LOS GASES Y SUS LEYES DE



Documentos relacionados
LEY DE BOYLE: A temperatura constante, el volumen (V) que ocupa una masa definida de gas es inversamente proporcional a la presión aplicada (P).

PROBLEMAS RESUELTOS. Grupo A: APLICACIÓN DE LAS ECUACIONES GENERALES DE LOS GASES IDEALES

ESTADOS DE AGREGACIÓN DE LA MATERIA

FÍSICA Y QUÍMICA 3º E.S.O. - Repaso 3ª Evaluación GAS LÍQUIDO SÓLIDO

GASES barómetro Unidades

ESTEQUIOMETRÍA. 3.- LEYES VOLUMÉTRICAS: 3.1. Ley de los volúmenes de combinación de gases o de Gay-Lussac Ley de Avogadro.

COLEGIO ROSARIO SANTO DOMINGO BANCO DE PREGUNTAS TEMA ESTADO GASEOSO GRADO DÉCIMO DOCENTE LAURA VERGARA

Leyes de los Gases con Aplicación a la Compresión del Aire.

TEMA 6 La reacción química

1. Montar un modelo de máquina térmica, 2. Poner a funcionar el modelo para levantar un objeto, 3. Describir y explicar el funcionamiento del modelo

Colegio La Salle TH. Prof. Leopoldo Simoza L. PROBLEMAS ACERCA DEL COMPORTAMIENTO DE LOS GASES.

FÍSICA Y QUÍMICA -Valdepeñas de Jaén-

Actividad: Qué es la anomalía del agua?

P cabeza Sca m Pa. beza. 6 m Pa unta

INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA. La mecánica cuántica estudia la estructura atómica, los enlaces en moléculas y la espectroscopia.

DISOLUCIONES Y ESTEQUIOMETRÍA

Soluciones Actividades Tema 2 La materia: estados físicos

1. La magnitud 0, mm expresada en notación científica es: a) 2, mm b) 2, mm c) mm d) mm

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

FISICA II 2011 TEMA II JUAN J CORACE

GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero).

III. ESTADOS DE LA MATERIA

ENERGÍA INTERNA DE UN SISTEMA

Problemas de Fundamentos de Química (1º Grado en Física) Tema 2. FUERZAS INTERMOLECULARES

IES Menéndez Tolosa 3º ESO (Física y Química)

TEMA 1 Conceptos básicos de la termodinámica

Introducción a la Química. Sistemas Materiales y Conceptos Fundamentales. Seminario de Problemas N 1

I. ESTEQUIOMETRÍA. Estas relaciones pueden ser:

2.3 SISTEMAS HOMOGÉNEOS.

Estequiometría PAU- Ejercicios resueltos

Módulo 3: Fluidos. Fluidos

Agentes para la conservación de la energía mecánica

Física y química 1º bachillerato

GASES IDEALES. mg A F A. Presión. Unidades: SI: Pascal (N / m 2 ) cgs: baria (dyna / cm 2 )

Para el primer experimento: 10 hojas de papel tamaño carta u oficio cinta adhesiva. Para el segundo experimento: Una toma de agua (grifo) Una manguera

Tarea 2. Plan de mejora de las competencias lectoras en la ESO. POR QUÉ EL AGUA DEL FONDO DE LOS LAGOS Y RIOS NO SE CONGELA?

a) Igualamos las unidades de los dos miembros de la ecuación:

PRÁCTICA 6 Presión en un gas

Diagrama de Fases Temperatura de Ebullición-Composición de una Mezcla

III. DIFUSION EN SOLIDOS

Electricidad y calor. Temario. Temario. Webpage:

B: Cálculos estequiométricos directos

Fracción másica y fracción molar. Definiciones y conversión

GASES 09/06/2011. La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: La atmósfera

Calor de neutralización

y la masa se puede calcular recordando que el peso es una fuerza de atracción gravitacional que se puede encontrar con la expresión:

Lección 4: Suma y resta de números racionales

2.- Ley de la conservación de la masa

FÍSICA Y QUÍMICA 3º ESO Apuntes: La materia

TEMA 11 LA MATERIA EN EL UNIVERSO

Ciencias Naturales 5º Primaria Tema 7: La materia

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

Actividad: Qué es capilaridad?

CAPITULO 3 LA TEMPERATURA

Estudio de la evaporación

Temas de electricidad II

ENERGÍA INTERNA PARA GASES NO IDEALES.

MEDIDA DEL CALOR ESPECÍFICO

EJERCICIO DE OFERTA Y DEMANDA. ENUNCIADO. a) Indique cuáles serán el precio y la cantidad de equilibrio en ese mercado.

PRUEBA ESPECÍFICA PRUEBA 201

UNIDAD Nº 1: GASES REALES

Examen de problemas. PROBLEMA 1 Considere la siguiente reacción: C(s) + CO 2 (g) 2CO(g)

3º de E.S.O. Física y Química Ejercicios de Repaso para septiembre

Colegio : Liceo Miguel de Cervantes y Saavedra Dpto. Física (3 ero Medio) Profesor: Héctor Palma A.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

UNIDAD 4: LAS DISOLUCIONES

ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA.

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

A VUELTAS CON EL MOL

Calibración del termómetro

GEOMETRÍA MOLECULAR. Lic. Lidia Iñigo

Recordando la experiencia

Página 34: Temperatura constante. Ley de Boyle-Mariotte:

TEMA 2: DIVERSIDAD DE LA MATERIA.

Ing. Gerardo Sarmiento CALOR Y TEMPERATURA

Trabajo Práctico N o 1

b) Determinar la densidad de un líquido, aplicando el principio de igualdad de presiones en puntos a igual profundidad en un fluido en reposo.

El proyecto Eratóstenes. Guía para el estudiante.

FUNCIONES DE PROPORCIONALIDAD

TEMA 2.- ESTADOS DE AGREGACIÓN DE LA MATERIA. GASES (I).

Bases Físicas del Medio Ambiente. Sistemas Termodinámicos

Cifras significativas e incertidumbre en las mediciones

Solubilidad. y se representa por.

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS

TEMA 3. LA MATERIA: CÓMO SE PRESENTA

1. Fundamento teórico

Los números racionales

Unidad IV: Cinética química

+C O 2 CH 4 H 2 +H CO 2. O O lo que es lo mismo: (g) + 2O 2. (g) + H 2. O(g) C 2. (g)+2.5o 2. + Ygr C. Xgr CH 4

1.2. PROPIEDADES DE LA MATERIA.

Química 2º Bach. Ácido-base 28/02/05

TRABAJO EXPERIMENTAL

Unidad IV. Volumen. Le servirá para: Calcular el volumen o capacidad de diferentes recipientes o artefactos.

BALANCE MÁSICO Y ENERGÉTICO DE PROBLEMAS AMBIENTALES

5.1. Organizar los roles

Estas propiedades toman el nombre de CONSTANTES FISICAS porque son prácticamente invariables características de la sustancia.

Transferencia de energía: calor

UNIDAD 1. LOS NÚMEROS ENTEROS.

Transcripción:

EMA : LOS GASES Y SUS LEYES DE COMBINACIÓN -LAS LEYES DE LOS GASES En el siglo XII comenzó a investigarse el hecho de que los gases, independientemente de su naturaleza, presentan un comportamiento similar ante los cambios de presión y temperatura. De estos estudios y otros posteriores surgieron las leyes de los gases..-ley DE BOYLE Las propiedades del aire y de la presión atmosférica fueron ampliamente investigadas por el irlandés Robert Boyle. El dispositivo que usó para estudiar la compresibilidad de los gases era muy sencillo. Consistía en un largo tubo de vidrio doblado en forma de jota y cerrado por el extremo más corto. Boyle vertió mercurio por el brazo más largo e, inclinando un poco el tubo para que el aire pasase de ese extremo al corto, consiguió que el mercurio quedara a la misma altura en ambos lados. De ese modo la presión del aire encerrado se igualaba a la atmosférica. A esta presión le correspondía un volumen. posteriormente, Boyle siguió añadiendo mercurio hasta que la diferencia de altura entre los dos brazos fue de 76 cm. En estas condiciones, la presión sobre el brazo pequeño,, se había incrementado en atm, es decir se había duplicado hasta atm y el volumen ocupado por el aire encerrado,, se había comprimido hasta la mitad con respecto al inicial. A emperatura constante, el volumen que ocupa una masa de gas es inversamente proporcional a la presión que ejerce dicho gas sobre las paredes del recipiente que lo contiene. Matemáticamente, esta Ley puede expresarse de la siguiente forma: K K (Ecuación de una hipérbola donde K es la constante de proporcionalidad) Si consideramos un mismo gas en dos condiciones diferentes se obtiene: Según esto, otro enunciado de la Ley de Boyle sería: A temperatura constante, el producto de la presión por el volumen de una masa de gas permanece también constante. A temperaturas y presiones no excesivamente altas, la mayoría de los gases cumplen esta ley.

.-LEY DE CHARLES Y GAY- LUSSAC A comienzos del siglo XIX había mucha afición a volar en globos aerostáticos. Charles fue uno de los pioneros en este tipo de vuelos y realizó numerosas investigaciones sobre el calentamiento de volúmenes de gases. Las conclusiones que obtuvo le llevaron a publicar una ley que relacionaba volúmenes con la temperatura. Sus conclusiones fueron corroboradas por su compatriota Guy - Lussac para una amplia muestra de gases, por eso la Ley de Charles también es conocida como Ley de Gay- Lussac. Observaron que, al aumentar ºC la temperatura de un gas, se producía un aumento o dilatación de /73 por cada unidad de volumen. Es decir, si tenemos un volumen o a una determinada temperatura y la aumentamos ºC, el nuevo volumen será: 0 + 0 es decir 0 73 Si la temperatura aumenta en t grados t 0 + 73 + Si consideramos el mismo gas a dos temperaturas diferentes (t y t ), sus volúmenes serán: 0 0 t + 73 t + 73 t t 73 + 73 + 73 Si en lugar de considerar la escala centígrada de temperaturas t, consideramos la nueva escala en la que t + 73, podemos escribir: o A presión constante, el volumen de una masa de gas es directamente proporcional a su temperatura absoluta. ( K que es la ecuación de una recta de pendiente K ) ESCALA ABSOLUA DE EMERAURAS O ESCALA KELIN ara una masa determinada de gas y a una presión fija, al representar las relaciones volumen- temperatura obtenidas el resultado será una recta. Si a continuación cambiamos la presión y volvemos a representar la nueva relación volumen- temperatura, obtendremos otra recta de distinta pendiente. Lord Kelvin, observó que al prolongar las distintas rectas hacia un hipotético volumen cero, todas se encontraban en un punto común: - 73ºC. Como la disminución del volumen de una masa de gas no puede ir más allá de cero, esa temperatura constituye un límite conocido como cero Kelvin (0 K) o cero absoluto. La escala absoluta de temperaturas en la que t + 73 se denomina escala Kelvin. --

.3-LEY COMBINADA DE LOS GASES IDEALES Los gases que cumplen perfectamente las Leyes de Boyle y de Charles y Gay - Lussac reciben la denominación de gases ideales. Los gases reales se aproximan al estado ideal cuando se encuentran a muy bajas presiones, sin embargo,el modelo de gas ideal constituye una aproximación válida para su descripción: Qué ocurre si las tres magnitudes que definen el estado de un gas (,, ) varían? Supongamos que las condiciones iniciales de un gas (,, ) cambian a otras condiciones con (,, ).odemos imaginar el proceso como si fuese la suma de dos procesos continuados: rimer proceso: ariación a temperatura constante desde el estado inicial (,, ) hasta uno intermedio (,, ). Aplicando la Ley de Boyle Segundo proceso: ariación a presión constante desde el estado intermedio (,, ) hasta el estado final (,, ). Aplicando la Ley de Charles y Gay-Lussac Combinando las dos expresiones anteriores obtenemos: que es la ecuación de la ley combinada de los gases ideales. cte.4- ECUACIÓN DE ESADO DE LOS GASES IDEALES Se observa que para un mol de cualquier gas la constante a atm y 73K vale 0, valor conocido atm l,08 mol K como constante molar de los gases y que simbolizamos como R. Si consideramos un número cualquiera de moles (n) de gas ideal, entonces: La relación n R n R es la llamada ecuación general de los gases ideales. A partir de elle podemos deducir otra expresión que nos resultará muy útil: M d R -3-

-LEY DE AOGADRO Y OLUMEN MOLAR En muchas ocasiones, los trabajos técnicos y experimentales se efectúan en condiciones normales C.N de presión y temperatura, es decir, a atm de presión (093 a) y 73 K (0ºC) de temperatura. En estas condiciones, mol de cualquier gas ocupa un volumen de,4 l, dato que conocemos como volumen molar de los gases, y que corrobora la Ley de Avogadro que ya vimos anteriormente ( volúmenes iguales de gases diferentes medidos en iguales condiciones de presión y temperatura contienen el mismo número de moléculas ) Condiciones normales atm, 0ºC73 K Condiciones estándar atm; 5ºC98 K 3-LEY DE DALON ARA LAS RESIONES ARCIALES Las leyes de los gases pueden aplicarse tanto a sustancias gaseosas como a mezclas de gases que no reaccionan entre sí. Así, para una mezcla: n R (presión total; volumen total; n número total de moles; temperatura de la mezcla) ero, cómo se comporta cada gas en la mezcla? Experimentalmente se observa que debido a la gran capacidad de difusión de los gases, cuando se mezclan, cada uno se comporta como si ocupase la totalidad del volumen del recipiente que los contiene. or ello, cada gas ejerce la misma presión que si ocupase él solo todo el recipiente a la temperatura de la mezcla. Si tenemos una mezcla formada por n A moles del gas A; n B moles del gas B; n C moles del gas C.las presiones de cada gas cumplirán: A B C n R A : resión parcial de A A n R B : resión parcial de B B n R C : resión parcial de C C El comportamiento de las mezclas de gases queda descrito en la Ley que enunción Dalton en 80: La presión de una mezcla gaseosa es igual a la suma de las presiones parciales de todos los gases que la componen, siendo la presión parcial de cada gas la que ejercería si ocupase, aisladamente, el volumen total de la mezcla a la misma temperatura A + B + c -4-

ROBLEMAS. Una botella de acero de 5 litros contiene oxígeno en c.n. Qué cantidad de oxígeno deberá introducirse para que, manteniendo constante la temperatura, la presión se eleve a 40 atm? Sol: 78, 8 g de O. Determina el número de moles presentes en cada caso: a),84 0 4 moléculas de O Sol a) 3,06 moles O b) 80 g de hierro b),43 moles de Fe c) 50 litros de CO medido en c.n. c),3 moles de CO d) 0 litros de NH 3 medidos a 800 mm y 0 0 C 0,47 moles de NH 3 3. Calcula el número de moléculas presentes en cm 3 de gas en c.n. (Número de Loschmidt) Importa la naturaleza del gas para el cálculo? Sol:,7 0 9 moléculas 4. Calcula el número de moléculas de agua presentes en cm 3 de agua líquida (d g/cm 3 ). Compara el resultado con el del ejercicio anterior qué conclusión extraes de la comparación? Sol: 3,3 0 moléculas de H O 5. Sabiendo que la densidad media del aire a 0ºC y atm de presión es,93 g/l. Calcula la masa molecular media del aire (Sol: 8,96 g/mol) 6. Una muestra de hidrógeno ocupa un volumen de 4,5 litros a 770 mm y 50 0 C. Calcula: a) El volumen que ocuparía en c.n. b) Con el mismo recipiente qué habría que hacer para que la presión fuera como máximo de 700 mm? c) La presión que ejercería si se trasvasa a un recipiente de,5 L manteniendo cte Sol: a) 3,9 litros; b) Bajar la temperatura hasta 93, 6 K (0,4 0 C); c) 77 mm (3,65 atm) 7. Un recipiente rígido de 8 L contiene He. Si la presión ejercida por el gas es de 780 mm y su temperatura 30 0 C: a) Qué masa de He hay en el recipiente? b) Si la presión máxima que pueden soportar las paredes del recipiente es de 3 atm Cuál sería el límite de temperatura al que se podría trabajar sin que se rompa el recipiente? Sol: a) 0, 56 g He; b) 388 K (5 0 C) 8. Un recipiente de 5 L contiene 4,0 g de nitrógeno a la temperatura de 7 0 C. La pesión exterior es de 760 mm. Se abre el recipiente hasta que se iguale la presión con la del exterior. Calcular: a) La cantidad de nitrógeno que sale -5-

b) La temperatura que debería tener el nitrógeno que queda si se desea que su presión sea la inicial. Sol: a) 9,73 g de N ; b) 3 K (039 0 C) 9. En un recipiente de 5 L en el que se ha hecho previamente el vacío se inyectan 5,3 g de aire. Si la presión ejercida e de 67 mm y la temperatura 0 0 C a) Cuál es la masa molecular del aire? Sol: a) 8,96 g/mol; b) Cual es la densidad del aire en c.n? b),9 g/l c) Cuál será su densidad a 760 mm y 70 0 C? c),03 g/l 0. Cuál es la masa molecular de una gas cuya densidad en c.n. es 3,7 g/l? Sol: 7 g/mol. La densidad de una gas en c. n. es,48 g/l. Cuál será su densidad a 30 K y 730 mm Hg? Sol:, g/mol. A presión normal, cuál es la temperatura a la que se deben calentar,9 g de aire para que ocupen un volumen de,9 litros? Sol: 353 K (80 0 C) 3. Dos esferas A y B de 5 y 0 litros de capacidad respectivamente, contienen oxígeno gaseoso a la temperatura de 0 0 C. La esfera A contiene 96 g y la B 64 g. Calcular la presión de equilibrio si ambas se ponen en comunicación. Sol: 8 atm. 4. Una cantidad de 35, g de un hidrocarburo ocupa en estado gaseoso 3, l medidos a atm y 50ºC. sabiendo que el 85,5 % es carbono, calcula su fórmula molecular Sol: C 5 H 0 5. Un compuesto orgánico tiene la siguiente composición centesimal: C4,4 %; H 4,05%; Cl 7,7 %. Calcula: a. La fórmula empírica b. Su fórmula molecular, sabiendo que 0,94 gramos de dicho compuesto ocupan un volumen de 3 ml medidos a atm y 0ºC. Sol: a) ( CH Cl ) n, b) C H 4 Cl 6. enemos en condiciones normales, un recipiente de 750 ml lleno de nitrógeno, oxígeno y dióxido de carbono. Si la presión correspondiente al oxígeno es de o, atm y la correspondiente al nitrógeno es de 0,77 atm, cuántos moles de CO hay en el recipiente?, Y gramos de N? Cuál es la fracción molar del O? Sol: 6,7x0-4 moles; 0,7 g de N ; 0, % -6-