. Mientras desarrolló estos resultados, Kummer realizó varios avances en teoría de anillos, introduciento novedosos y fructíferos conceptos, tales como el de ideal. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 4 / 28

Números de Bernoulli Introducción histórica Importancia histórica de los números de Bernoulli Pierre de Fermat conjeturó que la ecuación x n + y n = z n no tiene solución con x, y, z Z\{0} cuando n 3. Ernst Eduard Kummer demostró un caso particular de este teorema, cuando n pertenece a cierto subconjunto de los números primos. Mientras desarrolló estos resultados, Kummer realizó varios avances en teoría de anillos, introduciento novedosos y fructíferos conceptos, tales como el de ideal. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 4 / 28

Números de Bernoulli Introducción histórica Importancia histórica de los números de Bernoulli Pierre de Fermat conjeturó que la ecuación x n + y n = z n no tiene solución con x, y, z Z\{0} cuando n 3. Ernst Eduard Kummer demostró un caso particular de este teorema, cuando n pertenece a cierto subconjunto de los números primos. Mientras desarrolló estos resultados, Kummer realizó varios avances en teoría de anillos, introduciento novedosos y fructíferos conceptos, tales como el de ideal. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 4 / 28

Definición Números de Bernoulli Números de Bernoulli Se define la sucesión de números de Bernoulli B 0, B 1, B 2,..., como B 0 = 1, y B m = 1 m 1 ( ) m + 1 B k, para cualquier m N. m + 1 k k=0 m ( ) m + 1 Lo anterior es equivalente a decir que B 0 = 1 y B k = 0. k k=0 Haciendo los cálculos, tenemos que B 1 = 1 2, B 2 = 1 6, B 3 = 0, B 4 = 1 30, B 5 = 0, B 6 = 1 42, B 7 = 0, B 8 = 1 30, B 9 = 0, B 10 = 5 66, B 11 = 0, B 12 = 691,..., etc. 2730 David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 5 / 28

Definición Números de Bernoulli Números de Bernoulli Se define la sucesión de números de Bernoulli B 0, B 1, B 2,..., como B 0 = 1, y B m = 1 m 1 ( ) m + 1 B k, para cualquier m N. m + 1 k k=0 m ( ) m + 1 Lo anterior es equivalente a decir que B 0 = 1 y B k = 0. k k=0 Haciendo los cálculos, tenemos que B 1 = 1 2, B 2 = 1 6, B 3 = 0, B 4 = 1 30, B 5 = 0, B 6 = 1 42, B 7 = 0, B 8 = 1 30, B 9 = 0, B 10 = 5 66, B 11 = 0, B 12 = 691,..., etc. 2730 David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 5 / 28

Definición Números de Bernoulli Números de Bernoulli Se define la sucesión de números de Bernoulli B 0, B 1, B 2,..., como B 0 = 1, y B m = 1 m 1 ( ) m + 1 B k, para cualquier m N. m + 1 k k=0 m ( ) m + 1 Lo anterior es equivalente a decir que B 0 = 1 y B k = 0. k k=0 Haciendo los cálculos, tenemos que B 1 = 1 2, B 2 = 1 6, B 3 = 0, B 4 = 1 30, B 5 = 0, B 6 = 1 42, B 7 = 0, B 8 = 1 30, B 9 = 0, B 10 = 5 66, B 11 = 0, B 12 = 691,..., etc. 2730 David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 5 / 28

Definición Números de Bernoulli Números de Bernoulli Se define la sucesión de números de Bernoulli B 0, B 1, B 2,..., como B 0 = 1, y B m = 1 m 1 ( ) m + 1 B k, para cualquier m N. m + 1 k k=0 m ( ) m + 1 Lo anterior es equivalente a decir que B 0 = 1 y B k = 0. k k=0 Haciendo los cálculos, tenemos que B 1 = 1 2, B 2 = 1 6, B 3 = 0, B 4 = 1 30, B 5 = 0, B 6 = 1 42, B 7 = 0, B 8 = 1 30, B 9 = 0, B 10 = 5 66, B 11 = 0, B 12 = 691,..., etc. 2730 David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 5 / 28

Números de Bernoulli Números de Bernoulli Números de Bernoulli Se denota S m (n) = 1 m + 2 m + + (n 1) m. t e t 1 = B m m! tm. m=0 S m (n) = 1 m + 1 m ( ) m + 1 B k n m+1 k. k k=0 De la primera ecuación, tenemos que: 1 + k=2 B k k! tk = t 2 + t e t 1. Esta última es una función par, de donde se sigue que, para cualquier k N, B 2k+1 = 0. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 6 / 28

Números de Bernoulli Números de Bernoulli Números de Bernoulli Se denota S m (n) = 1 m + 2 m + + (n 1) m. t e t 1 = B m m! tm. m=0 S m (n) = 1 m + 1 m ( ) m + 1 B k n m+1 k. k k=0 De la primera ecuación, tenemos que: 1 + k=2 B k k! tk = t 2 + t e t 1. Esta última es una función par, de donde se sigue que, para cualquier k N, B 2k+1 = 0. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 6 / 28

Números de Bernoulli Números de Bernoulli Números de Bernoulli Se denota S m (n) = 1 m + 2 m + + (n 1) m. t e t 1 = B m m! tm. m=0 S m (n) = 1 m + 1 m ( ) m + 1 B k n m+1 k. k k=0 De la primera ecuación, tenemos que: 1 + k=2 B k k! tk = t 2 + t e t 1. Esta última es una función par, de donde se sigue que, para cualquier k N, B 2k+1 = 0. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 6 / 28

Números de Bernoulli Números de Bernoulli Números de Bernoulli Se denota S m (n) = 1 m + 2 m + + (n 1) m. t e t 1 = B m m! tm. m=0 S m (n) = 1 m + 1 m ( ) m + 1 B k n m+1 k. k k=0 De la primera ecuación, tenemos que: 1 + k=2 B k k! tk = t 2 + t e t 1. Esta última es una función par, de donde se sigue que, para cualquier k N, B 2k+1 = 0. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 6 / 28

Definición Números de Bernoulli Polinomios de Bernoulli Para cada m N {0}, se define el m-ésimo polinomio de Bernoulli de la siguiente manera: B m (X) = m k=0 ( ) m B k X m k. k De esta forma, los primeros polinomios de Bernoulli son: B 0 (X) = 1, B 1 (X) = X 1 2, B 2(X) = X 2 X + 1 6, Bajo la definición anterior, se tiene que S m (n) = 1 m + 1 m ( ) m + 1 B k n m+1 k = 1 k m + 1 (B m+1(n) B m+1 ). k=0 David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 7 / 28

Definición Números de Bernoulli Polinomios de Bernoulli Para cada m N {0}, se define el m-ésimo polinomio de Bernoulli de la siguiente manera: B m (X) = m k=0 ( ) m B k X m k. k De esta forma, los primeros polinomios de Bernoulli son: B 0 (X) = 1, B 1 (X) = X 1 2, B 2(X) = X 2 X + 1 6, Bajo la definición anterior, se tiene que S m (n) = 1 m + 1 m ( ) m + 1 B k n m+1 k = 1 k m + 1 (B m+1(n) B m+1 ). k=0 David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 7 / 28

Definición Números de Bernoulli Polinomios de Bernoulli Para cada m N {0}, se define el m-ésimo polinomio de Bernoulli de la siguiente manera: B m (X) = m k=0 ( ) m B k X m k. k De esta forma, los primeros polinomios de Bernoulli son: B 0 (X) = 1, B 1 (X) = X 1 2, B 2(X) = X 2 X + 1 6, Bajo la definición anterior, se tiene que S m (n) = 1 m + 1 m ( ) m + 1 B k n m+1 k = 1 k m + 1 (B m+1(n) B m+1 ). k=0 David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 7 / 28

Definición Números de Bernoulli Polinomios de Bernoulli Para cada m N {0}, se define el m-ésimo polinomio de Bernoulli de la siguiente manera: B m (X) = m k=0 ( ) m B k X m k. k De esta forma, los primeros polinomios de Bernoulli son: B 0 (X) = 1, B 1 (X) = X 1 2, B 2(X) = X 2 X + 1 6, Bajo la definición anterior, se tiene que S m (n) = 1 m + 1 m ( ) m + 1 B k n m+1 k = 1 k m + 1 (B m+1(n) B m+1 ). k=0 David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 7 / 28

Números de Bernoulli Polinomios de Bernoulli Polinomios de Bernoulli m 1 k=n k q = S q (m) S q (n) = 1 q + 1 (B q+1(m) B q+1 (n)). 1 m + 1 B m+1(x) = B m (X), m N {0}. B m (0) = B m (1) = B m, m N {0}, m 1. k 1 B q (kx) = k q 1 b n=a+1 en donde f(n) = b a j=0 B q ( X + j k f(x)dx + ), q N {0}. q ( 1) r B r r! {f (r 1) (b) f (r 1) (a)} + R q, r=1 R q = ( 1)q 1 q! b a B q (x [x])f (q) (x)dx. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 8 / 28

Números de Bernoulli Polinomios de Bernoulli Polinomios de Bernoulli m 1 k=n k q = S q (m) S q (n) = 1 q + 1 (B q+1(m) B q+1 (n)). 1 m + 1 B m+1(x) = B m (X), m N {0}. B m (0) = B m (1) = B m, m N {0}, m 1. k 1 B q (kx) = k q 1 b n=a+1 en donde f(n) = b a j=0 B q ( X + j k f(x)dx + ), q N {0}. q ( 1) r B r r! {f (r 1) (b) f (r 1) (a)} + R q, r=1 R q = ( 1)q 1 q! b a B q (x [x])f (q) (x)dx. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 8 / 28

Números de Bernoulli Polinomios de Bernoulli Polinomios de Bernoulli m 1 k=n k q = S q (m) S q (n) = 1 q + 1 (B q+1(m) B q+1 (n)). 1 m + 1 B m+1(x) = B m (X), m N {0}. B m (0) = B m (1) = B m, m N {0}, m 1. k 1 B q (kx) = k q 1 b n=a+1 en donde f(n) = b a j=0 B q ( X + j k f(x)dx + ), q N {0}. q ( 1) r B r r! {f (r 1) (b) f (r 1) (a)} + R q, r=1 R q = ( 1)q 1 q! b a B q (x [x])f (q) (x)dx. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 8 / 28

Números de Bernoulli Polinomios de Bernoulli Polinomios de Bernoulli m 1 k=n k q = S q (m) S q (n) = 1 q + 1 (B q+1(m) B q+1 (n)). 1 m + 1 B m+1(x) = B m (X), m N {0}. B m (0) = B m (1) = B m, m N {0}, m 1. k 1 B q (kx) = k q 1 b n=a+1 en donde f(n) = b a j=0 B q ( X + j k f(x)dx + ), q N {0}. q ( 1) r B r r! {f (r 1) (b) f (r 1) (a)} + R q, r=1 R q = ( 1)q 1 q! b a B q (x [x])f (q) (x)dx. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 8 / 28

Números de Bernoulli Polinomios de Bernoulli Polinomios de Bernoulli m 1 k=n k q = S q (m) S q (n) = 1 q + 1 (B q+1(m) B q+1 (n)). 1 m + 1 B m+1(x) = B m (X), m N {0}. B m (0) = B m (1) = B m, m N {0}, m 1. k 1 B q (kx) = k q 1 b n=a+1 en donde f(n) = b a j=0 B q ( X + j k f(x)dx + ), q N {0}. q ( 1) r B r r! {f (r 1) (b) f (r 1) (a)} + R q, r=1 R q = ( 1)q 1 q! b a B q (x [x])f (q) (x)dx. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 8 / 28

Números de Bernoulli Los números ζ(2m) y ζ(1 m) Los números ζ(2m) y ζ(1 m) Se define la función zeta de Riemann como ζ(s) = n=1 1 n s = p es primo ( 1 1 p s ) 1. ζ(2m) = ( 1)m+1 (2π) 2m B 2m, m N. 2(2m)! ( 1) m+1 B 2m > 0, m N. B 2m 2m cuando m. La función zeta se extiende a una función meromorfa con un polo simple, de residuo 1, en s = 1. Además, se cumple la ecuación funcional ζ(s) = 2 s π s 1 sen ζ(1 m) = B m m, m N\{1}. ( πs 2 ) Γ(1 s)ζ(1 s). David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 9 / 28

Números de Bernoulli Los números ζ(2m) y ζ(1 m) Los números ζ(2m) y ζ(1 m) Se define la función zeta de Riemann como ζ(s) = n=1 1 n s = p es primo ( 1 1 p s ) 1. ζ(2m) = ( 1)m+1 (2π) 2m B 2m, m N. 2(2m)! ( 1) m+1 B 2m > 0, m N. B 2m 2m cuando m. La función zeta se extiende a una función meromorfa con un polo simple, de residuo 1, en s = 1. Además, se cumple la ecuación funcional ζ(s) = 2 s π s 1 sen ζ(1 m) = B m m, m N\{1}. ( πs 2 ) Γ(1 s)ζ(1 s). David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 9 / 28

Números de Bernoulli Los números ζ(2m) y ζ(1 m) Los números ζ(2m) y ζ(1 m) Se define la función zeta de Riemann como ζ(s) = n=1 1 n s = p es primo ( 1 1 p s ) 1. ζ(2m) = ( 1)m+1 (2π) 2m B 2m, m N. 2(2m)! ( 1) m+1 B 2m > 0, m N. B 2m 2m cuando m. La función zeta se extiende a una función meromorfa con un polo simple, de residuo 1, en s = 1. Además, se cumple la ecuación funcional ζ(s) = 2 s π s 1 sen ζ(1 m) = B m m, m N\{1}. ( πs 2 ) Γ(1 s)ζ(1 s). David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 9 / 28

Números de Bernoulli Los números ζ(2m) y ζ(1 m) Los números ζ(2m) y ζ(1 m) Se define la función zeta de Riemann como ζ(s) = n=1 1 n s = p es primo ( 1 1 p s ) 1. ζ(2m) = ( 1)m+1 (2π) 2m B 2m, m N. 2(2m)! ( 1) m+1 B 2m > 0, m N. B 2m 2m cuando m. La función zeta se extiende a una función meromorfa con un polo simple, de residuo 1, en s = 1. Además, se cumple la ecuación funcional ζ(s) = 2 s π s 1 sen ζ(1 m) = B m m, m N\{1}. ( πs 2 ) Γ(1 s)ζ(1 s). David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 9 / 28

Números de Bernoulli Los números ζ(2m) y ζ(1 m) Los números ζ(2m) y ζ(1 m) Se define la función zeta de Riemann como ζ(s) = n=1 1 n s = p es primo ( 1 1 p s ) 1. ζ(2m) = ( 1)m+1 (2π) 2m B 2m, m N. 2(2m)! ( 1) m+1 B 2m > 0, m N. B 2m 2m cuando m. La función zeta se extiende a una función meromorfa con un polo simple, de residuo 1, en s = 1. Además, se cumple la ecuación funcional ζ(s) = 2 s π s 1 sen ζ(1 m) = B m m, m N\{1}. ( πs 2 ) Γ(1 s)ζ(1 s). David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 9 / 28

Números de Bernoulli Los números ζ(2m) y ζ(1 m) Los números ζ(2m) y ζ(1 m) Se define la función zeta de Riemann como ζ(s) = n=1 1 n s = p es primo ( 1 1 p s ) 1. ζ(2m) = ( 1)m+1 (2π) 2m B 2m, m N. 2(2m)! ( 1) m+1 B 2m > 0, m N. B 2m 2m cuando m. La función zeta se extiende a una función meromorfa con un polo simple, de residuo 1, en s = 1. Además, se cumple la ecuación funcional ζ(s) = 2 s π s 1 sen ζ(1 m) = B m m, m N\{1}. ( πs 2 ) Γ(1 s)ζ(1 s). David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 9 / 28

Números de Bernoulli Los números ζ(2m) y ζ(1 m) Los números ζ(2m) y ζ(1 m) Se define la función zeta de Riemann como ζ(s) = n=1 1 n s = p es primo ( 1 1 p s ) 1. ζ(2m) = ( 1)m+1 (2π) 2m B 2m, m N. 2(2m)! ( 1) m+1 B 2m > 0, m N. B 2m 2m cuando m. La función zeta se extiende a una función meromorfa con un polo simple, de residuo 1, en s = 1. Además, se cumple la ecuación funcional ζ(s) = 2 s π s 1 sen ζ(1 m) = B m m, m N\{1}. ( πs 2 ) Γ(1 s)ζ(1 s). David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 9 / 28

Propiedades algebraicas de los números de Bernoulli La función orden y los p-enteros La función orden Dado un número primo p, todo número racional r Q se expresa de manera única en la forma r = p n a, con n, a, b Z, p a, p b y (a, b) = 1. b Bajo la expresión anterior de r, se define su orden p-ádico, denotado por ord p (r), como ord p (r) = 0, y por definición ord p (0) =. Así, podemos decir que cada número racional se escribe de la siguiente manera: r = p ordp(r). p es primo Dado un número primo p, y r Q, decimos que r es un p-entero si ord p (r) 0. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 10 / 28

Propiedades algebraicas de los números de Bernoulli La función orden y los p-enteros La función orden Dado un número primo p, todo número racional r Q se expresa de manera única en la forma r = p n a, con n, a, b Z, p a, p b y (a, b) = 1. b Bajo la expresión anterior de r, se define su orden p-ádico, denotado por ord p (r), como ord p (r) = 0, y por definición ord p (0) =. Así, podemos decir que cada número racional se escribe de la siguiente manera: r = p ordp(r). p es primo Dado un número primo p, y r Q, decimos que r es un p-entero si ord p (r) 0. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 10 / 28

Propiedades algebraicas de los números de Bernoulli La función orden y los p-enteros La función orden Dado un número primo p, todo número racional r Q se expresa de manera única en la forma r = p n a, con n, a, b Z, p a, p b y (a, b) = 1. b Bajo la expresión anterior de r, se define su orden p-ádico, denotado por ord p (r), como ord p (r) = 0, y por definición ord p (0) =. Así, podemos decir que cada número racional se escribe de la siguiente manera: r = p ordp(r). p es primo Dado un número primo p, y r Q, decimos que r es un p-entero si ord p (r) 0. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 10 / 28

Propiedades algebraicas de los números de Bernoulli La función orden y los p-enteros La función orden Dado un número primo p, todo número racional r Q se expresa de manera única en la forma r = p n a, con n, a, b Z, p a, p b y (a, b) = 1. b Bajo la expresión anterior de r, se define su orden p-ádico, denotado por ord p (r), como ord p (r) = 0, y por definición ord p (0) =. Así, podemos decir que cada número racional se escribe de la siguiente manera: r = p ordp(r). p es primo Dado un número primo p, y r Q, decimos que r es un p-entero si ord p (r) 0. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 10 / 28

Propiedades algebraicas de los números de Bernoulli La función orden y los p-enteros La función orden Dado un número primo p, todo número racional r Q se expresa de manera única en la forma r = p n a, con n, a, b Z, p a, p b y (a, b) = 1. b Bajo la expresión anterior de r, se define su orden p-ádico, denotado por ord p (r), como ord p (r) = 0, y por definición ord p (0) =. Así, podemos decir que cada número racional se escribe de la siguiente manera: r = p ordp(r). p es primo Dado un número primo p, y r Q, decimos que r es un p-entero si ord p (r) 0. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 10 / 28

Los p-enteros Propiedades algebraicas de los números de Bernoulli La función orden y los p-enteros Z p = { r Q ord p (r) 0 } { a } = a, b Z, p b. b Si r, s Z p, n N {0}, decimos que r s mod p n ord p (r s) n. pb m Z p, m N. { 0; (p 1) m pb m S m (p) mod p, para todo m par. 1; (p 1) m B 2m = A 2m + 1 p para algunos A 2m Z. Así, el denominador de (p 1) 2m B 2m es un número libre de cuadrado cuyos divisores primos son exactamente los números primos p tales que (p 1) 2m. En particular, 6 siempre divide al denominador de B 2m. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 11 / 28

Los p-enteros Propiedades algebraicas de los números de Bernoulli La función orden y los p-enteros Z p = { r Q ord p (r) 0 } { a } = a, b Z, p b. b Si r, s Z p, n N {0}, decimos que r s mod p n ord p (r s) n. pb m Z p, m N. { 0; (p 1) m pb m S m (p) mod p, para todo m par. 1; (p 1) m B 2m = A 2m + 1 p para algunos A 2m Z. Así, el denominador de (p 1) 2m B 2m es un número libre de cuadrado cuyos divisores primos son exactamente los números primos p tales que (p 1) 2m. En particular, 6 siempre divide al denominador de B 2m. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 11 / 28

Los p-enteros Propiedades algebraicas de los números de Bernoulli La función orden y los p-enteros Z p = { r Q ord p (r) 0 } { a } = a, b Z, p b. b Si r, s Z p, n N {0}, decimos que r s mod p n ord p (r s) n. pb m Z p, m N. { 0; (p 1) m pb m S m (p) mod p, para todo m par. 1; (p 1) m B 2m = A 2m + 1 p para algunos A 2m Z. Así, el denominador de (p 1) 2m B 2m es un número libre de cuadrado cuyos divisores primos son exactamente los números primos p tales que (p 1) 2m. En particular, 6 siempre divide al denominador de B 2m. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 11 / 28

Los p-enteros Propiedades algebraicas de los números de Bernoulli La función orden y los p-enteros Z p = { r Q ord p (r) 0 } { a } = a, b Z, p b. b Si r, s Z p, n N {0}, decimos que r s mod p n ord p (r s) n. pb m Z p, m N. { 0; (p 1) m pb m S m (p) mod p, para todo m par. 1; (p 1) m B 2m = A 2m + 1 p para algunos A 2m Z. Así, el denominador de (p 1) 2m B 2m es un número libre de cuadrado cuyos divisores primos son exactamente los números primos p tales que (p 1) 2m. En particular, 6 siempre divide al denominador de B 2m. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 11 / 28

Los p-enteros Propiedades algebraicas de los números de Bernoulli La función orden y los p-enteros Z p = { r Q ord p (r) 0 } { a } = a, b Z, p b. b Si r, s Z p, n N {0}, decimos que r s mod p n ord p (r s) n. pb m Z p, m N. { 0; (p 1) m pb m S m (p) mod p, para todo m par. 1; (p 1) m B 2m = A 2m + 1 p para algunos A 2m Z. Así, el denominador de (p 1) 2m B 2m es un número libre de cuadrado cuyos divisores primos son exactamente los números primos p tales que (p 1) 2m. En particular, 6 siempre divide al denominador de B 2m. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 11 / 28

Los p-enteros Propiedades algebraicas de los números de Bernoulli La función orden y los p-enteros Z p = { r Q ord p (r) 0 } { a } = a, b Z, p b. b Si r, s Z p, n N {0}, decimos que r s mod p n ord p (r s) n. pb m Z p, m N. { 0; (p 1) m pb m S m (p) mod p, para todo m par. 1; (p 1) m B 2m = A 2m + 1 p para algunos A 2m Z. Así, el denominador de (p 1) 2m B 2m es un número libre de cuadrado cuyos divisores primos son exactamente los números primos p tales que (p 1) 2m. En particular, 6 siempre divide al denominador de B 2m. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 11 / 28

Propiedades algebraicas de los números de Bernoulli Congruencias importantes en Z y en Z p Congruencias en Z y en Z p Sea m N {0} par. Escribimos B m = U m V m, U m, V m Z, (U m, V m ) = 1. V m S m (n) U m n mod n 2, n N. p número primo tal que (p 1) m S m (p) B m p mod p 2. n 1 [ ] ja (a, m) = 1 (a m 1)U m ma m 1 V m j m 1 mod n, n a, n N tales que (a, n) = 1. j=1 p número primo tal que (p 1) m B m m Z p. Sean n, e N con n m mod φ(p e ). Entonces, (1 p n 1 ) B n n (1 pm 1 ) B m m mod pe. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 12 / 28

Propiedades algebraicas de los números de Bernoulli Congruencias importantes en Z y en Z p Congruencias en Z y en Z p Sea m N {0} par. Escribimos B m = U m V m, U m, V m Z, (U m, V m ) = 1. V m S m (n) U m n mod n 2, n N. p número primo tal que (p 1) m S m (p) B m p mod p 2. n 1 [ ] ja (a, m) = 1 (a m 1)U m ma m 1 V m j m 1 mod n, n a, n N tales que (a, n) = 1. j=1 p número primo tal que (p 1) m B m m Z p. Sean n, e N con n m mod φ(p e ). Entonces, (1 p n 1 ) B n n (1 pm 1 ) B m m mod pe. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 12 / 28

Propiedades algebraicas de los números de Bernoulli Congruencias importantes en Z y en Z p Congruencias en Z y en Z p Sea m N {0} par. Escribimos B m = U m V m, U m, V m Z, (U m, V m ) = 1. V m S m (n) U m n mod n 2, n N. p número primo tal que (p 1) m S m (p) B m p mod p 2. n 1 [ ] ja (a, m) = 1 (a m 1)U m ma m 1 V m j m 1 mod n, n a, n N tales que (a, n) = 1. j=1 p número primo tal que (p 1) m B m m Z p. Sean n, e N con n m mod φ(p e ). Entonces, (1 p n 1 ) B n n (1 pm 1 ) B m m mod pe. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 12 / 28

Propiedades algebraicas de los números de Bernoulli Congruencias importantes en Z y en Z p Congruencias en Z y en Z p Sea m N {0} par. Escribimos B m = U m V m, U m, V m Z, (U m, V m ) = 1. V m S m (n) U m n mod n 2, n N. p número primo tal que (p 1) m S m (p) B m p mod p 2. n 1 [ ] ja (a, m) = 1 (a m 1)U m ma m 1 V m j m 1 mod n, n a, n N tales que (a, n) = 1. j=1 p número primo tal que (p 1) m B m m Z p. Sean n, e N con n m mod φ(p e ). Entonces, (1 p n 1 ) B n n (1 pm 1 ) B m m mod pe. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 12 / 28

Propiedades algebraicas de los números de Bernoulli Congruencias importantes en Z y en Z p Congruencias en Z y en Z p Sea m N {0} par. Escribimos B m = U m V m, U m, V m Z, (U m, V m ) = 1. V m S m (n) U m n mod n 2, n N. p número primo tal que (p 1) m S m (p) B m p mod p 2. n 1 [ ] ja (a, m) = 1 (a m 1)U m ma m 1 V m j m 1 mod n, n a, n N tales que (a, n) = 1. j=1 p número primo tal que (p 1) m B m m Z p. Sean n, e N con n m mod φ(p e ). Entonces, (1 p n 1 ) B n n (1 pm 1 ) B m m mod pe. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 12 / 28

Propiedades algebraicas de los números de Bernoulli Congruencias importantes en Z y en Z p Congruencias en Z y en Z p Sea m N {0} par. Escribimos B m = U m V m, U m, V m Z, (U m, V m ) = 1. V m S m (n) U m n mod n 2, n N. p número primo tal que (p 1) m S m (p) B m p mod p 2. n 1 [ ] ja (a, m) = 1 (a m 1)U m ma m 1 V m j m 1 mod n, n a, n N tales que (a, n) = 1. j=1 p número primo tal que (p 1) m B m m Z p. Sean n, e N con n m mod φ(p e ). Entonces, (1 p n 1 ) B n n (1 pm 1 ) B m m mod pe. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 12 / 28

Propiedades algebraicas de los números de Bernoulli Números primos regulares e irregulares Números primos regulares e irregulares Un número primo p 3 se dice que es regular si, para j = 2, 4,..., p 3, se tiene que ord p (B j ) 0, o en otras palabras, p U j. Cuando un número primo no es regular, se dice que es irregular. El 3 es regular por definición. Existe una infinidad de números primos irregulares. No se sabe nada aún acerca de la finitud o infinitud del conjunto de números primos regulares. Sin embargo, si se supone que los números U j se encuentran aleatoriamente distribuidos módulo cualquier número primo (lo cual es #{q q p, q es irregular} plausible), se concluye que lím p #{q = 1. En q p} e otras palabras, lím p P(p es irregular) = 1 e 0.61. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 13 / 28

Propiedades algebraicas de los números de Bernoulli Números primos regulares e irregulares Números primos regulares e irregulares Un número primo p 3 se dice que es regular si, para j = 2, 4,..., p 3, se tiene que ord p (B j ) 0, o en otras palabras, p U j. Cuando un número primo no es regular, se dice que es irregular. El 3 es regular por definición. Existe una infinidad de números primos irregulares. No se sabe nada aún acerca de la finitud o infinitud del conjunto de números primos regulares. Sin embargo, si se supone que los números U j se encuentran aleatoriamente distribuidos módulo cualquier número primo (lo cual es #{q q p, q es irregular} plausible), se concluye que lím p #{q = 1. En q p} e otras palabras, lím p P(p es irregular) = 1 e 0.61. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 13 / 28

Propiedades algebraicas de los números de Bernoulli Números primos regulares e irregulares Números primos regulares e irregulares Un número primo p 3 se dice que es regular si, para j = 2, 4,..., p 3, se tiene que ord p (B j ) 0, o en otras palabras, p U j. Cuando un número primo no es regular, se dice que es irregular. El 3 es regular por definición. Existe una infinidad de números primos irregulares. No se sabe nada aún acerca de la finitud o infinitud del conjunto de números primos regulares. Sin embargo, si se supone que los números U j se encuentran aleatoriamente distribuidos módulo cualquier número primo (lo cual es #{q q p, q es irregular} plausible), se concluye que lím p #{q = 1. En q p} e otras palabras, lím p P(p es irregular) = 1 e 0.61. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 13 / 28

Propiedades algebraicas de los números de Bernoulli Números primos regulares e irregulares Números primos regulares e irregulares Un número primo p 3 se dice que es regular si, para j = 2, 4,..., p 3, se tiene que ord p (B j ) 0, o en otras palabras, p U j. Cuando un número primo no es regular, se dice que es irregular. El 3 es regular por definición. Existe una infinidad de números primos irregulares. No se sabe nada aún acerca de la finitud o infinitud del conjunto de números primos regulares. Sin embargo, si se supone que los números U j se encuentran aleatoriamente distribuidos módulo cualquier número primo (lo cual es #{q q p, q es irregular} plausible), se concluye que lím p #{q = 1. En q p} e otras palabras, lím p P(p es irregular) = 1 e 0.61. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 13 / 28

Propiedades algebraicas de los números de Bernoulli Números primos regulares e irregulares Números primos regulares e irregulares Un número primo p 3 se dice que es regular si, para j = 2, 4,..., p 3, se tiene que ord p (B j ) 0, o en otras palabras, p U j. Cuando un número primo no es regular, se dice que es irregular. El 3 es regular por definición. Existe una infinidad de números primos irregulares. No se sabe nada aún acerca de la finitud o infinitud del conjunto de números primos regulares. Sin embargo, si se supone que los números U j se encuentran aleatoriamente distribuidos módulo cualquier número primo (lo cual es #{q q p, q es irregular} plausible), se concluye que lím p #{q = 1. En q p} e otras palabras, lím p P(p es irregular) = 1 e 0.61. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 13 / 28

El último teorema de Fermat Campos y anillos ciclotómicos El campo Q(ζp) y el anillo Z(ζp) Sea n N, y sea ζ n una raíz n-ésima primitiva de la unidad. Se define el n-ésimo campo ciclotómico como el mínimo subcampo de C que contiene a ζ n, es decir, Q(ζ n ). Se define el n-ésimo anillo ciclotómico como el mínimo subanillo de C que contiene a ζ n, es decir, Z[ζ n ]. Si K/Q es una extensión algebraica de campos, se define el anillo de enteros de K, denotado por O K, como sigue: O K = {α K irr(α, Q, X) Z[X]}. Si p es un número primo, entonces el anillo de enteros de Q(ζ p ) es exactamente Z[ζ p ]. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 14 / 28

El último teorema de Fermat Campos y anillos ciclotómicos El campo Q(ζp) y el anillo Z(ζp) Sea n N, y sea ζ n una raíz n-ésima primitiva de la unidad. Se define el n-ésimo campo ciclotómico como el mínimo subcampo de C que contiene a ζ n, es decir, Q(ζ n ). Se define el n-ésimo anillo ciclotómico como el mínimo subanillo de C que contiene a ζ n, es decir, Z[ζ n ]. Si K/Q es una extensión algebraica de campos, se define el anillo de enteros de K, denotado por O K, como sigue: O K = {α K irr(α, Q, X) Z[X]}. Si p es un número primo, entonces el anillo de enteros de Q(ζ p ) es exactamente Z[ζ p ]. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 14 / 28

El último teorema de Fermat Campos y anillos ciclotómicos El campo Q(ζp) y el anillo Z(ζp) Sea n N, y sea ζ n una raíz n-ésima primitiva de la unidad. Se define el n-ésimo campo ciclotómico como el mínimo subcampo de C que contiene a ζ n, es decir, Q(ζ n ). Se define el n-ésimo anillo ciclotómico como el mínimo subanillo de C que contiene a ζ n, es decir, Z[ζ n ]. Si K/Q es una extensión algebraica de campos, se define el anillo de enteros de K, denotado por O K, como sigue: O K = {α K irr(α, Q, X) Z[X]}. Si p es un número primo, entonces el anillo de enteros de Q(ζ p ) es exactamente Z[ζ p ]. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 14 / 28

El último teorema de Fermat Campos y anillos ciclotómicos El campo Q(ζp) y el anillo Z(ζp) Sea n N, y sea ζ n una raíz n-ésima primitiva de la unidad. Se define el n-ésimo campo ciclotómico como el mínimo subcampo de C que contiene a ζ n, es decir, Q(ζ n ). Se define el n-ésimo anillo ciclotómico como el mínimo subanillo de C que contiene a ζ n, es decir, Z[ζ n ]. Si K/Q es una extensión algebraica de campos, se define el anillo de enteros de K, denotado por O K, como sigue: O K = {α K irr(α, Q, X) Z[X]}. Si p es un número primo, entonces el anillo de enteros de Q(ζ p ) es exactamente Z[ζ p ]. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 14 / 28

El último teorema de Fermat Campos y anillos ciclotómicos El campo Q(ζp) y el anillo Z(ζp) Sea n N, y sea ζ n una raíz n-ésima primitiva de la unidad. Se define el n-ésimo campo ciclotómico como el mínimo subcampo de C que contiene a ζ n, es decir, Q(ζ n ). Se define el n-ésimo anillo ciclotómico como el mínimo subanillo de C que contiene a ζ n, es decir, Z[ζ n ]. Si K/Q es una extensión algebraica de campos, se define el anillo de enteros de K, denotado por O K, como sigue: O K = {α K irr(α, Q, X) Z[X]}. Si p es un número primo, entonces el anillo de enteros de Q(ζ p ) es exactamente Z[ζ p ]. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 14 / 28

El último teorema de Fermat Campos y anillos ciclotómicos El campo Q(ζp) y el anillo Z(ζp) Sea n N, y sea ζ n una raíz n-ésima primitiva de la unidad. Se define el n-ésimo campo ciclotómico como el mínimo subcampo de C que contiene a ζ n, es decir, Q(ζ n ). Se define el n-ésimo anillo ciclotómico como el mínimo subanillo de C que contiene a ζ n, es decir, Z[ζ n ]. Si K/Q es una extensión algebraica de campos, se define el anillo de enteros de K, denotado por O K, como sigue: O K = {α K irr(α, Q, X) Z[X]}. Si p es un número primo, entonces el anillo de enteros de Q(ζ p ) es exactamente Z[ζ p ]. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 14 / 28

Dominios Dedekind El último teorema de Fermat Dominios Dedekind y campos numéricos Si D es un dominio entero, decimos que D es dominio Dedekind si D es noetheriano, enteramente cerrado, y cada ideal primo de D es un ideal maximal. Un subconjunto I D es un ideal fraccional de D si I es un D-submódulo de coc(d), y existe un elemento r D tal que ri D. Dado un dominio Dedekind D, y dos ideales fraccionales I, J de D, definimos el producto de I y J como sigue: { n } IJ = a i b i a i I, b i J, n N i=1 Si D es un dominio Dedekind, entonces todos sus ideales fraccionales se factorizan de manera única como producto de ideales primos, y el conjunto de ideales fraccionales de D forma un grupo cuya identidad es D. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 15 / 28

Dominios Dedekind El último teorema de Fermat Dominios Dedekind y campos numéricos Si D es un dominio entero, decimos que D es dominio Dedekind si D es noetheriano, enteramente cerrado, y cada ideal primo de D es un ideal maximal. Un subconjunto I D es un ideal fraccional de D si I es un D-submódulo de coc(d), y existe un elemento r D tal que ri D. Dado un dominio Dedekind D, y dos ideales fraccionales I, J de D, definimos el producto de I y J como sigue: { n } IJ = a i b i a i I, b i J, n N i=1 Si D es un dominio Dedekind, entonces todos sus ideales fraccionales se factorizan de manera única como producto de ideales primos, y el conjunto de ideales fraccionales de D forma un grupo cuya identidad es D. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 15 / 28

Dominios Dedekind El último teorema de Fermat Dominios Dedekind y campos numéricos Si D es un dominio entero, decimos que D es dominio Dedekind si D es noetheriano, enteramente cerrado, y cada ideal primo de D es un ideal maximal. Un subconjunto I D es un ideal fraccional de D si I es un D-submódulo de coc(d), y existe un elemento r D tal que ri D. Dado un dominio Dedekind D, y dos ideales fraccionales I, J de D, definimos el producto de I y J como sigue: { n } IJ = a i b i a i I, b i J, n N i=1 Si D es un dominio Dedekind, entonces todos sus ideales fraccionales se factorizan de manera única como producto de ideales primos, y el conjunto de ideales fraccionales de D forma un grupo cuya identidad es D. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 15 / 28

Dominios Dedekind El último teorema de Fermat Dominios Dedekind y campos numéricos Si D es un dominio entero, decimos que D es dominio Dedekind si D es noetheriano, enteramente cerrado, y cada ideal primo de D es un ideal maximal. Un subconjunto I D es un ideal fraccional de D si I es un D-submódulo de coc(d), y existe un elemento r D tal que ri D. Dado un dominio Dedekind D, y dos ideales fraccionales I, J de D, definimos el producto de I y J como sigue: { n } IJ = a i b i a i I, b i J, n N i=1 Si D es un dominio Dedekind, entonces todos sus ideales fraccionales se factorizan de manera única como producto de ideales primos, y el conjunto de ideales fraccionales de D forma un grupo cuya identidad es D. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 15 / 28

Dominios Dedekind El último teorema de Fermat Dominios Dedekind y campos numéricos Si D es un dominio entero, decimos que D es dominio Dedekind si D es noetheriano, enteramente cerrado, y cada ideal primo de D es un ideal maximal. Un subconjunto I D es un ideal fraccional de D si I es un D-submódulo de coc(d), y existe un elemento r D tal que ri D. Dado un dominio Dedekind D, y dos ideales fraccionales I, J de D, definimos el producto de I y J como sigue: { n } IJ = a i b i a i I, b i J, n N i=1 Si D es un dominio Dedekind, entonces todos sus ideales fraccionales se factorizan de manera única como producto de ideales primos, y el conjunto de ideales fraccionales de D forma un grupo cuya identidad es D. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 15 / 28

Dominios Dedekind El último teorema de Fermat Dominios Dedekind y campos numéricos Si D es un dominio entero, decimos que D es dominio Dedekind si D es noetheriano, enteramente cerrado, y cada ideal primo de D es un ideal maximal. Un subconjunto I D es un ideal fraccional de D si I es un D-submódulo de coc(d), y existe un elemento r D tal que ri D. Dado un dominio Dedekind D, y dos ideales fraccionales I, J de D, definimos el producto de I y J como sigue: { n } IJ = a i b i a i I, b i J, n N i=1 Si D es un dominio Dedekind, entonces todos sus ideales fraccionales se factorizan de manera única como producto de ideales primos, y el conjunto de ideales fraccionales de D forma un grupo cuya identidad es D. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 15 / 28

Dominios Dedekind El último teorema de Fermat Dominios Dedekind y campos numéricos Dado un dominio Dedekind, definimos su grupo de clases como el grupo cociente entre el grupo de ideales fraccionales de D y su subgrupo que consta de los ideales fraccionales principales. El número de clases de un dominio Dedekind D, denotado por h(d), es el orden de su grupo de clases. Si K/Q es una extensión de Galois, entonces el número de clases h(k) del campo K es el número de clases de su anillo de enteros. En consecuencia, si I D es un ideal fraccional (en particular un ideal) no principal y n N es tal que I n es principal, ello implicará que (n, h(d)) > 1. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 16 / 28

Dominios Dedekind El último teorema de Fermat Dominios Dedekind y campos numéricos Dado un dominio Dedekind, definimos su grupo de clases como el grupo cociente entre el grupo de ideales fraccionales de D y su subgrupo que consta de los ideales fraccionales principales. El número de clases de un dominio Dedekind D, denotado por h(d), es el orden de su grupo de clases. Si K/Q es una extensión de Galois, entonces el número de clases h(k) del campo K es el número de clases de su anillo de enteros. En consecuencia, si I D es un ideal fraccional (en particular un ideal) no principal y n N es tal que I n es principal, ello implicará que (n, h(d)) > 1. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 16 / 28

Dominios Dedekind El último teorema de Fermat Dominios Dedekind y campos numéricos Dado un dominio Dedekind, definimos su grupo de clases como el grupo cociente entre el grupo de ideales fraccionales de D y su subgrupo que consta de los ideales fraccionales principales. El número de clases de un dominio Dedekind D, denotado por h(d), es el orden de su grupo de clases. Si K/Q es una extensión de Galois, entonces el número de clases h(k) del campo K es el número de clases de su anillo de enteros. En consecuencia, si I D es un ideal fraccional (en particular un ideal) no principal y n N es tal que I n es principal, ello implicará que (n, h(d)) > 1. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 16 / 28

Dominios Dedekind El último teorema de Fermat Dominios Dedekind y campos numéricos Dado un dominio Dedekind, definimos su grupo de clases como el grupo cociente entre el grupo de ideales fraccionales de D y su subgrupo que consta de los ideales fraccionales principales. El número de clases de un dominio Dedekind D, denotado por h(d), es el orden de su grupo de clases. Si K/Q es una extensión de Galois, entonces el número de clases h(k) del campo K es el número de clases de su anillo de enteros. En consecuencia, si I D es un ideal fraccional (en particular un ideal) no principal y n N es tal que I n es principal, ello implicará que (n, h(d)) > 1. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 16 / 28

Dominios Dedekind El último teorema de Fermat Dominios Dedekind y campos numéricos Dado un dominio Dedekind, definimos su grupo de clases como el grupo cociente entre el grupo de ideales fraccionales de D y su subgrupo que consta de los ideales fraccionales principales. El número de clases de un dominio Dedekind D, denotado por h(d), es el orden de su grupo de clases. Si K/Q es una extensión de Galois, entonces el número de clases h(k) del campo K es el número de clases de su anillo de enteros. En consecuencia, si I D es un ideal fraccional (en particular un ideal) no principal y n N es tal que I n es principal, ello implicará que (n, h(d)) > 1. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 16 / 28

El último teorema de Fermat Dominios Dedekind y campos numéricos Campos numéricos Sea K un campo. Decimos que K es un campo numérico si K es de característica cero y [K : Q] <. Si K es un campo numérico, entonces el anillo de enteros de K es un dominio Dedekind. En consecuencia, el anillo Z[ζ p ] es un dominio Dedekind para p número primo. Si K es un campo numérico, entonces h(k) <. Pese a que los únicos números primos p tales que Z[ζ p ] es un dominio de ideales principales (y por lo tanto un dominio de factorización única) son los p 19, sin embargo para cualquier p se cumple la factorización única de los ideales de Z[ζ p ]. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 17 / 28

El último teorema de Fermat Dominios Dedekind y campos numéricos Campos numéricos Sea K un campo. Decimos que K es un campo numérico si K es de característica cero y [K : Q] <. Si K es un campo numérico, entonces el anillo de enteros de K es un dominio Dedekind. En consecuencia, el anillo Z[ζ p ] es un dominio Dedekind para p número primo. Si K es un campo numérico, entonces h(k) <. Pese a que los únicos números primos p tales que Z[ζ p ] es un dominio de ideales principales (y por lo tanto un dominio de factorización única) son los p 19, sin embargo para cualquier p se cumple la factorización única de los ideales de Z[ζ p ]. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 17 / 28

El último teorema de Fermat Dominios Dedekind y campos numéricos Campos numéricos Sea K un campo. Decimos que K es un campo numérico si K es de característica cero y [K : Q] <. Si K es un campo numérico, entonces el anillo de enteros de K es un dominio Dedekind. En consecuencia, el anillo Z[ζ p ] es un dominio Dedekind para p número primo. Si K es un campo numérico, entonces h(k) <. Pese a que los únicos números primos p tales que Z[ζ p ] es un dominio de ideales principales (y por lo tanto un dominio de factorización única) son los p 19, sin embargo para cualquier p se cumple la factorización única de los ideales de Z[ζ p ]. David J. Fernández Bretón (ESFM-IPN) Números de Bernoulli Defensa de Tesis 29/05/2008 17 / 28